organic compounds
3-(4-Iodophenyl)pentanedinitrile
aFaculty of Systems Engineering, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@wakayama-u.ac.jp
In the title pentanedinitrile derivative, C11H9IN2, the iodophenyl group is connected at the 3-position. The central propylene chain of the pentanedinitrile moiety contains one gauche conformation as a result of steric repulsion with the phenyl ring. Intermolecular close contacts in the crystal comprise a weak Csp3—H⋯N hydrogen bond and a C—I⋯N halogen bond.
CCDC reference: 1899183
Structure description
The title compound, C11H9IN2, is a pentanedinitrile (glutaronitrile) derivative, in which the iodophenyl group is connected at the 3-position. Pentanedinitrile derivatives are used as precursors in the synthesis of 2,6-diaminopyridines, which are used as raw materials for insecticides (Kato et al., 1989).
The title compound (Fig. 1) was obtained in a condensation reaction between 4-iodebenzaldehyde and cyanoacetic acid. The central propylene chain of the pentanedinitrile group contains one gauche conformation where the torsion angle of C1—C2—C3—C4 is 161.3 (9)°. Similarly, the conformations of related compounds (see e.g. Al-Arab et al., 1988; Lorente et al., 1995; Percino et al., 2014) also do not show all-anti conformations. In the title compound, steric repulsion between the C1—N1 cyano group and the phenyl ring is thought to result in the gauche conformation.
In the crystal, intermolecular halogen bonds are formed between inversion-related molecules to give a dimeric structure (Fig. 2), where the distance of C—I⋯Ni [symmetry code: (i) −x + 1, −y, −z + 1] is 3.369 (7) Å and the C—I⋯Ni angle is 166.2 (2)°. Here, the intermolecular distance is shorter by 4.6% than the sum of the van der Waals radii of the nitrogen and iodine atoms, such that this halogen bond is classified as a weak interaction. Pairs of weak intermolecular Csp3—H⋯N1ii hydrogen bonds also form between inversion-related dimers (Fig. 2, Table 1).
Synthesis and crystallization
A solution of 4-iodobenzaldehyde (1.0 g, 4.3 mmol) and cyanoacetic acid (0.73 g, 8.6 mmol) in acetonitrile (30 ml) was refluxed overnight with piperidine (0.22 ml) as a basic catalyst. The solution was condensed using a rotary evaporator, and the residual yellowish oil was dissolved in chloroform (90 ml). The solution was washed with HClaq (1.0 M) and water. It was dried over Na2SO4 and condensed under reduced pressure. The residue was purified by recrystallization from a hexane-ethanol (v:v = 7:1) solution to give 3-(4-iodophenyl)pentanedinitrile in a yield of 41% (0.52 g).
1H NMR (400 MHz): δ 7.73 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 3.39 (m, 1H), 2.91 (d, J = 7.4 Hz, 4H)
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1899183
https://doi.org/10.1107/S2414314619002827/pk4025sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2414314619002827/pk4025Isup2.cml
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).C11H9IN2 | F(000) = 568.00 |
Mr = 296.11 | Dx = 1.790 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
a = 6.508 (4) Å | Cell parameters from 2574 reflections |
b = 10.524 (6) Å | θ = 2.5–25.0° |
c = 16.047 (10) Å | µ = 2.88 mm−1 |
β = 90.507 (10)° | T = 93 K |
V = 1099.0 (11) Å3 | Prism, colorless |
Z = 4 | 0.15 × 0.10 × 0.02 mm |
Rigaku Saturn724+ diffractometer | 1618 reflections with F2 > 2.0σ(F2) |
Detector resolution: 7.111 pixels mm-1 | Rint = 0.065 |
ω scans | θmax = 25.0°, θmin = 3.1° |
Absorption correction: numerical (NUMABS; Rigaku, 1999) | h = −7→6 |
Tmin = 0.744, Tmax = 0.944 | k = −12→12 |
7204 measured reflections | l = −18→19 |
1920 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.068 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.21 | w = 1/[σ2(Fo2) + (0.P)2 + 7.5421P] where P = (Fo2 + 2Fc2)/3 |
1920 reflections | (Δ/σ)max = 0.001 |
127 parameters | Δρmax = 1.02 e Å−3 |
0 restraints | Δρmin = −0.83 e Å−3 |
Primary atom site location: structure-invariant direct methods |
Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom for C). |
x | y | z | Uiso*/Ueq | ||
I1 | 0.77853 (9) | 0.16532 (6) | 0.51640 (4) | 0.0351 (2) | |
N1 | 0.2457 (12) | 0.0590 (8) | −0.0356 (5) | 0.045 (2) | |
N2 | 0.0921 (11) | −0.2452 (7) | 0.2869 (4) | 0.0362 (19) | |
C1 | 0.2949 (14) | 0.0783 (8) | 0.0303 (6) | 0.035 (2) | |
C2 | 0.3609 (14) | 0.1037 (8) | 0.1178 (5) | 0.035 (2) | |
C3 | 0.3499 (13) | −0.0126 (9) | 0.1745 (5) | 0.034 (2) | |
C4 | 0.1348 (14) | −0.0614 (9) | 0.1804 (5) | 0.041 (2) | |
C5 | 0.1166 (12) | −0.1689 (9) | 0.2395 (5) | 0.0301 (19) | |
C6 | 0.4440 (13) | 0.0237 (8) | 0.2588 (5) | 0.030 (2) | |
C7 | 0.6281 (12) | −0.0277 (8) | 0.2834 (5) | 0.030 (2) | |
C8 | 0.7244 (13) | 0.0096 (9) | 0.3576 (5) | 0.032 (2) | |
C9 | 0.6311 (12) | 0.0997 (8) | 0.4067 (5) | 0.0248 (19) | |
C10 | 0.4428 (13) | 0.1489 (9) | 0.3852 (5) | 0.035 (2) | |
C11 | 0.3499 (13) | 0.1095 (8) | 0.3110 (5) | 0.034 (2) | |
H2A | 0.2728 | 0.1714 | 0.1411 | 0.0425* | |
H2B | 0.50393 | 0.13561 | 0.11769 | 0.0425* | |
H3 | 0.43663 | −0.08104 | 0.14959 | 0.0402* | |
H4A | 0.04378 | 0.00848 | 0.19859 | 0.0497* | |
H4B | 0.08771 | −0.08939 | 0.12454 | 0.0497* | |
H7 | 0.69157 | −0.08991 | 0.24927 | 0.0363* | |
H8 | 0.85222 | −0.02667 | 0.37399 | 0.0389* | |
H10 | 0.37682 | 0.20873 | 0.42025 | 0.0416* | |
H11 | 0.21879 | 0.14254 | 0.29604 | 0.0412* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0355 (3) | 0.0376 (3) | 0.0322 (3) | 0.0030 (3) | −0.0112 (2) | −0.0077 (3) |
N1 | 0.041 (5) | 0.064 (6) | 0.030 (5) | 0.002 (4) | 0.000 (4) | 0.002 (4) |
N2 | 0.040 (5) | 0.040 (5) | 0.029 (4) | −0.017 (4) | 0.000 (3) | 0.001 (4) |
C1 | 0.036 (5) | 0.020 (5) | 0.047 (6) | 0.009 (4) | 0.008 (5) | 0.005 (4) |
C2 | 0.046 (6) | 0.032 (5) | 0.028 (5) | 0.000 (4) | 0.003 (4) | 0.006 (4) |
C3 | 0.039 (5) | 0.039 (5) | 0.023 (4) | −0.001 (4) | −0.005 (4) | 0.006 (4) |
C4 | 0.047 (6) | 0.051 (6) | 0.025 (5) | −0.006 (5) | −0.004 (4) | 0.007 (4) |
C5 | 0.037 (5) | 0.033 (5) | 0.020 (4) | −0.011 (5) | −0.007 (4) | −0.007 (4) |
C6 | 0.044 (6) | 0.025 (5) | 0.021 (4) | −0.004 (4) | −0.007 (4) | 0.002 (4) |
C7 | 0.032 (5) | 0.035 (5) | 0.024 (5) | −0.002 (4) | 0.011 (4) | −0.001 (4) |
C8 | 0.029 (5) | 0.038 (5) | 0.030 (5) | −0.004 (4) | −0.005 (4) | 0.003 (4) |
C9 | 0.031 (5) | 0.022 (4) | 0.020 (4) | −0.001 (4) | −0.009 (4) | −0.002 (4) |
C10 | 0.035 (5) | 0.032 (5) | 0.037 (5) | 0.003 (4) | −0.013 (4) | 0.002 (4) |
C11 | 0.029 (5) | 0.035 (5) | 0.039 (5) | −0.008 (4) | −0.020 (4) | 0.005 (4) |
I1—C9 | 2.113 (8) | C9—C10 | 1.371 (11) |
N1—C1 | 1.120 (12) | C10—C11 | 1.393 (12) |
N2—C5 | 1.118 (11) | C2—H2A | 0.990 |
C1—C2 | 1.489 (13) | C2—H2B | 0.990 |
C2—C3 | 1.526 (12) | C3—H3 | 1.000 |
C3—C4 | 1.495 (12) | C4—H4A | 0.990 |
C3—C6 | 1.529 (11) | C4—H4B | 0.990 |
C4—C5 | 1.482 (13) | C7—H7 | 0.950 |
C6—C7 | 1.369 (12) | C8—H8 | 0.950 |
C6—C11 | 1.379 (12) | C10—H10 | 0.950 |
C7—C8 | 1.398 (11) | C11—H11 | 0.950 |
C8—C9 | 1.378 (12) | ||
N1—C1—C2 | 179.8 (9) | C3—C2—H2A | 108.805 |
C1—C2—C3 | 113.8 (7) | C3—C2—H2B | 108.800 |
C2—C3—C4 | 111.2 (7) | H2A—C2—H2B | 107.673 |
C2—C3—C6 | 107.9 (7) | C2—C3—H3 | 108.068 |
C4—C3—C6 | 113.4 (7) | C4—C3—H3 | 108.070 |
C3—C4—C5 | 112.6 (7) | C6—C3—H3 | 108.068 |
N2—C5—C4 | 175.0 (9) | C3—C4—H4A | 109.087 |
C3—C6—C7 | 119.9 (7) | C3—C4—H4B | 109.085 |
C3—C6—C11 | 121.6 (7) | C5—C4—H4A | 109.082 |
C7—C6—C11 | 118.5 (7) | C5—C4—H4B | 109.080 |
C6—C7—C8 | 121.3 (8) | H4A—C4—H4B | 107.844 |
C7—C8—C9 | 119.0 (8) | C6—C7—H7 | 119.373 |
I1—C9—C8 | 120.1 (6) | C8—C7—H7 | 119.368 |
I1—C9—C10 | 119.0 (6) | C7—C8—H8 | 120.514 |
C8—C9—C10 | 120.9 (7) | C9—C8—H8 | 120.523 |
C9—C10—C11 | 118.9 (8) | C9—C10—H10 | 120.539 |
C6—C11—C10 | 121.4 (8) | C11—C10—H10 | 120.550 |
C1—C2—H2A | 108.800 | C6—C11—H11 | 119.287 |
C1—C2—H2B | 108.802 | C10—C11—H11 | 119.285 |
C1—C2—C3—C4 | −61.3 (9) | C3—C6—C11—C10 | −175.6 (7) |
C1—C2—C3—C6 | 173.8 (6) | C7—C6—C11—C10 | 3.2 (12) |
C2—C3—C4—C5 | −176.1 (6) | C11—C6—C7—C8 | −2.9 (12) |
C2—C3—C6—C7 | −110.6 (8) | C6—C7—C8—C9 | 0.1 (12) |
C2—C3—C6—C11 | 68.2 (9) | C7—C8—C9—I1 | −177.0 (6) |
C4—C3—C6—C7 | 125.8 (8) | C7—C8—C9—C10 | 2.6 (12) |
C4—C3—C6—C11 | −55.4 (10) | I1—C9—C10—C11 | 177.3 (5) |
C6—C3—C4—C5 | −54.3 (9) | C8—C9—C10—C11 | −2.3 (12) |
C3—C6—C7—C8 | 175.9 (7) | C9—C10—C11—C6 | −0.7 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4B···N1i | 0.99 | 2.61 | 3.387 (12) | 135 |
Symmetry code: (i) −x, −y, −z. |
References
Al-Arab, M. M., Tabba, H. D., Abu-Yousef, I. A. & Olmstead, M. M. (1988). Tetrahedron, 44, 7293–7302. CAS Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kato, S., Masui, A. & Ishida, S. (1989). J. Pestic. Sci. 14, 11–22. CrossRef CAS Google Scholar
Lorente, A., Galan, C., Fonseca, I. & Sanz-Aparicio, J. (1995). Can. J. Chem. 73, 1546–1555. CrossRef CAS Web of Science Google Scholar
Percino, M., Cerón, M., Castro, M., Soriano-Moro, G., Chapela, V. & Meléndez, F. (2014). Chem. Pap. Chem. Zvesti, 68, 681–688. Google Scholar
Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.