organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N′-[5-Acetyl-3-(4-bromo­phen­yl)-2,3-di­hydro-1,3,4-thia­diazol-2-yl­­idene]-5-(1H-indol-3-yl)-1-phenyl-1H-pyrazole-3-carbohydrazide di­methyl­formamide monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, dDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad, 64021, Iraq, eCenter of Excellence in Integrated Nano-Systems, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and fSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 15 January 2019; accepted 17 February 2019; online 22 February 2019)

The main mol­ecule of the title di­methyl­formamide monosolvate, C28H20BrN7O2S·C3H7NO, comprises bromo­phenyl (A), thia­diazolyl (B), pyrazolyl (C), phenyl (D) and indolyl (E) ring systems with twist angles between the planes through neigbouring rings A/B, B/C, C/D and C/E of 33.7 (1), 14.8 (1), 60.7 (2) and 20.9 (1)°, respectively. In the crystal, the mol­ecules are related by c-glide symmetry to form columns parallel to [001] which are linked by inter­molecular N—H⋯O, C—H⋯O and C—H⋯Br contacts.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1H-Pyrazole-3-carbohydrazides have been used in the synthesis of anti-nociceptive, anti-inflammatory and anti­pyretic agents (Malvar et al., 2014[Malvar, D. C., Ferreira, R. T., de Castro, R. A., de Castro, L. L., Freitas, A. C., Costa, E. A., Florentino, I. F., Mafra, J. C., de Souza, G. E. & Vanderlinde, F. A. (2014). Life Sci. 95, 81-88.]). In addition, 1,3,4-thia­diazo­les have different biological activities and can be used as anti­cancer, diuretic, anti­bacterial, anti­fungal, anti­tubercular and leishmanicidal agents (Dawood & Farghaly, 2017[Dawood, K. M. & Farghaly, T. A. (2017). Expert Opin. Ther. Pat. 27, 477-505.]; Li et al., 2013[Li, Y., Geng, J., Liu, Y., Yu, S. & Zhao, G. (2013). ChemMedChem, 8, 27-41.]; Lv et al., 2018[Lv, M., Liu, G., Jia, M. & Xu, H. (2018). Bioorg. Chem. 81, 88-92.]; Serban et al., 2018[Serban, G., Stanasel, O., Serban, E. & Bota, S. (2018). Drug. Des. Dev. Ther. 12, 1545-1566.]).

In the main mol­ecule of the title compound (Fig. 1[link]), the angles between planes of the bromo­phenyl (A), thia­diazolyl (B), pyrazolyl (C), phenyl (D) and indolyl (E) rings A/B, B/C, C/D and C/E are 33.7 (1), 14.8 (1), 60.7 (2) and 20.9 (1)° respectively. The mol­ecules are related by c-glide symmetry to form columns parallel to [001] which are linked by inter­molecular N—H⋯O, C—H⋯O and C—H⋯Br contacts (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O3i 0.96 2.64 3.390 (7) 135
C16—H16⋯O2ii 0.93 2.33 3.243 (6) 167
C30—H30B⋯O2iii 0.96 2.59 3.409 (7) 144
C30—H30C⋯Br1ii 0.96 3.09 3.851 (8) 137
N7—H7A⋯O3 0.86 1.96 2.778 (5) 158
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z].
[Figure 1]
Figure 1
An ORTEP representation of the asymmetric unit showing 50% probability ellipsoids.
[Figure 2]
Figure 2
A segment of the crystal structure showing inter­molecular contacts as dotted lines.

Synthesis and crystallization

The title compound was synthesized from a coupling reaction of potassium 2-(5-(1H-indol-3-yl)-1-phenyl-1H-pyrazole-3-carbon­yl)hydrazinecarbodi­thio­ate and N′-(4-bromo­phen­yl)-2-oxo­propane­hydrazonoyl chloride in boiling ethanol for 2 h. The solid obtained was collected by filtration, washed with ethanol, dried and recrystallized from di­methyl­formamide to give pale-yellow crystals, m.p. 207–209°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C28H20BrN7O2S·C3H7NO
Mr 671.57
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 296
a, b, c (Å) 22.5145 (11), 18.1416 (10), 7.5928 (4)
V3) 3101.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.44
Crystal size (mm) 0.43 × 0.08 × 0.07
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.603, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 32233, 7649, 4668
Rint 0.040
(sin θ/λ)max−1) 0.698
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.05
No. of reflections 7649
No. of parameters 400
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.47
Absolute structure Flack x determined using 1670 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.010 (4)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: WinGX (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

N'-[5-Acetyl-3-(4-bromophenyl)-2,3-dihydro-1,3,4-thiadiazol-2-ylidene]-5-(1H-indol-3-yl)-1-phenyl-1H-pyrazole-3-carbohydrazide dimethylformamide monosolvate top
Crystal data top
C28H20BrN7O2S·C3H7NODx = 1.438 Mg m3
Mr = 671.57Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 7129 reflections
a = 22.5145 (11) Åθ = 3.6–23.5°
b = 18.1416 (10) ŵ = 1.44 mm1
c = 7.5928 (4) ÅT = 296 K
V = 3101.3 (3) Å3Needle, yellow
Z = 40.43 × 0.08 × 0.07 mm
F(000) = 1376
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
4668 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2015)
θmax = 29.7°, θmin = 2.9°
Tmin = 0.603, Tmax = 1.000h = 3029
32233 measured reflectionsk = 2523
7649 independent reflectionsl = 98
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.5275P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.24 e Å3
7649 reflectionsΔρmin = 0.47 e Å3
400 parametersAbsolute structure: Flack x determined using 1670 quotients [(I+)-(I-)]/[(I+)+(I-)]
(Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.010 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in calculated positions and refined using a riding model. Bond distances for sp2 C—H and N—H H atoms were set to 0.93 Å and 0.83 Å respectively and their U(iso) set to 1.2 times the Ueq(C/N). Methyl C—H distances were set to 0.96 Å and their U(iso) to 1.5 times the Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3897 (3)0.4221 (3)0.6408 (8)0.0837 (16)
H1A0.3563020.4440670.5820810.126*
H1B0.4258150.4402130.5896500.126*
H1C0.3885850.4345670.7636030.126*
C20.3870 (2)0.3406 (3)0.6206 (7)0.0667 (13)
C30.4422 (2)0.2995 (2)0.5881 (6)0.0547 (10)
C40.51645 (19)0.2049 (2)0.5342 (5)0.0500 (10)
C50.59448 (19)0.3031 (2)0.4890 (6)0.0484 (9)
C60.64365 (19)0.2629 (2)0.5380 (6)0.0541 (10)
H60.6388930.2191970.6004380.065*
C70.7001 (2)0.2871 (3)0.4948 (6)0.0577 (11)
H70.7333720.2600640.5279920.069*
C80.7062 (2)0.3522 (3)0.4013 (6)0.0602 (12)
C90.6574 (2)0.3925 (3)0.3560 (8)0.0701 (14)
H90.6621730.4365790.2950340.084*
C100.6013 (2)0.3688 (3)0.3995 (6)0.0622 (12)
H100.5682680.3967190.3689310.075*
C110.55267 (19)0.0189 (2)0.5084 (6)0.0541 (10)
C120.51441 (18)0.0475 (2)0.5128 (6)0.0513 (10)
C130.53273 (19)0.1208 (2)0.5265 (6)0.0517 (10)
H130.5715390.1378750.5362770.062*
C140.48203 (17)0.1626 (2)0.5226 (6)0.0472 (9)
C150.37354 (17)0.1260 (2)0.4977 (6)0.0466 (9)
C160.34397 (19)0.1040 (2)0.3485 (7)0.0576 (11)
H160.3638630.0782250.2606060.069*
C170.2842 (2)0.1206 (3)0.3301 (9)0.0651 (11)
H170.2638680.1058820.2294270.078*
C180.2550 (2)0.1586 (3)0.4596 (7)0.0640 (12)
H180.2151270.1706510.4455880.077*
C190.28450 (19)0.1790 (3)0.6101 (7)0.0673 (13)
H190.2642930.2038510.6988540.081*
C200.3442 (2)0.1626 (3)0.6306 (6)0.0615 (12)
H200.3642590.1762170.7327700.074*
C210.47552 (17)0.2425 (2)0.5177 (5)0.0440 (9)
C220.4284 (2)0.2829 (2)0.4545 (6)0.0523 (10)
H220.3930880.2627860.4128960.063*
C230.52041 (18)0.2960 (2)0.5668 (5)0.0469 (9)
C240.49597 (19)0.3659 (2)0.5303 (6)0.0508 (10)
C250.5267 (2)0.4314 (3)0.5657 (7)0.0657 (13)
H250.5097030.4771010.5419980.079*
C260.5828 (2)0.4261 (3)0.6366 (7)0.0716 (14)
H260.6043820.4686230.6608420.086*
C270.6073 (2)0.3574 (3)0.6719 (7)0.0698 (14)
H270.6451740.3548990.7203890.084*
C280.5772 (2)0.2927 (3)0.6375 (6)0.0568 (11)
H280.5947170.2473680.6614140.068*
C290.2960 (2)0.4028 (3)0.3714 (7)0.0662 (14)
H290.2994820.3533830.4025960.079*
C300.1916 (2)0.3787 (3)0.3324 (11)0.0904 (17)
H30A0.2033310.3301100.3684770.136*
H30B0.1630740.3979620.4142660.136*
H30C0.1742540.3764650.2170550.136*
C310.2340 (3)0.5018 (3)0.2780 (10)0.096 (2)
H31A0.2606590.5142330.1838860.143*
H31B0.1937450.5082240.2391590.143*
H31C0.2414670.5332960.3770590.143*
N10.49317 (16)0.32977 (19)0.5631 (5)0.0532 (9)
N20.53610 (15)0.27826 (18)0.5312 (5)0.0492 (8)
N30.55051 (16)0.15014 (19)0.5048 (5)0.0582 (9)
N40.52156 (17)0.08241 (19)0.5083 (6)0.0643 (10)
H40.4833820.0810220.5104620.077*
N50.45573 (15)0.04195 (19)0.5049 (5)0.0549 (9)
N60.43603 (15)0.11289 (17)0.5122 (5)0.0499 (8)
N70.44049 (16)0.35617 (19)0.4611 (5)0.0548 (9)
H7A0.4170570.3908190.4271960.066*
N80.24315 (16)0.4262 (2)0.3285 (6)0.0628 (9)
O10.34070 (16)0.3057 (2)0.6310 (7)0.0971 (13)
O20.60639 (14)0.01563 (17)0.5076 (5)0.0746 (10)
O30.34165 (15)0.4403 (2)0.3744 (5)0.0779 (11)
S10.43969 (5)0.20386 (6)0.57886 (17)0.0612 (3)
Br10.78288 (3)0.38447 (4)0.33102 (11)0.0965 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.080 (4)0.065 (3)0.106 (4)0.017 (3)0.007 (3)0.008 (3)
C20.062 (3)0.068 (3)0.070 (3)0.011 (3)0.008 (2)0.000 (2)
C30.056 (3)0.052 (2)0.056 (2)0.000 (2)0.001 (2)0.000 (2)
C40.053 (2)0.044 (2)0.053 (2)0.003 (2)0.002 (2)0.0010 (19)
C50.050 (2)0.043 (2)0.052 (2)0.0047 (19)0.0000 (19)0.0032 (18)
C60.053 (2)0.048 (2)0.062 (3)0.003 (2)0.002 (2)0.0023 (19)
C70.053 (2)0.059 (3)0.062 (3)0.001 (2)0.002 (2)0.006 (2)
C80.059 (3)0.062 (3)0.060 (3)0.014 (2)0.005 (2)0.003 (2)
C90.075 (3)0.060 (3)0.075 (3)0.014 (3)0.002 (3)0.016 (2)
C100.062 (3)0.052 (3)0.073 (3)0.001 (2)0.003 (2)0.012 (2)
C110.048 (2)0.043 (2)0.071 (3)0.0050 (19)0.005 (2)0.013 (2)
C120.047 (2)0.043 (2)0.064 (2)0.0058 (18)0.002 (2)0.0079 (19)
C130.039 (2)0.047 (2)0.070 (3)0.0007 (18)0.003 (2)0.008 (2)
C140.039 (2)0.046 (2)0.057 (2)0.0027 (18)0.0003 (19)0.0037 (19)
C150.040 (2)0.042 (2)0.058 (2)0.0022 (17)0.0017 (19)0.0025 (18)
C160.053 (2)0.060 (3)0.060 (3)0.000 (2)0.003 (2)0.004 (2)
C170.050 (2)0.081 (3)0.065 (3)0.003 (2)0.010 (2)0.001 (3)
C180.043 (2)0.071 (3)0.078 (3)0.002 (2)0.002 (2)0.009 (3)
C190.044 (3)0.075 (3)0.083 (4)0.002 (2)0.011 (2)0.012 (3)
C200.050 (3)0.069 (3)0.066 (3)0.003 (2)0.002 (2)0.012 (2)
C210.039 (2)0.043 (2)0.050 (2)0.0021 (17)0.0006 (17)0.0002 (17)
C220.053 (3)0.040 (2)0.064 (3)0.0024 (19)0.002 (2)0.0015 (19)
C230.045 (2)0.048 (2)0.048 (2)0.0000 (18)0.0043 (19)0.0015 (19)
C240.048 (2)0.047 (2)0.058 (3)0.0019 (19)0.009 (2)0.0057 (19)
C250.067 (3)0.048 (2)0.083 (3)0.008 (2)0.012 (3)0.007 (2)
C260.069 (3)0.064 (3)0.082 (3)0.022 (3)0.011 (3)0.011 (3)
C270.048 (3)0.087 (4)0.074 (3)0.014 (3)0.000 (2)0.011 (3)
C280.047 (2)0.063 (3)0.060 (3)0.000 (2)0.002 (2)0.000 (2)
C290.066 (3)0.052 (3)0.081 (4)0.010 (2)0.000 (3)0.005 (2)
C300.060 (3)0.106 (4)0.105 (4)0.026 (3)0.008 (4)0.008 (4)
C310.069 (3)0.081 (4)0.137 (6)0.013 (3)0.010 (4)0.021 (4)
N10.054 (2)0.0465 (19)0.060 (2)0.0050 (17)0.0029 (18)0.0008 (17)
N20.051 (2)0.0384 (17)0.058 (2)0.0025 (16)0.0022 (17)0.0003 (15)
N30.054 (2)0.0400 (19)0.081 (3)0.0071 (17)0.0012 (19)0.0058 (18)
N40.047 (2)0.0410 (19)0.105 (3)0.0072 (17)0.001 (2)0.004 (2)
N50.0439 (19)0.0415 (18)0.079 (2)0.0070 (16)0.0025 (18)0.0021 (17)
N60.0412 (19)0.0385 (18)0.070 (2)0.0014 (14)0.0009 (17)0.0003 (16)
N70.048 (2)0.043 (2)0.074 (2)0.0066 (16)0.0012 (18)0.0019 (17)
N80.050 (2)0.061 (2)0.077 (2)0.0010 (18)0.001 (2)0.000 (2)
O10.056 (2)0.092 (3)0.143 (4)0.001 (2)0.027 (2)0.005 (2)
O20.0462 (18)0.0546 (18)0.123 (3)0.0040 (15)0.0031 (19)0.0244 (19)
O30.0514 (19)0.066 (2)0.116 (3)0.0022 (17)0.0122 (19)0.0135 (19)
S10.0511 (6)0.0541 (6)0.0784 (7)0.0046 (5)0.0081 (6)0.0059 (6)
Br10.0713 (4)0.1188 (5)0.0994 (4)0.0342 (3)0.0136 (4)0.0080 (4)
Geometric parameters (Å, º) top
C1—C21.487 (7)C17—H170.9300
C1—H1A0.9600C18—C191.372 (7)
C1—H1B0.9600C18—H180.9300
C1—H1C0.9600C19—C201.386 (6)
C2—O11.222 (6)C19—H190.9300
C2—C31.471 (6)C20—H200.9300
C3—N11.286 (5)C21—C221.376 (6)
C3—S11.738 (4)C21—C231.449 (6)
C4—N31.274 (5)C22—N71.357 (5)
C4—N21.403 (5)C22—H220.9300
C4—S11.761 (4)C23—C281.387 (6)
C5—C61.377 (6)C23—C241.410 (6)
C5—C101.380 (6)C24—N71.367 (5)
C5—N21.426 (5)C24—C251.402 (6)
C6—C71.384 (6)C25—C261.377 (7)
C6—H60.9300C25—H250.9300
C7—C81.385 (7)C26—C271.389 (7)
C7—H70.9300C26—H260.9300
C8—C91.364 (7)C27—C281.381 (7)
C8—Br11.898 (5)C27—H270.9300
C9—C101.375 (7)C28—H280.9300
C9—H90.9300C29—O31.234 (6)
C10—H100.9300C29—N81.304 (6)
C11—O21.211 (5)C29—H290.9300
C11—N41.348 (5)C30—N81.446 (6)
C11—C121.482 (6)C30—H30A0.9600
C12—N51.326 (5)C30—H30B0.9600
C12—C131.397 (6)C30—H30C0.9600
C13—C141.370 (5)C31—N81.438 (7)
C13—H130.9300C31—H31A0.9600
C14—N61.375 (5)C31—H31B0.9600
C14—C211.458 (5)C31—H31C0.9600
C15—C161.373 (6)N1—N21.366 (5)
C15—C201.377 (6)N3—N41.391 (5)
C15—N61.431 (5)N4—H40.8600
C16—C171.386 (6)N5—N61.362 (5)
C16—H160.9300N7—H7A0.8600
C17—C181.369 (8)
C2—C1—H1A109.5C15—C20—H20120.5
C2—C1—H1B109.5C19—C20—H20120.5
H1A—C1—H1B109.5C22—C21—C23105.7 (3)
C2—C1—H1C109.5C22—C21—C14128.0 (4)
H1A—C1—H1C109.5C23—C21—C14126.1 (3)
H1B—C1—H1C109.5N7—C22—C21110.7 (4)
O1—C2—C3118.0 (4)N7—C22—H22124.6
O1—C2—C1122.9 (5)C21—C22—H22124.6
C3—C2—C1119.1 (5)C28—C23—C24118.3 (4)
N1—C3—C2124.3 (4)C28—C23—C21135.5 (4)
N1—C3—S1116.7 (3)C24—C23—C21106.2 (4)
C2—C3—S1119.0 (4)N7—C24—C25129.3 (4)
N3—C4—N2123.2 (4)N7—C24—C23108.4 (4)
N3—C4—S1128.0 (3)C25—C24—C23122.2 (4)
N2—C4—S1108.8 (3)C26—C25—C24117.9 (5)
C6—C5—C10120.0 (4)C26—C25—H25121.0
C6—C5—N2120.8 (4)C24—C25—H25121.0
C10—C5—N2119.1 (4)C25—C26—C27120.2 (5)
C5—C6—C7120.4 (4)C25—C26—H26119.9
C5—C6—H6119.8C27—C26—H26119.9
C7—C6—H6119.8C28—C27—C26122.1 (5)
C6—C7—C8118.9 (4)C28—C27—H27119.0
C6—C7—H7120.5C26—C27—H27119.0
C8—C7—H7120.5C27—C28—C23119.3 (4)
C9—C8—C7120.4 (4)C27—C28—H28120.4
C9—C8—Br1119.7 (4)C23—C28—H28120.4
C7—C8—Br1119.8 (4)O3—C29—N8125.7 (5)
C8—C9—C10120.8 (5)O3—C29—H29117.1
C8—C9—H9119.6N8—C29—H29117.1
C10—C9—H9119.6N8—C30—H30A109.5
C9—C10—C5119.4 (5)N8—C30—H30B109.5
C9—C10—H10120.3H30A—C30—H30B109.5
C5—C10—H10120.3N8—C30—H30C109.5
O2—C11—N4124.1 (4)H30A—C30—H30C109.5
O2—C11—C12122.7 (4)H30B—C30—H30C109.5
N4—C11—C12113.1 (4)N8—C31—H31A109.5
N5—C12—C13111.7 (4)N8—C31—H31B109.5
N5—C12—C11121.1 (4)H31A—C31—H31B109.5
C13—C12—C11127.2 (4)N8—C31—H31C109.5
C14—C13—C12106.2 (4)H31A—C31—H31C109.5
C14—C13—H13126.9H31B—C31—H31C109.5
C12—C13—H13126.9C3—N1—N2111.4 (3)
C13—C14—N6105.4 (3)N1—N2—C4115.0 (3)
C13—C14—C21129.4 (4)N1—N2—C5118.4 (3)
N6—C14—C21125.1 (3)C4—N2—C5126.5 (4)
C16—C15—C20120.9 (4)C4—N3—N4113.8 (4)
C16—C15—N6119.5 (4)C11—N4—N3120.7 (4)
C20—C15—N6119.6 (4)C11—N4—H4119.6
C15—C16—C17119.4 (5)N3—N4—H4119.6
C15—C16—H16120.3C12—N5—N6104.5 (3)
C17—C16—H16120.3N5—N6—C14112.1 (3)
C18—C17—C16120.2 (5)N5—N6—C15118.3 (3)
C18—C17—H17119.9C14—N6—C15129.5 (3)
C16—C17—H17119.9C22—N7—C24108.9 (4)
C17—C18—C19120.1 (4)C22—N7—H7A125.6
C17—C18—H18120.0C24—N7—H7A125.6
C19—C18—H18120.0C29—N8—C31120.6 (4)
C18—C19—C20120.4 (4)C29—N8—C30122.1 (5)
C18—C19—H19119.8C31—N8—C30117.3 (4)
C20—C19—H19119.8C3—S1—C488.0 (2)
C15—C20—C19119.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.962.643.390 (7)135
C16—H16···O2ii0.932.333.243 (6)167
C30—H30B···O2iii0.962.593.409 (7)144
C30—H30C···Br1ii0.963.093.851 (8)137
N7—H7A···O30.861.962.778 (5)158
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z1/2; (iii) x1/2, y1/2, z.
 

Footnotes

Additional correspondence author, e-mail: kariukib@cardiff.ac.uk.

Funding information

MHA thanks King Abdulaziz City for Science and Technology (KACST), Saudi Arabia for financial support (award No. 020–0180).

References

First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationDawood, K. M. & Farghaly, T. A. (2017). Expert Opin. Ther. Pat. 27, 477–505.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y., Geng, J., Liu, Y., Yu, S. & Zhao, G. (2013). ChemMedChem, 8, 27–41.  CrossRef Google Scholar
First citationLv, M., Liu, G., Jia, M. & Xu, H. (2018). Bioorg. Chem. 81, 88–92.  CrossRef CAS Google Scholar
First citationMalvar, D. C., Ferreira, R. T., de Castro, R. A., de Castro, L. L., Freitas, A. C., Costa, E. A., Florentino, I. F., Mafra, J. C., de Souza, G. E. & Vanderlinde, F. A. (2014). Life Sci. 95, 81–88.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSerban, G., Stanasel, O., Serban, E. & Bota, S. (2018). Drug. Des. Dev. Ther. 12, 1545–1566.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds