organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(4-Iodo­phen­yl)penta­nedi­nitrile

CROSSMARK_Color_square_no_text.svg

aFaculty of Systems Engineering, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@wakayama-u.ac.jp

Edited by S. Parkin, University of Kentucky, USA (Received 4 February 2019; accepted 25 February 2019; online 28 February 2019)

In the title penta­nedi­nitrile derivative, C11H9IN2, the iodo­phenyl group is connected at the 3-position. The central propyl­ene chain of the penta­nedi­nitrile moiety contains one gauche conformation as a result of steric repulsion with the phenyl ring. Inter­molecular close contacts in the crystal comprise a weak Csp3—H⋯N hydrogen bond and a C—I⋯N halogen bond.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C11H9IN2, is a penta­nedi­nitrile (glutaro­nitrile) derivative, in which the iodo­phenyl group is connected at the 3-position. Penta­nedi­nitrile derivatives are used as precursors in the synthesis of 2,6-di­amino­pyridines, which are used as raw materials for insecticides (Kato et al., 1989[Kato, S., Masui, A. & Ishida, S. (1989). J. Pestic. Sci. 14, 11-22.]).

The title compound (Fig. 1[link]) was obtained in a condensation reaction between 4-iodebenzaldehyde and cyano­acetic acid. The central propyl­ene chain of the penta­nedi­nitrile group contains one gauche conformation where the torsion angle of C1—C2—C3—C4 is 161.3 (9)°. Similarly, the conformations of related compounds (see e.g. Al-Arab et al., 1988[Al-Arab, M. M., Tabba, H. D., Abu-Yousef, I. A. & Olmstead, M. M. (1988). Tetrahedron, 44, 7293-7302.]; Lorente et al., 1995[Lorente, A., Galan, C., Fonseca, I. & Sanz-Aparicio, J. (1995). Can. J. Chem. 73, 1546-1555.]; Percino et al., 2014[Percino, M., Cerón, M., Castro, M., Soriano-Moro, G., Chapela, V. & Meléndez, F. (2014). Chem. Pap. Chem. Zvesti, 68, 681-688.]) also do not show all-anti conformations. In the title compound, steric repulsion between the C1—N1 cyano group and the phenyl ring is thought to result in the gauche conformation.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level, with H atoms shown as small spheres.

In the crystal, inter­molecular halogen bonds are formed between inversion-related mol­ecules to give a dimeric structure (Fig. 2[link]), where the distance of C—I⋯Ni [symmetry code: (i) −x + 1, −y, −z + 1] is 3.369 (7) Å and the C—I⋯Ni angle is 166.2 (2)°. Here, the inter­molecular distance is shorter by 4.6% than the sum of the van der Waals radii of the nitro­gen and iodine atoms, such that this halogen bond is classified as a weak inter­action. Pairs of weak inter­molecular Csp3—H⋯N1ii hydrogen bonds also form between inversion-related dimers (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯N1i 0.99 2.61 3.387 (12) 135
Symmetry code: (i) -x, -y, -z.
[Figure 2]
Figure 2
A view of the inter­molecular inter­actions in the title compound [symmetry codes:(i) −x + 1, −y, −z + 1; (ii) −x, −y, −z].

Synthesis and crystallization

A solution of 4-iodo­benzaldehyde (1.0 g, 4.3 mmol) and cyano­acetic acid (0.73 g, 8.6 mmol) in aceto­nitrile (30 ml) was refluxed overnight with piperidine (0.22 ml) as a basic catalyst. The solution was condensed using a rotary evaporator, and the residual yellowish oil was dissolved in chloro­form (90 ml). The solution was washed with HClaq (1.0 M) and water. It was dried over Na2SO4 and condensed under reduced pressure. The residue was purified by recrystallization from a hexane-ethanol (v:v = 7:1) solution to give 3-(4-iodo­phen­yl)penta­nedi­nitrile in a yield of 41% (0.52 g).

1H NMR (400 MHz): δ 7.73 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 3.39 (m, 1H), 2.91 (d, J = 7.4 Hz, 4H)

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H9IN2
Mr 296.11
Crystal system, space group Monoclinic, P21/c
Temperature (K) 93
a, b, c (Å) 6.508 (4), 10.524 (6), 16.047 (10)
β (°) 90.507 (10)
V3) 1099.0 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.88
Crystal size (mm) 0.15 × 0.10 × 0.02
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.744, 0.944
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 7204, 1920, 1618
Rint 0.065
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.095, 1.21
No. of reflections 1920
No. of parameters 127
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.02, −0.83
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

3-(4-Iodophenyl)pentanedinitrile top
Crystal data top
C11H9IN2F(000) = 568.00
Mr = 296.11Dx = 1.790 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 6.508 (4) ÅCell parameters from 2574 reflections
b = 10.524 (6) Åθ = 2.5–25.0°
c = 16.047 (10) ŵ = 2.88 mm1
β = 90.507 (10)°T = 93 K
V = 1099.0 (11) Å3Prism, colorless
Z = 40.15 × 0.10 × 0.02 mm
Data collection top
Rigaku Saturn724+
diffractometer
1618 reflections with F2 > 2.0σ(F2)
Detector resolution: 7.111 pixels mm-1Rint = 0.065
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 76
Tmin = 0.744, Tmax = 0.944k = 1212
7204 measured reflectionsl = 1819
1920 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.P)2 + 7.5421P]
where P = (Fo2 + 2Fc2)/3
1920 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.83 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom for C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.77853 (9)0.16532 (6)0.51640 (4)0.0351 (2)
N10.2457 (12)0.0590 (8)0.0356 (5)0.045 (2)
N20.0921 (11)0.2452 (7)0.2869 (4)0.0362 (19)
C10.2949 (14)0.0783 (8)0.0303 (6)0.035 (2)
C20.3609 (14)0.1037 (8)0.1178 (5)0.035 (2)
C30.3499 (13)0.0126 (9)0.1745 (5)0.034 (2)
C40.1348 (14)0.0614 (9)0.1804 (5)0.041 (2)
C50.1166 (12)0.1689 (9)0.2395 (5)0.0301 (19)
C60.4440 (13)0.0237 (8)0.2588 (5)0.030 (2)
C70.6281 (12)0.0277 (8)0.2834 (5)0.030 (2)
C80.7244 (13)0.0096 (9)0.3576 (5)0.032 (2)
C90.6311 (12)0.0997 (8)0.4067 (5)0.0248 (19)
C100.4428 (13)0.1489 (9)0.3852 (5)0.035 (2)
C110.3499 (13)0.1095 (8)0.3110 (5)0.034 (2)
H2A0.27280.17140.14110.0425*
H2B0.503930.135610.117690.0425*
H30.436630.081040.149590.0402*
H4A0.043780.008480.198590.0497*
H4B0.087710.089390.124540.0497*
H70.691570.089910.249270.0363*
H80.852220.026670.373990.0389*
H100.376820.208730.420250.0416*
H110.218790.142540.296040.0412*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0355 (3)0.0376 (3)0.0322 (3)0.0030 (3)0.0112 (2)0.0077 (3)
N10.041 (5)0.064 (6)0.030 (5)0.002 (4)0.000 (4)0.002 (4)
N20.040 (5)0.040 (5)0.029 (4)0.017 (4)0.000 (3)0.001 (4)
C10.036 (5)0.020 (5)0.047 (6)0.009 (4)0.008 (5)0.005 (4)
C20.046 (6)0.032 (5)0.028 (5)0.000 (4)0.003 (4)0.006 (4)
C30.039 (5)0.039 (5)0.023 (4)0.001 (4)0.005 (4)0.006 (4)
C40.047 (6)0.051 (6)0.025 (5)0.006 (5)0.004 (4)0.007 (4)
C50.037 (5)0.033 (5)0.020 (4)0.011 (5)0.007 (4)0.007 (4)
C60.044 (6)0.025 (5)0.021 (4)0.004 (4)0.007 (4)0.002 (4)
C70.032 (5)0.035 (5)0.024 (5)0.002 (4)0.011 (4)0.001 (4)
C80.029 (5)0.038 (5)0.030 (5)0.004 (4)0.005 (4)0.003 (4)
C90.031 (5)0.022 (4)0.020 (4)0.001 (4)0.009 (4)0.002 (4)
C100.035 (5)0.032 (5)0.037 (5)0.003 (4)0.013 (4)0.002 (4)
C110.029 (5)0.035 (5)0.039 (5)0.008 (4)0.020 (4)0.005 (4)
Geometric parameters (Å, º) top
I1—C92.113 (8)C9—C101.371 (11)
N1—C11.120 (12)C10—C111.393 (12)
N2—C51.118 (11)C2—H2A0.990
C1—C21.489 (13)C2—H2B0.990
C2—C31.526 (12)C3—H31.000
C3—C41.495 (12)C4—H4A0.990
C3—C61.529 (11)C4—H4B0.990
C4—C51.482 (13)C7—H70.950
C6—C71.369 (12)C8—H80.950
C6—C111.379 (12)C10—H100.950
C7—C81.398 (11)C11—H110.950
C8—C91.378 (12)
N1—C1—C2179.8 (9)C3—C2—H2A108.805
C1—C2—C3113.8 (7)C3—C2—H2B108.800
C2—C3—C4111.2 (7)H2A—C2—H2B107.673
C2—C3—C6107.9 (7)C2—C3—H3108.068
C4—C3—C6113.4 (7)C4—C3—H3108.070
C3—C4—C5112.6 (7)C6—C3—H3108.068
N2—C5—C4175.0 (9)C3—C4—H4A109.087
C3—C6—C7119.9 (7)C3—C4—H4B109.085
C3—C6—C11121.6 (7)C5—C4—H4A109.082
C7—C6—C11118.5 (7)C5—C4—H4B109.080
C6—C7—C8121.3 (8)H4A—C4—H4B107.844
C7—C8—C9119.0 (8)C6—C7—H7119.373
I1—C9—C8120.1 (6)C8—C7—H7119.368
I1—C9—C10119.0 (6)C7—C8—H8120.514
C8—C9—C10120.9 (7)C9—C8—H8120.523
C9—C10—C11118.9 (8)C9—C10—H10120.539
C6—C11—C10121.4 (8)C11—C10—H10120.550
C1—C2—H2A108.800C6—C11—H11119.287
C1—C2—H2B108.802C10—C11—H11119.285
C1—C2—C3—C461.3 (9)C3—C6—C11—C10175.6 (7)
C1—C2—C3—C6173.8 (6)C7—C6—C11—C103.2 (12)
C2—C3—C4—C5176.1 (6)C11—C6—C7—C82.9 (12)
C2—C3—C6—C7110.6 (8)C6—C7—C8—C90.1 (12)
C2—C3—C6—C1168.2 (9)C7—C8—C9—I1177.0 (6)
C4—C3—C6—C7125.8 (8)C7—C8—C9—C102.6 (12)
C4—C3—C6—C1155.4 (10)I1—C9—C10—C11177.3 (5)
C6—C3—C4—C554.3 (9)C8—C9—C10—C112.3 (12)
C3—C6—C7—C8175.9 (7)C9—C10—C11—C60.7 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···N1i0.992.613.387 (12)135
Symmetry code: (i) x, y, z.
 

References

First citationAl-Arab, M. M., Tabba, H. D., Abu-Yousef, I. A. & Olmstead, M. M. (1988). Tetrahedron, 44, 7293–7302.  CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKato, S., Masui, A. & Ishida, S. (1989). J. Pestic. Sci. 14, 11–22.  CrossRef CAS Google Scholar
First citationLorente, A., Galan, C., Fonseca, I. & Sanz-Aparicio, J. (1995). Can. J. Chem. 73, 1546–1555.  CrossRef CAS Web of Science Google Scholar
First citationPercino, M., Cerón, M., Castro, M., Soriano-Moro, G., Chapela, V. & Meléndez, F. (2014). Chem. Pap. Chem. Zvesti, 68, 681–688.  Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds