organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-{2-[3-(4-Chloro­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]thia­zol-4-yl}-3,8a-di­hydro-2H-chromen-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research, Centre, Dokki, Giza, Egypt, dPharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia, and eSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 January 2019; accepted 30 January 2019; online 12 February 2019)

The title compound, C27H17ClFN3O2S, comprises chromonyl (A), thia­zolyl (B), pyrazolyl (C), chloro­phenyl (D) and fluorophenyl (E) rings with twist angles between the planes of adjacent rings pairs A/B, B/C, C/D and C/E of 14.1 (1), 18.2 (2), 1.3 (1) and 4.9 (1)°, respectively. The crystal structure is characterized by a range of inter­molecular inter­actions including C—H⋯F, C—H⋯Cl and C—H⋯O contacts. Aromatic ππ stacking between chromonyl groups and chloro­phenyl groups [centroid–centroid separations = 3.7170 (16) and 4.017 (2) Å, respectively] lead to columns of mol­ecules propagating parallel to the [100] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coumarins act as anti­coagulant drugs (O'Reilly & Aggeler, 1968[O'Reilly, R. A. & Aggeler, P. M. (1968). Circulation, 38, 169-177.]). Thia­zoles are an essential core scaffold in many natural products (Chhabria et al., 2016[Chhabria, M. T., Patel, S., Modi, P. & Brahmkshatriya, P. S. (2016). Curr. Top. Med. Chem. 16, 2841-2862.]) and pyrazoles have a broad spectrum of biological activities (Faria et al., 2017[Faria, J. V., Vegi, P. F., Miguita, A. G. C., Dos Santos, M. S., Boechat, N. & Bernardino, A. M. R. (2017). Bioorg. Med. Chem. 25, 5891-5903.]). We now describe the synthesis and structure of the title compound.

The asymmetric unit consists of one mol­ecule, which comprises chromonyl (A), thia­zolyl (B), pyrazolyl (C), chloro­phenyl (D) and fluorophenyl (E) rings (Fig. 1[link]). The twist angles between the planes through neighbouring rings pairs A/B, B/C, C/D and C/E are 14.1 (1), 18.2 (2), 1.3 (1) and 4.9 (1)°, respectively. The stereogenic centre C13 has an S configuration in the arbitrarily chosen asymmetric unit, but the crystal symmetry generates a racemic mixture.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids.

The extended structure is characterized by a range of inter­molecular inter­actions including C—H⋯F, C—H⋯Cl and C—H⋯O contacts (Table 1[link], Fig. 2[link]). Aromatic ππ stacking between chromonyl groups [with centroid-to-centroid distances of 3.7170 (16) Å] and between chloro­phenyl groups [with ring-centroid separations of 4.017 (2) Å] lead to the formation of columns propagating in the [100] direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯F1i 0.98 2.47 3.372 (4) 154
C20—H20⋯Cl1ii 0.93 2.98 3.829 (4) 153
C26—H26⋯O2iii 0.93 2.54 3.282 (4) 137
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A segment of the crystal structure showing inter­molecular contacts as dotted lines.
[Figure 3]
Figure 3
The crystal structure viewed down the a-axis direction.

Synthesis and crystallization

The title compound was synthesized from the condensation of 3-(4-chloro­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide (0.67 g, 2.0 mmol) with 3-(2-bromo­acet­yl)-3,8a-di­hydro-2H-chromen-2-one (0.54 g, 2.0 mmol) in anhydrous ethanol (20 ml) under reflux for 2 h. The formed solid was recrystallized from di­methyl­formamide solution to give colourless blocks (83%), m.p. 228–230°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C27H17ClFN3O2S
Mr 501.95
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 7.9243 (5), 23.7112 (9), 24.9270 (15)
V3) 4683.7 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.31 × 0.18 × 0.14
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.997, 0.998
No. of measured, independent and observed [I > 2σ(I)] reflections 21351, 5809, 3055
Rint 0.044
(sin θ/λ)max−1) 0.702
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.184, 1.04
No. of reflections 5809
No. of parameters 317
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.58
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows and WinGX (Farrugia, 2012); software used to prepare material for publication: CHEMDRAW Ultra (Cambridge Soft, 2001).

3-{2-[3-(4-Chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]thiazol-4-yl}-3,8a-dihydro-2H-chromen-2-one top
Crystal data top
C27H17ClFN3O2SDx = 1.424 Mg m3
Mr = 501.95Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3797 reflections
a = 7.9243 (5) Åθ = 4.0–25.8°
b = 23.7112 (9) ŵ = 0.29 mm1
c = 24.9270 (15) ÅT = 296 K
V = 4683.7 (4) Å3Block, colourless
Z = 80.31 × 0.18 × 0.14 mm
F(000) = 2064
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
3055 reflections with I > 2σ(I)
ω scansRint = 0.044
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)
θmax = 29.9°, θmin = 3.4°
Tmin = 0.997, Tmax = 0.998h = 1011
21351 measured reflectionsk = 3224
5809 independent reflectionsl = 2831
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0699P)2 + 1.7487P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.184(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.64 e Å3
5809 reflectionsΔρmin = 0.58 e Å3
317 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0020 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in calculated positions and refined using a riding model. Bond distances for sp2 C—H hydrogen atoms were set to 0.93 Å and their Uiso set to 1.2 times Ueq(C). Bond distances for methine and methylene C—H hydrogen atoms were set to 0.98 Å and 0.97 Å respectively and their Uiso set to 1.2 times Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6165 (5)0.40241 (12)0.44274 (13)0.0673 (9)
C20.6420 (3)0.38786 (11)0.49852 (12)0.0527 (7)
C30.7055 (4)0.42696 (11)0.53236 (13)0.0599 (8)
H30.7238310.4170080.5679770.072*
C40.7455 (4)0.48295 (11)0.51563 (13)0.0606 (8)
C50.7184 (4)0.49645 (12)0.46241 (13)0.0630 (8)
C60.8068 (5)0.52546 (13)0.54907 (16)0.0795 (10)
H60.8260030.5178790.5851660.095*
C70.8392 (5)0.57845 (14)0.52916 (17)0.0845 (11)
H70.8804020.6064650.5517490.101*
C80.8110 (5)0.58998 (14)0.47617 (17)0.0843 (11)
H80.8338900.6258980.4630700.101*
C90.7497 (5)0.54977 (13)0.44212 (16)0.0811 (10)
H90.7295190.5579990.4062130.097*
C100.5992 (4)0.33085 (11)0.51677 (11)0.0512 (7)
C110.5060 (4)0.29166 (12)0.49111 (13)0.0590 (7)
H110.4587040.2966350.4572960.071*
C120.6074 (4)0.26392 (11)0.57715 (12)0.0527 (7)
C130.6996 (4)0.26833 (11)0.67224 (12)0.0543 (7)
H130.6226780.3002410.6774510.065*
C140.6679 (4)0.22431 (12)0.71584 (13)0.0623 (8)
H14A0.7733010.2106870.7307910.075*
H14B0.5991090.2397010.7445130.075*
C150.5765 (4)0.17823 (11)0.68671 (12)0.0549 (7)
C160.8778 (3)0.28972 (10)0.66887 (11)0.0484 (6)
C171.0059 (4)0.25844 (13)0.64682 (13)0.0647 (8)
H170.9828620.2227200.6332720.078*
C181.1688 (5)0.27924 (19)0.64442 (16)0.0850 (11)
H181.2554180.2581440.6292080.102*
C191.1984 (5)0.3308 (2)0.66472 (18)0.0861 (11)
C201.0797 (5)0.36238 (15)0.68832 (17)0.0872 (11)
H201.1060180.3973650.7029610.105*
C210.9171 (4)0.34161 (11)0.69032 (14)0.0676 (9)
H210.8327870.3629960.7064190.081*
C220.5073 (4)0.12765 (11)0.71181 (12)0.0539 (7)
C230.4302 (4)0.08538 (12)0.68196 (14)0.0683 (8)
H230.4222860.0889810.6448960.082*
C240.3655 (5)0.03834 (13)0.70667 (15)0.0751 (10)
H240.3142700.0102040.6864120.090*
C250.3768 (5)0.03306 (11)0.76113 (15)0.0700 (9)
C260.4514 (5)0.07388 (12)0.79203 (14)0.0706 (9)
H260.4582890.0698420.8290720.085*
C270.5162 (4)0.12107 (12)0.76704 (13)0.0637 (8)
H270.5669470.1490400.7876350.076*
N10.6574 (3)0.31478 (9)0.56682 (9)0.0545 (6)
N30.6491 (3)0.23679 (9)0.62379 (10)0.0629 (7)
N50.5655 (3)0.18683 (9)0.63576 (11)0.0607 (6)
O10.6566 (3)0.45689 (8)0.42704 (9)0.0774 (7)
O20.5641 (4)0.37238 (9)0.40796 (10)0.0963 (9)
S10.48577 (10)0.23142 (3)0.52875 (3)0.0601 (3)
Cl10.29654 (18)0.02666 (4)0.79278 (5)0.1103 (4)
F11.3583 (3)0.35259 (13)0.66200 (13)0.1451 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.101 (2)0.0501 (15)0.051 (2)0.0008 (16)0.0030 (17)0.0017 (14)
C20.0635 (16)0.0520 (14)0.0427 (18)0.0052 (13)0.0025 (13)0.0007 (12)
C30.078 (2)0.0568 (15)0.0448 (18)0.0010 (15)0.0017 (15)0.0005 (13)
C40.0722 (19)0.0532 (15)0.057 (2)0.0002 (14)0.0046 (16)0.0007 (14)
C50.081 (2)0.0504 (15)0.057 (2)0.0040 (15)0.0025 (16)0.0009 (14)
C60.109 (3)0.0625 (19)0.067 (2)0.0128 (18)0.001 (2)0.0054 (16)
C70.109 (3)0.0623 (19)0.082 (3)0.0137 (19)0.001 (2)0.0077 (18)
C80.112 (3)0.0541 (17)0.087 (3)0.0056 (18)0.008 (2)0.0085 (18)
C90.115 (3)0.0567 (17)0.071 (3)0.0001 (19)0.001 (2)0.0081 (16)
C100.0621 (17)0.0509 (13)0.0404 (17)0.0058 (13)0.0005 (13)0.0007 (12)
C110.0741 (19)0.0576 (16)0.0453 (18)0.0008 (14)0.0093 (14)0.0016 (13)
C120.0600 (16)0.0534 (15)0.0447 (17)0.0003 (13)0.0018 (13)0.0017 (12)
C130.0659 (17)0.0482 (13)0.0488 (18)0.0010 (13)0.0046 (13)0.0015 (12)
C140.074 (2)0.0609 (16)0.052 (2)0.0109 (15)0.0033 (15)0.0034 (14)
C150.0635 (17)0.0495 (14)0.052 (2)0.0002 (13)0.0052 (14)0.0013 (13)
C160.0613 (16)0.0444 (13)0.0397 (16)0.0052 (12)0.0026 (12)0.0008 (11)
C170.084 (2)0.0634 (17)0.0468 (19)0.0155 (16)0.0023 (15)0.0049 (14)
C180.071 (2)0.119 (3)0.065 (3)0.031 (2)0.0178 (18)0.014 (2)
C190.059 (2)0.111 (3)0.088 (3)0.009 (2)0.0010 (19)0.033 (2)
C200.087 (3)0.068 (2)0.106 (3)0.022 (2)0.012 (2)0.003 (2)
C210.071 (2)0.0489 (15)0.083 (3)0.0014 (15)0.0023 (18)0.0112 (14)
C220.0671 (18)0.0478 (14)0.0468 (18)0.0010 (13)0.0023 (13)0.0013 (12)
C230.095 (2)0.0564 (16)0.053 (2)0.0090 (17)0.0010 (17)0.0058 (14)
C240.106 (3)0.0536 (16)0.066 (3)0.0150 (17)0.0013 (19)0.0111 (15)
C250.092 (2)0.0509 (15)0.067 (2)0.0062 (16)0.0103 (18)0.0031 (15)
C260.099 (2)0.0604 (17)0.052 (2)0.0064 (17)0.0027 (17)0.0030 (15)
C270.081 (2)0.0543 (15)0.056 (2)0.0049 (14)0.0059 (16)0.0016 (14)
N10.0670 (14)0.0523 (12)0.0442 (15)0.0023 (11)0.0048 (11)0.0024 (10)
N30.0846 (17)0.0538 (13)0.0503 (16)0.0152 (12)0.0163 (13)0.0064 (11)
N50.0790 (17)0.0497 (12)0.0534 (17)0.0092 (12)0.0080 (13)0.0029 (11)
O10.125 (2)0.0554 (11)0.0522 (14)0.0044 (12)0.0058 (13)0.0056 (10)
O20.172 (3)0.0663 (13)0.0507 (15)0.0200 (16)0.0255 (16)0.0004 (11)
S10.0744 (5)0.0541 (4)0.0517 (5)0.0075 (3)0.0083 (4)0.0012 (3)
Cl10.1708 (11)0.0635 (5)0.0965 (9)0.0316 (6)0.0262 (7)0.0075 (5)
F10.0697 (14)0.196 (3)0.170 (3)0.0305 (16)0.0078 (16)0.066 (2)
Geometric parameters (Å, º) top
C1—O21.196 (4)C14—C151.499 (4)
C1—O11.386 (3)C14—H14A0.9700
C1—C21.447 (4)C14—H14B0.9700
C2—C31.351 (4)C15—N51.289 (4)
C2—C101.466 (4)C15—C221.459 (4)
C3—C41.427 (4)C16—C171.372 (4)
C3—H30.9300C16—C211.377 (4)
C4—C51.381 (4)C17—C181.383 (5)
C4—C61.395 (4)C17—H170.9300
C5—O11.377 (4)C18—C191.344 (5)
C5—C91.384 (4)C18—H180.9300
C6—C71.375 (4)C19—C201.338 (6)
C6—H60.9300C19—F11.370 (4)
C7—C81.367 (5)C20—C211.380 (5)
C7—H70.9300C20—H200.9300
C8—C91.366 (5)C21—H210.9300
C8—H80.9300C22—C271.387 (4)
C9—H90.9300C22—C231.390 (4)
C10—C111.348 (4)C23—C241.373 (4)
C10—N11.384 (3)C23—H230.9300
C11—S11.716 (3)C24—C251.366 (5)
C11—H110.9300C24—H240.9300
C12—N11.295 (3)C25—C261.371 (4)
C12—N31.369 (4)C25—Cl11.741 (3)
C12—S11.726 (3)C26—C271.380 (4)
C13—N31.476 (4)C26—H260.9300
C13—C161.503 (4)C27—H270.9300
C13—C141.528 (4)N3—N51.389 (3)
C13—H130.9800
O2—C1—O1115.4 (3)H14A—C14—H14B109.0
O2—C1—C2127.1 (3)N5—C15—C22121.8 (3)
O1—C1—C2117.5 (3)N5—C15—C14113.2 (2)
C3—C2—C1119.2 (3)C22—C15—C14125.0 (3)
C3—C2—C10121.7 (3)C17—C16—C21118.1 (3)
C1—C2—C10119.1 (2)C17—C16—C13122.4 (3)
C2—C3—C4122.6 (3)C21—C16—C13119.5 (3)
C2—C3—H3118.7C16—C17—C18121.0 (3)
C4—C3—H3118.7C16—C17—H17119.5
C5—C4—C6117.4 (3)C18—C17—H17119.5
C5—C4—C3117.5 (3)C19—C18—C17118.1 (3)
C6—C4—C3125.1 (3)C19—C18—H18121.0
O1—C5—C4120.8 (3)C17—C18—H18121.0
O1—C5—C9116.9 (3)C20—C19—C18123.5 (3)
C4—C5—C9122.3 (3)C20—C19—F1117.5 (4)
C7—C6—C4120.6 (3)C18—C19—F1119.0 (4)
C7—C6—H6119.7C19—C20—C21118.2 (3)
C4—C6—H6119.7C19—C20—H20120.9
C8—C7—C6120.1 (3)C21—C20—H20120.9
C8—C7—H7120.0C16—C21—C20121.1 (3)
C6—C7—H7120.0C16—C21—H21119.5
C9—C8—C7121.3 (3)C20—C21—H21119.5
C9—C8—H8119.4C27—C22—C23118.2 (3)
C7—C8—H8119.4C27—C22—C15119.9 (3)
C8—C9—C5118.3 (3)C23—C22—C15121.9 (3)
C8—C9—H9120.8C24—C23—C22120.7 (3)
C5—C9—H9120.8C24—C23—H23119.7
C11—C10—N1114.9 (2)C22—C23—H23119.7
C11—C10—C2127.9 (3)C25—C24—C23119.7 (3)
N1—C10—C2117.2 (2)C25—C24—H24120.1
C10—C11—S1111.4 (2)C23—C24—H24120.1
C10—C11—H11124.3C24—C25—C26121.4 (3)
S1—C11—H11124.3C24—C25—Cl1120.1 (3)
N1—C12—N3122.2 (3)C26—C25—Cl1118.5 (3)
N1—C12—S1116.6 (2)C25—C26—C27118.7 (3)
N3—C12—S1121.2 (2)C25—C26—H26120.7
N3—C13—C16112.3 (2)C27—C26—H26120.7
N3—C13—C14101.0 (2)C26—C27—C22121.3 (3)
C16—C13—C14115.1 (2)C26—C27—H27119.3
N3—C13—H13109.3C22—C27—H27119.3
C16—C13—H13109.3C12—N1—C10109.5 (2)
C14—C13—H13109.3C12—N3—N5117.9 (2)
C15—C14—C13103.5 (2)C12—N3—C13121.5 (2)
C15—C14—H14A111.1N5—N3—C13112.7 (2)
C13—C14—H14A111.1C15—N5—N3108.3 (2)
C15—C14—H14B111.1C5—O1—C1122.3 (3)
C13—C14—H14B111.1C11—S1—C1287.62 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···F1i0.982.473.372 (4)154
C20—H20···Cl1ii0.932.983.829 (4)153
C26—H26···O2iii0.932.543.282 (4)137
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1/2, z; (iii) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: kariukib@cardiff.ac.uk.

Acknowledgements

The authors thank Umm Al-Qura and Cardiff Universities for their support.

Funding information

Funding for this research was provided by: Deanship of Scientific Research at Umm Al-Qura University (award No. 17-MED-1-03-0007).

References

First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationChhabria, M. T., Patel, S., Modi, P. & Brahmkshatriya, P. S. (2016). Curr. Top. Med. Chem. 16, 2841–2862.  CAS Google Scholar
First citationFaria, J. V., Vegi, P. F., Miguita, A. G. C., Dos Santos, M. S., Boechat, N. & Bernardino, A. M. R. (2017). Bioorg. Med. Chem. 25, 5891–5903.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationO'Reilly, R. A. & Aggeler, P. M. (1968). Circulation, 38, 169–177.  CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds