organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Butyl 3-(3,5-di-tert-butyl-4-hy­dr­oxy­phen­yl)prop­ano­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Flow Technology & Environmental Analysis, Institute for Energy Technology, PO Box 40, N-2027 Kjeller, Norway, and bDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway
*Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

Edited by J. F. Gallagher, Dublin City University, Ireland (Received 1 February 2019; accepted 25 February 2019; online 28 February 2019)

Millimeter-sized crystalline particles of butyl 3-(3,5-di-tert-butyl-4-hy­droxy­phen­yl)propano­ate, C21H34O3, magnitudes larger than adherent particulate matter commonly observed during routine filter service inspections, were found in a commercial bus engine running on compressed methane biofuels and subjected to single-crystal XRD investigation. The structure is fully ordered and shows molecules in rather extended conformations being linked into chains by O—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Multiple 0.7–2.0 mm agglomerates of translucent, spherically shaped, greyish white crystalline matter (Fig. 1[link]) were found clustering a metal particle filter together with minor amounts of bituminous matter and inorganics. The particles were first observed during routine fuel filter inspections from a biofueled (compressed methane) bus engine. They expose well-defined transparent crystallites, some containing large two-phase gas–liquid fluid inclusions of 10–30 µm (Kihle et al., 2012[Kihle, J., Hurum, J. H. & Liebe, L. (2012). Norw. J. Geol. 92, 341-352.]). Observations of trapped fluid inclusion gas bubble volume expansion during crystal dissolution when immersed in benzaldehyde at 22°C correspond to pressurized trapping conditions of 5–8 bars.

[Figure 1]
Figure 1
Optical microscopy images of a typical agglomerate particle under (a) cross- and (b) parallel-polarized transmitted light, revealing outlines of single crystallites (in red).

Subsequent analysis of a well-diffracting single crystal cut from one such agglomerate led to identification of the title compound (I).

The mol­ecular structure of (I) [Fig. 2[link](a)] is fully ordered. A trans orientation for C1—C2—C3—C4 combined with a gauche orientation for O1—C18—C19—C20 (Table 1[link]) puts the n-butyl group outside the plane of the aromatic ring [Fig. 2[link](b)]. Individual mol­ecules are connected by hydrogen bonds (Table 2[link]) into chains along the b-axis direction (Fig. 3[link]).

Table 1
Selected torsion angles (°)

C18—O1—C1—C2 177.72 (7) C1—O1—C18—C19 −108.05 (9)
O1—C1—C2—C3 53.83 (10) O1—C18—C19—C20 64.77 (9)
C1—C2—C3—C4 178.11 (7) C18—C19—C20—C21 180.00 (8)
C2—C3—C4—C5 −78.82 (10)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.841 (13) 1.905 (13) 2.7399 (13) 172.1 (12)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
(a) The mol­ecular structure of (I) at 100 K. Thermal displacement ellipsoids are shown at the 50% probability level. (b) Rotated view, H atoms excluded.
[Figure 3]
Figure 3
The unit cell and crystal packing viewed along the a axis. For clarity, only the hy­droxy­lic H atoms have been included, while methyl and butyl groups are shown as small spheres. Hydrogen-bonded chains run along the vertical b axis.

The structure of the corresponding free acid was reported only recently (Jaivel et al., 2015[Jaivel, N., Uvarani, C., Rajesh, R., Velmurugan, D. & Marimuthu, P. (2015). J. Nat. Prod. 78, 343-343.]), a year after the methyl ester (Li et al., 2014[Li, X., Wang, Z.-G., Chen, H.-H. & Liu, S.-G. (2014). Acta Cryst. C70, 1050-1053.]). Inter­molecular inter­actions in crystals of the former are dominated by the formation of carb­oxy­lic acid dimers; the hydroxyl group is left without an apparent hydrogen-bond acceptor, while chains corresponding to those of (I) occur for the latter, although with much longer O⋯H distances of 2.51 Å compared to 1.905 (13) Å for (I) (Table 2[link]).

The origin of the solid propionate in the filter probably (and ironically) stems from its use as a fuel additive for the inhibition of (organic) particle formation. We suspect that engine running conditions or additive concentrations have been off target.

Synthesis and crystallization

The investigated crystal was harvested from a fuel inlet particle filter of a biofuel bus engine.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C21H34O3
Mr 334.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.871 (4), 10.973 (5), 18.067 (7)
β (°) 91.908 (14)
V3) 1956.0 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.75 × 0.68 × 0.47
 
Data collection
Diffractometer Photon 100 CMOS detector, Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT-Plus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.917, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 43859, 6850, 5673
Rint 0.036
(sin θ/λ)max−1) 0.749
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.03
No. of reflections 6850
No. of parameters 227
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.23
Computer programs: APEX2 and SAINT-Plus (Bruker, 2016[Bruker (2016). APEX2, SAINT-Plus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Butyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate top
Crystal data top
C21H34O3F(000) = 736
Mr = 334.48Dx = 1.136 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.871 (4) ÅCell parameters from 9986 reflections
b = 10.973 (5) Åθ = 2.8–32.1°
c = 18.067 (7) ŵ = 0.07 mm1
β = 91.908 (14)°T = 100 K
V = 1956.0 (14) Å3Block, colourless
Z = 40.75 × 0.68 × 0.47 mm
Data collection top
Photon 100 CMOS detector, Bruker D8 Venture
diffractometer
6850 independent reflections
Radiation source: fine-focus sealed tube5673 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.036
Sets of exposures each taken over 0.5° ω rotation scansθmax = 32.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1414
Tmin = 0.917, Tmax = 1.000k = 1616
43859 measured reflectionsl = 2726
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.4869P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6850 reflectionsΔρmax = 0.42 e Å3
227 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. No restraints or constraints applied.

Normal anisotropic refinement, hydroxylic H atom refined isotropically, other H atoms in calculated positions, rotatable methyl groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.77265 (6)0.79336 (6)0.52808 (3)0.01761 (13)
O20.84565 (6)0.95653 (6)0.59254 (4)0.01949 (13)
O30.15240 (6)0.66644 (6)0.82531 (3)0.01359 (12)
H30.1591 (12)0.5997 (12)0.8480 (7)0.020*
C10.76186 (8)0.87740 (7)0.58083 (4)0.01334 (14)
C20.63402 (8)0.86147 (7)0.62320 (4)0.01460 (15)
H210.55480.87940.59000.018*
H220.63400.92090.66440.018*
C30.61960 (9)0.73242 (8)0.65463 (5)0.01733 (16)
H310.61660.67330.61320.021*
H320.70040.71350.68650.021*
C40.49381 (8)0.71708 (7)0.69932 (4)0.01388 (14)
C50.49123 (8)0.75974 (7)0.77168 (4)0.01392 (14)
H510.56910.79970.79230.017*
C60.37796 (8)0.74576 (7)0.81499 (4)0.01178 (14)
C70.26551 (7)0.68355 (7)0.78325 (4)0.01101 (13)
C80.26160 (8)0.64371 (7)0.70921 (4)0.01157 (13)
C90.37823 (8)0.66210 (7)0.66878 (4)0.01338 (14)
H910.37840.63610.61860.016*
C100.37449 (8)0.80074 (7)0.89320 (4)0.01368 (14)
C110.35803 (10)0.70137 (8)0.95237 (5)0.02031 (17)
H1110.26820.66400.94620.030*
H1120.36750.73791.00180.030*
H1130.42790.63890.94680.030*
C120.25809 (9)0.89393 (8)0.89601 (5)0.01847 (16)
H1210.26700.95350.85610.028*
H1220.26210.93600.94390.028*
H1230.17110.85160.88990.028*
C130.50570 (9)0.86932 (9)0.91338 (5)0.02265 (18)
H1310.58190.81200.91490.034*
H1320.49790.90760.96210.034*
H1330.52130.93230.87610.034*
C140.13430 (8)0.58406 (7)0.67361 (4)0.01339 (14)
C150.01167 (9)0.67043 (8)0.67824 (5)0.01810 (16)
H1510.03210.74770.65380.027*
H1520.00730.68570.73030.027*
H1530.06770.63280.65360.027*
C160.10502 (9)0.46117 (8)0.71123 (5)0.01891 (16)
H1610.02810.42140.68540.028*
H1620.08320.47530.76300.028*
H1630.18510.40870.70910.028*
C170.15173 (9)0.55772 (9)0.59104 (5)0.02034 (17)
H1710.06790.52230.56990.031*
H1720.22660.50020.58530.031*
H1730.17180.63380.56520.031*
C180.88894 (9)0.79959 (8)0.48030 (5)0.01788 (16)
H1810.93190.71830.47730.021*
H1820.95680.85740.50150.021*
C190.84370 (9)0.84111 (8)0.40378 (5)0.01676 (16)
H1910.77300.78450.38430.020*
H1920.92170.83560.37090.020*
C200.78775 (10)0.97033 (8)0.40020 (5)0.02082 (17)
H2010.85811.02780.41910.025*
H2020.70910.97650.43260.025*
C210.74391 (11)1.00668 (9)0.32151 (5)0.0262 (2)
H2110.82110.99920.28910.039*
H2120.71191.09120.32130.039*
H2130.67050.95300.30360.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0188 (3)0.0195 (3)0.0149 (3)0.0044 (2)0.0074 (2)0.0049 (2)
O20.0176 (3)0.0192 (3)0.0221 (3)0.0039 (2)0.0062 (2)0.0063 (2)
O30.0112 (3)0.0167 (3)0.0131 (3)0.0005 (2)0.00417 (19)0.0023 (2)
C10.0147 (3)0.0142 (3)0.0113 (3)0.0013 (3)0.0026 (3)0.0003 (2)
C20.0140 (3)0.0155 (3)0.0147 (3)0.0002 (3)0.0051 (3)0.0005 (3)
C30.0139 (4)0.0168 (4)0.0218 (4)0.0016 (3)0.0080 (3)0.0037 (3)
C40.0118 (3)0.0139 (3)0.0163 (3)0.0015 (3)0.0045 (3)0.0024 (3)
C50.0109 (3)0.0144 (3)0.0166 (3)0.0007 (3)0.0011 (3)0.0007 (3)
C60.0113 (3)0.0119 (3)0.0122 (3)0.0006 (2)0.0002 (2)0.0006 (2)
C70.0095 (3)0.0121 (3)0.0115 (3)0.0009 (2)0.0023 (2)0.0015 (2)
C80.0115 (3)0.0117 (3)0.0116 (3)0.0010 (2)0.0010 (2)0.0010 (2)
C90.0148 (3)0.0135 (3)0.0120 (3)0.0020 (3)0.0032 (3)0.0008 (3)
C100.0144 (3)0.0139 (3)0.0127 (3)0.0004 (3)0.0003 (3)0.0009 (3)
C110.0297 (5)0.0188 (4)0.0122 (3)0.0008 (3)0.0028 (3)0.0010 (3)
C120.0209 (4)0.0176 (4)0.0169 (4)0.0051 (3)0.0011 (3)0.0027 (3)
C130.0197 (4)0.0253 (4)0.0227 (4)0.0043 (3)0.0025 (3)0.0080 (3)
C140.0124 (3)0.0151 (3)0.0126 (3)0.0002 (3)0.0008 (3)0.0006 (3)
C150.0137 (4)0.0215 (4)0.0189 (4)0.0034 (3)0.0025 (3)0.0002 (3)
C160.0194 (4)0.0162 (4)0.0209 (4)0.0042 (3)0.0033 (3)0.0003 (3)
C170.0198 (4)0.0272 (4)0.0139 (3)0.0013 (3)0.0016 (3)0.0039 (3)
C180.0156 (4)0.0222 (4)0.0162 (4)0.0013 (3)0.0067 (3)0.0024 (3)
C190.0170 (4)0.0184 (4)0.0153 (3)0.0011 (3)0.0059 (3)0.0031 (3)
C200.0236 (4)0.0184 (4)0.0206 (4)0.0003 (3)0.0028 (3)0.0029 (3)
C210.0306 (5)0.0238 (4)0.0242 (4)0.0014 (4)0.0018 (4)0.0031 (4)
Geometric parameters (Å, º) top
O1—C11.3330 (10)C12—H1220.9800
O1—C181.4606 (11)C12—H1230.9800
O2—C11.2130 (11)C13—H1310.9800
O3—C71.3840 (10)C13—H1320.9800
O3—H30.841 (13)C13—H1330.9800
C1—C21.5077 (12)C14—C171.5347 (13)
C2—C31.5341 (13)C14—C161.5418 (13)
C2—H210.9900C14—C151.5419 (13)
C2—H220.9900C15—H1510.9800
C3—C41.5130 (12)C15—H1520.9800
C3—H310.9900C15—H1530.9800
C3—H320.9900C16—H1610.9800
C4—C91.3886 (12)C16—H1620.9800
C4—C51.3897 (12)C16—H1630.9800
C5—C61.3945 (12)C17—H1710.9800
C5—H510.9500C17—H1720.9800
C6—C71.4088 (11)C17—H1730.9800
C6—C101.5379 (12)C18—C191.5090 (13)
C7—C81.4068 (11)C18—H1810.9900
C8—C91.3985 (12)C18—H1820.9900
C8—C141.5386 (12)C19—C201.5223 (14)
C9—H910.9500C19—H1910.9900
C10—C131.5315 (13)C19—H1920.9900
C10—C111.5394 (13)C20—C211.5253 (14)
C10—C121.5403 (13)C20—H2010.9900
C11—H1110.9800C20—H2020.9900
C11—H1120.9800C21—H2110.9800
C11—H1130.9800C21—H2120.9800
C12—H1210.9800C21—H2130.9800
C1—O1—C18118.24 (7)C10—C13—H132109.5
C7—O3—H3109.6 (8)H131—C13—H132109.5
O2—C1—O1123.34 (8)C10—C13—H133109.5
O2—C1—C2124.88 (7)H131—C13—H133109.5
O1—C1—C2111.77 (7)H132—C13—H133109.5
C1—C2—C3112.61 (7)C17—C14—C8111.72 (7)
C1—C2—H21109.1C17—C14—C16107.01 (7)
C3—C2—H21109.1C8—C14—C16110.51 (7)
C1—C2—H22109.1C17—C14—C15106.39 (7)
C3—C2—H22109.1C8—C14—C15110.34 (7)
H21—C2—H22107.8C16—C14—C15110.77 (7)
C4—C3—C2112.84 (7)C14—C15—H151109.5
C4—C3—H31109.0C14—C15—H152109.5
C2—C3—H31109.0H151—C15—H152109.5
C4—C3—H32109.0C14—C15—H153109.5
C2—C3—H32109.0H151—C15—H153109.5
H31—C3—H32107.8H152—C15—H153109.5
C9—C4—C5118.66 (7)C14—C16—H161109.5
C9—C4—C3120.95 (8)C14—C16—H162109.5
C5—C4—C3120.38 (8)H161—C16—H162109.5
C4—C5—C6122.07 (7)C14—C16—H163109.5
C4—C5—H51119.0H161—C16—H163109.5
C6—C5—H51119.0H162—C16—H163109.5
C5—C6—C7117.43 (7)C14—C17—H171109.5
C5—C6—C10121.02 (7)C14—C17—H172109.5
C7—C6—C10121.51 (7)H171—C17—H172109.5
O3—C7—C8118.87 (7)C14—C17—H173109.5
O3—C7—C6118.78 (7)H171—C17—H173109.5
C8—C7—C6122.27 (7)H172—C17—H173109.5
C9—C8—C7117.06 (7)O1—C18—C19109.95 (7)
C9—C8—C14121.21 (7)O1—C18—H181109.7
C7—C8—C14121.73 (7)C19—C18—H181109.7
C4—C9—C8122.34 (8)O1—C18—H182109.7
C4—C9—H91118.8C19—C18—H182109.7
C8—C9—H91118.8H181—C18—H182108.2
C13—C10—C6111.53 (7)C18—C19—C20114.58 (7)
C13—C10—C11106.90 (7)C18—C19—H191108.6
C6—C10—C11111.49 (7)C20—C19—H191108.6
C13—C10—C12106.97 (8)C18—C19—H192108.6
C6—C10—C12109.28 (7)C20—C19—H192108.6
C11—C10—C12110.57 (7)H191—C19—H192107.6
C10—C11—H111109.5C19—C20—C21111.99 (7)
C10—C11—H112109.5C19—C20—H201109.2
H111—C11—H112109.5C21—C20—H201109.2
C10—C11—H113109.5C19—C20—H202109.2
H111—C11—H113109.5C21—C20—H202109.2
H112—C11—H113109.5H201—C20—H202107.9
C10—C12—H121109.5C20—C21—H211109.5
C10—C12—H122109.5C20—C21—H212109.5
H121—C12—H122109.5H211—C21—H212109.5
C10—C12—H123109.5C20—C21—H213109.5
H121—C12—H123109.5H211—C21—H213109.5
H122—C12—H123109.5H212—C21—H213109.5
C10—C13—H131109.5
C18—O1—C1—O22.22 (12)C5—C4—C9—C82.71 (12)
C18—O1—C1—C2177.72 (7)C3—C4—C9—C8178.29 (7)
O2—C1—C2—C3126.23 (9)C7—C8—C9—C40.01 (11)
O1—C1—C2—C353.83 (10)C14—C8—C9—C4179.18 (7)
C1—C2—C3—C4178.11 (7)C5—C6—C10—C130.63 (10)
C2—C3—C4—C9100.16 (9)C7—C6—C10—C13176.93 (7)
C2—C3—C4—C578.82 (10)C5—C6—C10—C11118.79 (8)
C9—C4—C5—C61.94 (12)C7—C6—C10—C1163.65 (10)
C3—C4—C5—C6179.05 (7)C5—C6—C10—C12118.69 (9)
C4—C5—C6—C71.47 (11)C7—C6—C10—C1258.88 (10)
C4—C5—C6—C10176.19 (7)C9—C8—C14—C173.54 (10)
C5—C6—C7—O3178.93 (7)C7—C8—C14—C17175.62 (7)
C10—C6—C7—O33.42 (11)C9—C8—C14—C16115.49 (8)
C5—C6—C7—C84.35 (11)C7—C8—C14—C1665.36 (10)
C10—C6—C7—C8173.29 (7)C9—C8—C14—C15121.67 (8)
O3—C7—C8—C9179.65 (7)C7—C8—C14—C1557.49 (10)
C6—C7—C8—C93.64 (11)C1—O1—C18—C19108.05 (9)
O3—C7—C8—C141.16 (11)O1—C18—C19—C2064.77 (9)
C6—C7—C8—C14175.55 (7)C18—C19—C20—C21180.00 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.841 (13)1.905 (13)2.7399 (13)172.1 (12)
Symmetry code: (i) x+1, y1/2, z+3/2.
 

References

First citationBruker (2016). APEX2, SAINT-Plus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJaivel, N., Uvarani, C., Rajesh, R., Velmurugan, D. & Marimuthu, P. (2015). J. Nat. Prod. 78, 343–343.  CrossRef CAS Google Scholar
First citationKihle, J., Hurum, J. H. & Liebe, L. (2012). Norw. J. Geol. 92, 341–352.  Google Scholar
First citationLi, X., Wang, Z.-G., Chen, H.-H. & Liu, S.-G. (2014). Acta Cryst. C70, 1050–1053.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds