organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(2-Hy­dr­oxy-6-meth­­oxy­phen­yl)-3-(2,3,4-tri­meth­­oxy­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by A. J. Lough, University of Toronto, Canada (Received 23 January 2019; accepted 30 January 2019; online 5 February 2019)

In the title mol­ecule, C19H20O6, the dihedral angle formed by the benzene rings is 36.71 (2)°. The hy­droxy group is involved in a weak intra­molecular O—H⋯O hydrogen bond. In the crystal, two weak C—H⋯O hydrogen bonds link the mol­ecules into chains along [001].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones are secondary metabolites found in plants with a C6–C3–C6 skeleton, a C3 skeleton being an α,β-unsaturated carbonyl (enone). A variety of chalcones have been isolated from natural sources and synthesized because they have shown wide spectrum of biological activities with clinical potentials against various diseases (Zhuang et al., 2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810.]). As part of our ongoing work in this area (Shin et al., 2019[Shin, S., Lee, J., Park, J., Lee, Y., Ahn, S., Lee, J., Koh, D., Lee, Y. & Lim, Y. (2019). Bioorg. Chem. 83, 438-449.]; Lee et al., 2016[Lee, D., Jung Jung, Y., Koh, D., Lim, Y., Lee, Y. & Shin, S. (2016). Cancer Lett. 372, 1-9.]), the crystal structure of the title compound has been determined.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. An intra­molecular O5—H5⋯O1 hydrogen bond (Table 1[link]) may cause the C1=O1 double bond [1.257 (5) Å] to be slightly longer than the normal value (Allen et al. 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The dihedral angle between the benzene rings is 36.71 (2)°. The trans configuration of the C2=C3 double bond is confirmed by the C1—C2=C3—C4 torsion angle of of −177.4 (4)°. The meth­oxy group on benzene ring A, which has a hydroxyl substituent, is almost coplanar with the ring plane [C17—C18—O6—C19 = −4.3 (5)°]. Of the three meth­oxy groups attached to benzene ring B, the two meth­oxy groups at the ortho and meta positions are significantly rotated from the ring plane [C4—C5—O2—C10 = 114.0 (4), C5—C6—O3—C11 = 113.9 (4)°] while the group in the para position is essentially coplanar [C6—C7—O4—C12 = −179.3 (3)°].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1 0.84 1.76 2.502 (3) 147
C19—H19A⋯O1i 0.98 2.53 3.490 (6) 167
C11—H11A⋯O3ii 0.98 2.55 3.363 (5) 140
Symmetry codes: (i) x, y, z-1; (ii) [-x+2, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability level.

In the crystal, two weak C—H⋯O hydrogen bonds link the mol­ecules into chains along [001] (Table 1[link], Fig. 2[link]).

[Figure 2]
Figure 2
Part of the crystal structure with weak C19—H19A⋯O1i and C11—H11A⋯Oii hydrogen bonds shown as orange and blue dashed lines, respectively. For clarity only those H atoms involved in hydrogen bonding are shown.

Synthesis and crystallization

To a solution of 2-hy­droxy-6-meth­oxy­aceto­phenone (166 mg, 1 mmol) in 15 ml of anhydrous ethanol was added 2,3,4-tri­meth­oxy­benzaldehyde (196 mg, 1 mmol) and the temperature was adjusted to around 276–277 K in an ice-bath. To the cooled reaction mixture was added 1.5 ml of 50% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 24 h. After completion of the reaction (monitored by TLC), this mixture was poured into iced water (40 ml) and was acidified with a 6 N HCl solution until the pH was equal to 2 to produce a solid product. This solid was recrystallized from an ethanol solution to obtain single crystals of the title compound in 38% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H20O6
Mr 344.35
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 200
a, b, c (Å) 7.7143 (5), 28.907 (2), 7.5010 (5)
V3) 1672.72 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.18 × 0.09 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 11890, 4004, 2199
Rint 0.053
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.105, 0.95
No. of reflections 4004
No. of parameters 231
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(E)-1-(2-Hydroxy-6-methoxyphenyl)-3-(2,3,4-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C19H20O6Dx = 1.367 Mg m3
Mr = 344.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 3178 reflections
a = 7.7143 (5) Åθ = 2.7–27.3°
b = 28.907 (2) ŵ = 0.10 mm1
c = 7.5010 (5) ÅT = 200 K
V = 1672.72 (19) Å3Block, yellow
Z = 40.18 × 0.09 × 0.08 mm
F(000) = 728
Data collection top
Bruker APEXII CCD area detector
diffractometer
Rint = 0.053
/f and /w scansθmax = 28.3°, θmin = 2.7°
11890 measured reflectionsh = 1010
4004 independent reflectionsk = 3829
2199 reflections with I > 2σ(I)l = 109
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0334P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
4004 reflectionsΔρmax = 0.18 e Å3
231 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8643 (4)0.25927 (8)0.3218 (4)0.0524 (7)
C10.7768 (5)0.27219 (13)0.1895 (6)0.0411 (9)
C20.7215 (5)0.32059 (13)0.1845 (5)0.0418 (10)
H20.63220.32950.10450.050*
C30.7932 (4)0.35234 (12)0.2894 (5)0.0405 (10)
H30.88530.34220.36380.049*
C40.7459 (4)0.40117 (12)0.3028 (5)0.0350 (8)
C50.8519 (4)0.43163 (12)0.3987 (5)0.0352 (9)
C60.8156 (4)0.47884 (12)0.4073 (5)0.0343 (9)
C70.6691 (4)0.49594 (11)0.3223 (5)0.0351 (9)
C80.5596 (5)0.46635 (12)0.2301 (5)0.0401 (10)
H80.45900.47800.17250.048*
C90.5984 (5)0.41971 (12)0.2229 (5)0.0411 (10)
H90.52180.39960.16130.049*
O20.9906 (3)0.41348 (8)0.4897 (4)0.0460 (7)
C101.1582 (5)0.42676 (14)0.4274 (6)0.0555 (12)
H10A1.15450.43120.29790.083*
H10B1.24220.40250.45640.083*
H10C1.19300.45570.48500.083*
O30.9171 (3)0.50681 (8)0.5123 (4)0.0419 (6)
C111.0189 (5)0.54028 (12)0.4170 (6)0.0446 (10)
H11A1.09290.52440.33020.067*
H11B1.09150.55750.50130.067*
H11C0.94180.56180.35460.067*
O40.6431 (3)0.54259 (8)0.3408 (4)0.0414 (6)
C120.4934 (5)0.56240 (13)0.2583 (6)0.0484 (10)
H12A0.49550.55580.13020.073*
H12B0.49360.59600.27700.073*
H12C0.38860.54900.31120.073*
C130.7259 (5)0.23817 (13)0.0556 (5)0.0400 (10)
C140.7381 (5)0.19086 (14)0.0973 (6)0.0466 (11)
O50.7991 (4)0.17618 (8)0.2566 (5)0.0603 (9)
H50.83400.19900.31600.090*
C150.6852 (5)0.15690 (14)0.0206 (7)0.0594 (13)
H150.69410.12520.01110.071*
C160.6202 (6)0.16929 (15)0.1831 (8)0.0672 (13)
H160.58200.14590.26280.081*
C170.6087 (5)0.21516 (15)0.2341 (6)0.0584 (12)
H170.56430.22320.34810.070*
C180.6626 (5)0.24917 (14)0.1170 (6)0.0481 (11)
O60.6613 (4)0.29485 (9)0.1609 (4)0.0586 (8)
C190.6133 (8)0.30746 (16)0.3385 (7)0.0826 (17)
H19A0.68030.28900.42380.124*
H19B0.63750.34040.35740.124*
H19C0.48940.30160.35600.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0626 (18)0.0431 (16)0.0514 (18)0.0019 (13)0.0090 (16)0.0047 (15)
C10.039 (2)0.042 (2)0.042 (2)0.0028 (18)0.006 (2)0.006 (2)
C20.047 (2)0.039 (2)0.040 (2)0.0012 (18)0.001 (2)0.001 (2)
C30.042 (2)0.037 (2)0.043 (3)0.0040 (17)0.003 (2)0.0014 (19)
C40.036 (2)0.036 (2)0.033 (2)0.0061 (16)0.0016 (18)0.0017 (17)
C50.037 (2)0.041 (2)0.028 (2)0.0014 (17)0.0005 (17)0.0006 (18)
C60.037 (2)0.036 (2)0.030 (2)0.0041 (16)0.0009 (18)0.0071 (18)
C70.038 (2)0.035 (2)0.032 (2)0.0035 (16)0.0050 (19)0.0024 (19)
C80.036 (2)0.046 (2)0.038 (2)0.0007 (18)0.0035 (19)0.001 (2)
C90.038 (2)0.042 (2)0.043 (3)0.0083 (17)0.002 (2)0.0042 (19)
O20.0443 (16)0.0426 (16)0.0510 (17)0.0010 (12)0.0114 (15)0.0046 (14)
C100.042 (2)0.068 (3)0.056 (3)0.007 (2)0.005 (2)0.005 (2)
O30.0495 (15)0.0412 (15)0.0350 (16)0.0090 (13)0.0047 (13)0.0037 (13)
C110.048 (2)0.037 (2)0.049 (3)0.0103 (18)0.001 (2)0.002 (2)
O40.0450 (15)0.0356 (14)0.0435 (16)0.0039 (11)0.0025 (14)0.0022 (13)
C120.047 (2)0.049 (2)0.049 (3)0.010 (2)0.004 (2)0.001 (2)
C130.040 (2)0.037 (2)0.044 (3)0.0010 (17)0.0049 (19)0.003 (2)
C140.047 (3)0.042 (3)0.051 (3)0.003 (2)0.002 (2)0.006 (2)
O50.070 (2)0.0420 (17)0.069 (2)0.0001 (15)0.0086 (18)0.0004 (17)
C150.066 (3)0.035 (2)0.077 (4)0.005 (2)0.003 (3)0.010 (3)
C160.079 (3)0.047 (3)0.076 (4)0.007 (2)0.007 (3)0.022 (3)
C170.072 (3)0.058 (3)0.046 (3)0.002 (2)0.005 (2)0.016 (2)
C180.052 (3)0.042 (2)0.050 (3)0.001 (2)0.011 (2)0.004 (2)
O60.088 (2)0.0452 (18)0.0424 (18)0.0033 (15)0.0042 (18)0.0045 (15)
C190.148 (5)0.067 (3)0.033 (3)0.025 (3)0.003 (3)0.010 (3)
Geometric parameters (Å, º) top
O1—O10.000 (8)O3—C111.437 (4)
O1—C11.257 (5)C11—H11A0.9800
C1—O11.257 (5)C11—H11B0.9800
C1—C131.460 (5)C11—H11C0.9800
C1—C21.463 (5)O4—C121.430 (4)
C2—C31.329 (5)C12—H12A0.9800
C2—H20.9500C12—H12B0.9800
C3—C41.462 (5)C12—H12C0.9800
C3—H30.9500C13—C141.406 (5)
C4—C91.393 (5)C13—C181.420 (6)
C4—C51.401 (5)C14—O51.353 (5)
C5—O21.373 (4)C14—C151.383 (5)
C5—C61.395 (5)O5—H50.8400
C6—O31.374 (4)C15—C161.366 (6)
C6—C71.388 (5)C15—H150.9500
C7—O41.370 (4)C16—C171.383 (6)
C7—C81.387 (5)C16—H160.9500
C8—C91.382 (4)C17—C181.382 (5)
C8—H80.9500C17—H170.9500
C9—H90.9500C18—O61.361 (5)
O2—C101.428 (4)O6—C191.430 (5)
C10—H10A0.9800C19—H19A0.9800
C10—H10B0.9800C19—H19B0.9800
C10—H10C0.9800C19—H19C0.9800
O1—C1—C13119.2 (4)O3—C11—H11B109.5
O1—C1—C13119.2 (4)H11A—C11—H11B109.5
O1—C1—C2117.4 (4)O3—C11—H11C109.5
O1—C1—C2117.4 (4)H11A—C11—H11C109.5
C13—C1—C2123.2 (4)H11B—C11—H11C109.5
C3—C2—C1121.6 (4)C7—O4—C12117.9 (3)
C3—C2—H2119.2O4—C12—H12A109.5
C1—C2—H2119.2O4—C12—H12B109.5
C2—C3—C4127.1 (4)H12A—C12—H12B109.5
C2—C3—H3116.4O4—C12—H12C109.5
C4—C3—H3116.4H12A—C12—H12C109.5
C9—C4—C5117.1 (3)H12B—C12—H12C109.5
C9—C4—C3123.1 (3)C14—C13—C18116.4 (4)
C5—C4—C3119.8 (3)C14—C13—C1118.9 (4)
O2—C5—C6120.5 (3)C18—C13—C1124.7 (4)
O2—C5—C4118.0 (3)O5—C14—C15116.4 (4)
C6—C5—C4121.4 (3)O5—C14—C13121.7 (4)
O3—C6—C7121.2 (3)C15—C14—C13121.9 (4)
O3—C6—C5119.2 (3)C14—O5—H5109.5
C7—C6—C5119.4 (3)C16—C15—C14119.5 (4)
O4—C7—C8124.6 (3)C16—C15—H15120.2
O4—C7—C6115.0 (3)C14—C15—H15120.2
C8—C7—C6120.3 (3)C15—C16—C17121.4 (4)
C9—C8—C7119.3 (3)C15—C16—H16119.3
C9—C8—H8120.4C17—C16—H16119.3
C7—C8—H8120.4C18—C17—C16119.1 (4)
C8—C9—C4122.4 (3)C18—C17—H17120.4
C8—C9—H9118.8C16—C17—H17120.4
C4—C9—H9118.8O6—C18—C17122.3 (4)
C5—O2—C10116.1 (3)O6—C18—C13116.1 (4)
O2—C10—H10A109.5C17—C18—C13121.6 (4)
O2—C10—H10B109.5C18—O6—C19118.3 (3)
H10A—C10—H10B109.5O6—C19—H19A109.5
O2—C10—H10C109.5O6—C19—H19B109.5
H10A—C10—H10C109.5H19A—C19—H19B109.5
H10B—C10—H10C109.5O6—C19—H19C109.5
C6—O3—C11115.0 (3)H19A—C19—H19C109.5
O3—C11—H11A109.5H19B—C19—H19C109.5
O1—O1—C1—C130.0 (4)C7—C6—O3—C1171.8 (4)
O1—O1—C1—C20.0 (6)C5—C6—O3—C11113.9 (4)
O1—C1—C2—C316.0 (6)C8—C7—O4—C120.5 (5)
O1—C1—C2—C316.0 (6)C6—C7—O4—C12179.3 (3)
C13—C1—C2—C3168.1 (3)O1—C1—C13—C1415.3 (5)
C1—C2—C3—C4177.4 (4)O1—C1—C13—C1415.3 (5)
C2—C3—C4—C99.7 (6)C2—C1—C13—C14160.5 (4)
C2—C3—C4—C5169.9 (4)O1—C1—C13—C18165.1 (4)
C9—C4—C5—O2175.1 (3)O1—C1—C13—C18165.1 (4)
C3—C4—C5—O25.2 (5)C2—C1—C13—C1819.1 (6)
C9—C4—C5—C62.8 (5)C18—C13—C14—O5178.9 (4)
C3—C4—C5—C6176.9 (3)C1—C13—C14—O51.4 (6)
O2—C5—C6—O32.0 (5)C18—C13—C14—C152.4 (6)
C4—C5—C6—O3175.9 (3)C1—C13—C14—C15177.3 (4)
O2—C5—C6—C7176.4 (3)O5—C14—C15—C16179.2 (4)
C4—C5—C6—C71.4 (5)C13—C14—C15—C160.4 (6)
O3—C6—C7—O44.7 (5)C14—C15—C16—C171.2 (7)
C5—C6—C7—O4179.0 (3)C15—C16—C17—C180.7 (7)
O3—C6—C7—C8174.1 (3)C16—C17—C18—O6177.4 (4)
C5—C6—C7—C80.2 (5)C16—C17—C18—C131.4 (6)
O4—C7—C8—C9179.1 (3)C14—C13—C18—O6176.0 (3)
C6—C7—C8—C90.4 (5)C1—C13—C18—O64.4 (6)
C7—C8—C9—C41.1 (6)C14—C13—C18—C172.9 (6)
C5—C4—C9—C82.6 (5)C1—C13—C18—C17176.8 (4)
C3—C4—C9—C8177.0 (4)C17—C18—O6—C194.3 (6)
C6—C5—O2—C1068.1 (4)C13—C18—O6—C19174.6 (4)
C4—C5—O2—C10114.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···O1i0.982.533.490 (6)167
C11—H11A···O3ii0.982.553.363 (5)140
O5—H5···O10.841.762.502 (3)147
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1, z1/2.
 

Funding information

The authors acknowledge financial support from the Basic Science Research Program (award No. NRF– 2016R1D1A1B03931623).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationLee, D., Jung Jung, Y., Koh, D., Lim, Y., Lee, Y. & Shin, S. (2016). Cancer Lett. 372, 1–9.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, S., Lee, J., Park, J., Lee, Y., Ahn, S., Lee, J., Koh, D., Lee, Y. & Lim, Y. (2019). Bioorg. Chem. 83, 438–449.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds