metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­carbon­yl[4,4-di­methyl-2-(pyridin-2-yl)-2-oxazoline-κ2N,N′]molybdenum(0)

CROSSMARK_Color_square_no_text.svg

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: matthias.beller@catalysis.de

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 29 January 2019; accepted 25 February 2019; online 28 February 2019)

In the title compound, [Mo(C10H12N2O)(CO)4], the molybdenum(0) center is surrounded by a bidentate di­imine [4,4-dimethyl-2-(pyridin-2-yl)-2-oxazoline] and four carbonyl ligands in a distorted octa­hedral coordination geometry. The di­imine ligand coordinates via the two nitro­gen atoms.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A di­imine and four carbonyl ligands are coordinated to a molybdenum(0) atom which shows a distorted octa­hedral coordination geometry (Fig. 1[link]). The largest deviations from 90° are observed for N2—Mo1—N1 72.27 (3)° and C11—Mo1—N2 99.97 (4)°. The di­imine ligand coordinates via the two nitro­gen atoms to the metal center. The two carbonyl ligands coordinated perpendicular to the di­imine ligand are slightly bent [Mo1—C12—O3 173.7 (1), Mo1—C14—O5 173.5 (1)°]. This deviation was expected as it has already been observed for similar tetra-carbonyl molybdenum(0) complexes containing 2-(pyridin-2-yl)benzoxazole (Datta et al., 2011[Datta, P., Sardar, D., Mukhopadhyay, A. P., López-Torres, E., Pastor, C. J. & Sinha, C. (2011). J. Organomet. Chem. 696, 488-495.]) or 2,6-bis­[(4S)-iso­propyl­oxazolin-2-yl]pyridine acting as bidentate ligands (Heard et al., 1998[Heard, P. J. & Tocher, D. A. (1998). J. Chem. Soc. Dalton Trans. pp. 2169-2176.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids correspond to 30% probability.

In the crystal, mol­ecules of the title compound are linked by weak inter­molecular C—H⋯O inter­actions (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.95 2.61 3.2786 (15) 128
C10—H10A⋯O4ii 0.98 2.64 3.4880 (17) 145
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Synthesis and crystallization

A mixture of Mo(CO)6 (0.10 g, 0.38 mmol) and an equimolar amount of the di­imine ligand (0.67 g, 0.38 mmol) in dry toluene was refluxed under argon atmosphere and light exclusion overnight resulting in a deep-red solution. The solvent was removed in vacuo and the red residue was washed three times with n-pentane and diethyl ether. Recrystallization from CH2Cl2/n-pentane 2:1 gave deep-red crystals suitable for X-ray crystal structure analysis. Yield 0.112 (76%). 1H NMR (300 MHz, CD2Cl2, p.p.m.) δ = 9.05 (d, J = 5.3 Hz, 1H), 7.95 (td, J = 7.7 Hz, 1.6 Hz, 1H), 7.87–7.83 (m, 1H), 7.50 (ddd, J = 7.3 Hz, 5.8 Hz, 1.5 Hz, 1H), 4.52 (s, 2H), 1.56 (s, 6H); 13C NMR (75 MHz, CDCl3, p.p.m.) δ = 256.8 (CO), 223.2 (CO), 203.7 (CO), 154.0 (C6Py), 137.6 (C4Py), 127.1 (C5Py), 124.6 (C3Py), 81.8 (C4Pyrox), 68.5 (C5Pyrox), 27.8 (CH3), signals for the quaternary carbon atoms C2Py and C2Pyrox were not detectable as it was also observed for a highly related manganese complex with the same di­imine ligand (Steinlechner et al., 2019[Steinlechner, C., Roesel, A. F., Oberem, E., Päpcke, A., Rockstroh, N., Gloaguen, F., Lochbrunner, S., Ludwig, R., Spannenberg, A., Junge, H., Francke, R. & Beller, M. (2019). ACS Catal. pp. 2091-2100.]); IR: ν~(CO)/cm−1 = 2010, 1891, 1851, 1810; HR–MS (ESI): calcd. mass C13H12BrMoN2O4: 357.98511; found: 357.98100; elemental analysis: (calculated) C:43.77, H: 3.15, N:7.29; (found) C: 43.77, H: 3.07, N: 7.43.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Mo(C10H12N2O)(CO)4]
Mr 384.20
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 8.8166 (3), 12.2837 (5), 14.0636 (6)
β (°) 99.3347 (11)
V3) 1502.93 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.90
Crystal size (mm) 0.50 × 0.49 × 0.36
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.69, 0.74
No. of measured, independent and observed [I > 2σ(I)] reflections 29586, 3993, 3889
Rint 0.017
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.043, 1.10
No. of reflections 3993
No. of parameters 201
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.44
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetracarbonyl[4,4-dimethyl-2-(pyridin-2-yl)-2-oxazoline-κ2N,N']molybdenum(0) top
Crystal data top
[Mo(C10H12N2O)(CO)4]F(000) = 768
Mr = 384.20Dx = 1.698 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.8166 (3) ÅCell parameters from 9837 reflections
b = 12.2837 (5) Åθ = 2.2–30.6°
c = 14.0636 (6) ŵ = 0.90 mm1
β = 99.3347 (11)°T = 150 K
V = 1502.93 (10) Å3Prism, red
Z = 40.50 × 0.49 × 0.36 mm
Data collection top
Bruker APEXII CCD
diffractometer
3993 independent reflections
Radiation source: fine-focus sealed tube3889 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.017
φ and ω scansθmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1112
Tmin = 0.69, Tmax = 0.74k = 1616
29586 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0202P)2 + 0.6769P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.004
3993 reflectionsΔρmax = 0.41 e Å3
201 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.80476 (13)0.45885 (9)0.99223 (8)0.0202 (2)
H10.87650.40151.00890.024*
C20.81678 (13)0.55152 (10)1.04953 (8)0.0228 (2)
H20.89530.55691.10420.027*
C30.71361 (14)0.63589 (10)1.02638 (9)0.0248 (2)
H30.72190.70081.06360.030*
C40.59747 (13)0.62380 (9)0.94757 (9)0.0222 (2)
H40.52330.67950.93050.027*
C50.59241 (12)0.52863 (9)0.89456 (8)0.01714 (19)
C60.47421 (12)0.50561 (9)0.81159 (8)0.01724 (19)
C70.26379 (14)0.53003 (10)0.70282 (9)0.0248 (2)
H7A0.25510.57820.64580.030*
H7B0.15970.51700.71830.030*
C80.34159 (12)0.42100 (9)0.68335 (8)0.0191 (2)
C90.23763 (15)0.32331 (11)0.68853 (10)0.0273 (2)
H9A0.29440.25630.68010.041*
H9B0.14810.32860.63740.041*
H9C0.20330.32200.75140.041*
C100.40366 (16)0.42340 (11)0.58851 (9)0.0282 (2)
H10A0.47460.48480.58860.042*
H10B0.31810.43170.53500.042*
H10C0.45820.35530.58080.042*
C110.61991 (14)0.18720 (10)0.71624 (9)0.0228 (2)
C120.57667 (13)0.20789 (9)0.89897 (8)0.0206 (2)
C130.87057 (14)0.23449 (10)0.85597 (9)0.0234 (2)
C140.78619 (15)0.38044 (11)0.70982 (10)0.0288 (3)
Mo10.67341 (2)0.30510 (2)0.80894 (2)0.01647 (4)
N10.69605 (10)0.44698 (7)0.91437 (7)0.01694 (17)
N20.47339 (10)0.41686 (7)0.76431 (7)0.01688 (17)
O10.36316 (10)0.57885 (7)0.78477 (6)0.02363 (17)
O20.58250 (12)0.11532 (8)0.66411 (7)0.0349 (2)
O30.52810 (11)0.14502 (8)0.94630 (7)0.03051 (19)
O40.99039 (12)0.19647 (8)0.88247 (8)0.0361 (2)
O50.85256 (15)0.41239 (12)0.65282 (10)0.0525 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0178 (5)0.0222 (5)0.0203 (5)0.0002 (4)0.0024 (4)0.0003 (4)
C20.0204 (5)0.0283 (6)0.0193 (5)0.0023 (4)0.0016 (4)0.0047 (4)
C30.0249 (5)0.0240 (5)0.0253 (6)0.0021 (4)0.0038 (4)0.0094 (4)
C40.0218 (5)0.0193 (5)0.0257 (5)0.0014 (4)0.0038 (4)0.0049 (4)
C50.0160 (4)0.0168 (5)0.0188 (5)0.0004 (4)0.0032 (4)0.0013 (4)
C60.0160 (4)0.0162 (5)0.0195 (5)0.0011 (4)0.0030 (4)0.0008 (4)
C70.0201 (5)0.0238 (5)0.0277 (6)0.0024 (4)0.0041 (4)0.0006 (4)
C80.0188 (5)0.0186 (5)0.0186 (5)0.0018 (4)0.0007 (4)0.0009 (4)
C90.0239 (6)0.0263 (6)0.0299 (6)0.0083 (5)0.0015 (5)0.0019 (5)
C100.0324 (6)0.0332 (6)0.0187 (5)0.0029 (5)0.0031 (5)0.0012 (5)
C110.0219 (5)0.0238 (5)0.0229 (5)0.0034 (4)0.0039 (4)0.0025 (4)
C120.0191 (5)0.0209 (5)0.0206 (5)0.0018 (4)0.0002 (4)0.0049 (4)
C130.0237 (5)0.0202 (5)0.0268 (6)0.0023 (4)0.0053 (4)0.0028 (4)
C140.0244 (6)0.0292 (6)0.0338 (6)0.0018 (5)0.0074 (5)0.0004 (5)
Mo10.01612 (5)0.01496 (5)0.01826 (5)0.00169 (3)0.00256 (3)0.00258 (3)
N10.0160 (4)0.0164 (4)0.0186 (4)0.0001 (3)0.0034 (3)0.0015 (3)
N20.0157 (4)0.0169 (4)0.0175 (4)0.0000 (3)0.0011 (3)0.0004 (3)
O10.0221 (4)0.0188 (4)0.0278 (4)0.0061 (3)0.0028 (3)0.0021 (3)
O20.0370 (5)0.0319 (5)0.0348 (5)0.0000 (4)0.0031 (4)0.0164 (4)
O30.0329 (5)0.0296 (5)0.0291 (5)0.0049 (4)0.0050 (4)0.0036 (4)
O40.0253 (5)0.0372 (6)0.0451 (6)0.0118 (4)0.0038 (4)0.0035 (4)
O50.0479 (7)0.0630 (8)0.0537 (7)0.0011 (6)0.0295 (6)0.0126 (6)
Geometric parameters (Å, º) top
C1—N11.3411 (14)C8—C91.5190 (16)
C1—C21.3888 (16)C8—C101.5219 (16)
C1—H10.9500C9—H9A0.9800
C2—C31.3825 (17)C9—H9B0.9800
C2—H20.9500C9—H9C0.9800
C3—C41.3895 (16)C10—H10A0.9800
C3—H30.9500C10—H10B0.9800
C4—C51.3833 (15)C10—H10C0.9800
C4—H40.9500C11—O21.1608 (15)
C5—N11.3550 (14)C11—Mo11.9545 (12)
C5—C61.4605 (15)C12—O31.1469 (15)
C6—N21.2764 (14)C12—Mo12.0265 (12)
C6—O11.3381 (13)C13—O41.1598 (16)
C7—O11.4587 (14)C13—Mo11.9592 (12)
C7—C81.5492 (16)C14—O51.1363 (18)
C7—H7A0.9900C14—Mo12.0587 (13)
C7—H7B0.9900Mo1—N22.2427 (9)
C8—N21.4899 (13)Mo1—N12.2758 (9)
N1—C1—C2122.69 (11)H9A—C9—H9C109.5
N1—C1—H1118.7H9B—C9—H9C109.5
C2—C1—H1118.7C8—C10—H10A109.5
C3—C2—C1119.50 (11)C8—C10—H10B109.5
C3—C2—H2120.2H10A—C10—H10B109.5
C1—C2—H2120.2C8—C10—H10C109.5
C2—C3—C4118.64 (11)H10A—C10—H10C109.5
C2—C3—H3120.7H10B—C10—H10C109.5
C4—C3—H3120.7O2—C11—Mo1176.39 (11)
C5—C4—C3118.38 (11)O3—C12—Mo1173.73 (10)
C5—C4—H4120.8O4—C13—Mo1177.11 (11)
C3—C4—H4120.8O5—C14—Mo1173.48 (13)
N1—C5—C4123.57 (10)C11—Mo1—C1390.12 (5)
N1—C5—C6113.01 (9)C11—Mo1—C1284.24 (5)
C4—C5—C6123.41 (10)C13—Mo1—C1288.20 (5)
N2—C6—O1119.03 (10)C11—Mo1—C1488.40 (5)
N2—C6—C5121.64 (10)C13—Mo1—C1485.87 (5)
O1—C6—C5119.32 (9)C12—Mo1—C14170.54 (5)
O1—C7—C8105.58 (9)C11—Mo1—N299.97 (4)
O1—C7—H7A110.6C13—Mo1—N2168.48 (4)
C8—C7—H7A110.6C12—Mo1—N298.28 (4)
O1—C7—H7B110.6C14—Mo1—N288.83 (4)
C8—C7—H7B110.6C11—Mo1—N1171.17 (4)
H7A—C7—H7B108.8C13—Mo1—N198.04 (4)
N2—C8—C9109.77 (9)C12—Mo1—N192.61 (4)
N2—C8—C10108.88 (9)C14—Mo1—N195.51 (5)
C9—C8—C10111.28 (10)N2—Mo1—N172.27 (3)
N2—C8—C7101.97 (9)C1—N1—C5117.14 (9)
C9—C8—C7112.74 (10)C1—N1—Mo1126.21 (7)
C10—C8—C7111.75 (10)C5—N1—Mo1116.61 (7)
C8—C9—H9A109.5C6—N2—C8107.86 (9)
C8—C9—H9B109.5C6—N2—Mo1116.06 (7)
H9A—C9—H9B109.5C8—N2—Mo1135.66 (7)
C8—C9—H9C109.5C6—O1—C7105.34 (9)
N1—C1—C2—C30.11 (18)C4—C5—N1—Mo1175.19 (9)
C1—C2—C3—C41.91 (18)C6—C5—N1—Mo15.07 (11)
C2—C3—C4—C51.37 (18)O1—C6—N2—C82.20 (13)
C3—C4—C5—N11.03 (17)C5—C6—N2—C8178.33 (9)
C3—C4—C5—C6178.69 (11)O1—C6—N2—Mo1175.93 (8)
N1—C5—C6—N20.35 (15)C5—C6—N2—Mo14.60 (13)
C4—C5—C6—N2179.90 (11)C9—C8—N2—C6123.82 (11)
N1—C5—C6—O1179.12 (9)C10—C8—N2—C6114.14 (11)
C4—C5—C6—O10.63 (16)C7—C8—N2—C64.08 (11)
O1—C7—C8—N24.53 (11)C9—C8—N2—Mo164.25 (13)
O1—C7—C8—C9122.16 (10)C10—C8—N2—Mo157.79 (13)
O1—C7—C8—C10111.62 (11)C7—C8—N2—Mo1176.01 (8)
C2—C1—N1—C52.20 (16)N2—C6—O1—C70.96 (14)
C2—C1—N1—Mo1175.57 (8)C5—C6—O1—C7178.52 (10)
C4—C5—N1—C12.79 (16)C8—C7—O1—C63.51 (12)
C6—C5—N1—C1176.95 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.613.2786 (15)128
C10—H10A···O4ii0.982.643.4880 (17)145
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+3/2.
 

Funding information

CS acknowledges financial support from EU fund H2020-MSCA-ITN-2015 in Horizon 2020 as part of the NoNoMeCat (grant agreement No. 675020). The publication of this article was funded by the Open Access Fund of the Leibniz Association.

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDatta, P., Sardar, D., Mukhopadhyay, A. P., López-Torres, E., Pastor, C. J. & Sinha, C. (2011). J. Organomet. Chem. 696, 488–495.  CrossRef Google Scholar
First citationHeard, P. J. & Tocher, D. A. (1998). J. Chem. Soc. Dalton Trans. pp. 2169–2176.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteinlechner, C., Roesel, A. F., Oberem, E., Päpcke, A., Rockstroh, N., Gloaguen, F., Lochbrunner, S., Ludwig, R., Spannenberg, A., Junge, H., Francke, R. & Beller, M. (2019). ACS Catal. pp. 2091–2100.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds