organic compounds
(Z)-1-Benzoyl-5-benzylidene-2-hydroxy-4-oxo-4,5-dihydro-1H-pyrrole-3-carbonitrile
aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, bDepartment of Chemistry, Cauvery Institute of Technology, Mandya-571402, India, cDepartment of Chemistry, PESIT University, Bangalore-560085, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India
*Correspondence e-mail: akitsu2@rs.tus.ac.jp
The title compound, C19H12N2O3, obtained as an intermediate in the synthesis of a pyrrole derivative, is composed of a five-membered heterocycle with substituted groups via double or triple bonds as well as single bonds, without an asymmetric carbon atom. An intramolecular O—H⋯O link occurs. In the crystal, O—H⋯N hydrogen bonds link the molecules.
Keywords: crystal structure; pyrrole; heterocycle; phenyl group; chiral crystallization.
CCDC reference: 1896436
Structure description
Pyrrole is widely known as a biologically active scaffold, which possesses a diverse nature of activities (Tzankova et al., 2018). Pyrrole derivatives are biologically active and attract attention for the synthesis of new medicinal products (Guo et al., 2015); Mokrov et al., 2015). Here we report the of (Z)-1-benzoyl-5-benzylidene-2-hydroxy-4-oxo-4,5-dihydro-1H-pyrrole-3-carbonitrile, which crystallizes in a despite there being no apparent chiral moiety in the molecule (Koshima & Matsuura, 1998; Matsuura & Koshima, 2005).
The molecular structure of the title compound (Fig. 1) is composed of a planar [maximum deviation of 0.051 (3) Å for atom C12] five-membered (N1/C8/C9/C11/C12) pyrrole ring in the usual geometry (Gainsford et al., 2013) and two phenyl rings (C1–C6 and C14–19) arranged approximately parallel to each other [dihedral angle = 15.2 (2)°; torsion angles N1—C12—C13—C14 = 2.9 (6) and C12—N1—C7—C6 = 23.0 (5)°]. Pyrroles can incorporate various types of substituent groups (Sun et al., 2014; Polindara-García & Miranda, 2012) and in this compound all five atoms in the pyrrole ring are substituted. An intramolecular hydrogen bond (O2—H2⋯O1; Table 1) is observed.
|
In the crystal, O2—H2⋯N2i hydrogen bonds (Fig. 2 and Table 1) link the molecules. In addition, the almost planar moieties of the molecules, namely the phenyl and pyrrole rings, afford a helical step-like conformation with neighboring molecules aligned along the b-axis direction (Fig. 3).
A similar compound 4-methyl-5-(4-nitrobenzylidene)-2-oxo-2,5-dihydro-1H-pyrrole-3-carbonitrile (Gainsford et al., 2013) has already been reported and has a similar structure to the title compound. Narasegowda et al. (2005) reported a case of chiral crystallization in P212121, the same as the title compound. In contrast, our recent examples of chiral crystals composed of achiral molecules both crystallize in P21 (Yagi et al., 2018; Yamazaki et al., 2018). To the best of our knowledge, this is the first reported for chiral crystallization of a pyrrole of this type.
Synthesis and crystallization
The title compound was obtained as an intermediate in the synthesis of pyrrole derivatives, namely treatment of 1-acetyl-2-amino-4-oxo-4,5-dihydro-1H-pyrrole-3-carbonitrile, benzaldehyde and benzoyl chloride. X-ray quality crystals were obtained from slow evaporation of a methanol solution.
Refinement
Crystal data, data collection and structure . Since it is very difficult to determine the reliably with Mo radiation, the choice of the is arbitrary.
details are summarized in Table 2Structural data
CCDC reference: 1896436
https://doi.org/10.1107/S2414314619002207/eb4001sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619002207/eb4001Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314619002207/eb4001Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).C19H12N2O3 | Dx = 1.405 Mg m−3 |
Mr = 316.31 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 5372 reflections |
a = 10.432 (2) Å | θ = 2.4–27.5° |
b = 11.297 (2) Å | µ = 0.10 mm−1 |
c = 12.688 (2) Å | T = 296 K |
V = 1495.3 (5) Å3 | Prism, yellow |
Z = 4 | 0.58 × 0.27 × 0.17 mm |
F(000) = 656 |
Bruker APEXII CCD diffractometer | 3341 independent reflections |
Radiation source: fine-focus sealed tube | 3139 reflections with I > 2σ(I) |
Detector resolution: 8.3333 pixels mm-1 | Rint = 0.085 |
φ and ω scans | θmax = 27.6°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −13→8 |
Tmin = 0.55, Tmax = 0.97 | k = −14→13 |
8161 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.071 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.173 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0946P)2 + 0.6486P] where P = (Fo2 + 2Fc2)/3 |
3341 reflections | (Δ/σ)max < 0.001 |
218 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were located on difference Fourier maps. The C-bound H atoms were constrained using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl H atom] The N-bound H atoms were constrained using a riding model [O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O) for amine H atoms] |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3806 (2) | 0.7264 (2) | 0.58946 (17) | 0.0230 (5) | |
O3 | 0.7778 (2) | 0.5105 (3) | 0.84556 (18) | 0.0268 (6) | |
O2 | 0.6352 (3) | 0.7026 (3) | 0.5317 (2) | 0.0357 (7) | |
H2 | 0.5601 | 0.7133 | 0.5151 | 0.054* | |
N1 | 0.5311 (3) | 0.6322 (3) | 0.6886 (2) | 0.0179 (6) | |
N2 | 0.9763 (3) | 0.6243 (3) | 0.6021 (2) | 0.0299 (7) | |
C7 | 0.4168 (3) | 0.6986 (3) | 0.6766 (2) | 0.0177 (7) | |
C11 | 0.7122 (3) | 0.5563 (3) | 0.7764 (2) | 0.0191 (7) | |
C12 | 0.5681 (3) | 0.5634 (3) | 0.7786 (2) | 0.0176 (6) | |
C9 | 0.7491 (3) | 0.6073 (3) | 0.6772 (3) | 0.0194 (7) | |
C6 | 0.3488 (3) | 0.7375 (3) | 0.7744 (2) | 0.0184 (6) | |
C8 | 0.6403 (3) | 0.6502 (3) | 0.6251 (2) | 0.0173 (6) | |
C14 | 0.3553 (3) | 0.4793 (3) | 0.8357 (3) | 0.0209 (7) | |
C13 | 0.4949 (3) | 0.5000 (3) | 0.8427 (2) | 0.0192 (7) | |
H13 | 0.5366 | 0.4641 | 0.8991 | 0.023* | |
C10 | 0.8740 (3) | 0.6158 (3) | 0.6366 (2) | 0.0208 (7) | |
C1 | 0.4160 (4) | 0.7778 (3) | 0.8625 (3) | 0.0223 (7) | |
H1 | 0.5051 | 0.7748 | 0.8639 | 0.027* | |
C5 | 0.2156 (3) | 0.7417 (3) | 0.7713 (3) | 0.0238 (7) | |
H5 | 0.1715 | 0.7168 | 0.7116 | 0.029* | |
C15 | 0.2784 (4) | 0.4872 (4) | 0.9260 (3) | 0.0263 (8) | |
H15 | 0.3152 | 0.5032 | 0.9912 | 0.032* | |
C19 | 0.2982 (4) | 0.4502 (3) | 0.7397 (3) | 0.0251 (7) | |
H19 | 0.3486 | 0.4436 | 0.6796 | 0.03* | |
C4 | 0.1494 (4) | 0.7839 (4) | 0.8589 (3) | 0.0305 (9) | |
H4 | 0.0602 | 0.7845 | 0.8587 | 0.037* | |
C18 | 0.1670 (4) | 0.4310 (4) | 0.7329 (3) | 0.0320 (9) | |
H18 | 0.1304 | 0.4099 | 0.6688 | 0.038* | |
C16 | 0.1462 (4) | 0.4711 (4) | 0.9175 (3) | 0.0321 (9) | |
H16 | 0.0952 | 0.4791 | 0.9771 | 0.039* | |
C2 | 0.3483 (4) | 0.8226 (4) | 0.9484 (3) | 0.0317 (9) | |
H2A | 0.3923 | 0.8509 | 1.0069 | 0.038* | |
C17 | 0.0900 (4) | 0.4435 (4) | 0.8225 (3) | 0.0340 (9) | |
H17 | 0.0017 | 0.4333 | 0.8179 | 0.041* | |
C3 | 0.2154 (5) | 0.8251 (4) | 0.9467 (3) | 0.0351 (9) | |
H3 | 0.1704 | 0.8543 | 1.0043 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0245 (12) | 0.0301 (13) | 0.0143 (11) | 0.0031 (11) | −0.0006 (9) | 0.0009 (10) |
O3 | 0.0228 (12) | 0.0379 (15) | 0.0197 (11) | 0.0048 (12) | −0.0034 (9) | 0.0032 (11) |
O2 | 0.0334 (15) | 0.0454 (18) | 0.0284 (14) | 0.0018 (15) | 0.0022 (12) | 0.0046 (13) |
N1 | 0.0189 (14) | 0.0198 (13) | 0.0150 (13) | 0.0002 (12) | 0.0016 (9) | 0.0027 (11) |
N2 | 0.0217 (15) | 0.0419 (19) | 0.0261 (15) | 0.0021 (15) | 0.0026 (12) | 0.0079 (15) |
C7 | 0.0208 (16) | 0.0175 (14) | 0.0147 (14) | −0.0004 (13) | 0.0002 (11) | −0.0002 (12) |
C11 | 0.0195 (15) | 0.0215 (15) | 0.0162 (15) | 0.0009 (13) | −0.0010 (12) | −0.0024 (12) |
C12 | 0.0190 (15) | 0.0194 (15) | 0.0144 (14) | 0.0037 (13) | −0.0016 (11) | −0.0011 (12) |
C9 | 0.0185 (16) | 0.0221 (16) | 0.0178 (15) | 0.0008 (13) | 0.0001 (11) | −0.0026 (13) |
C6 | 0.0230 (15) | 0.0156 (14) | 0.0165 (15) | 0.0017 (13) | 0.0023 (11) | 0.0021 (11) |
C8 | 0.0194 (15) | 0.0188 (14) | 0.0138 (14) | −0.0011 (12) | 0.0019 (12) | −0.0025 (11) |
C14 | 0.0234 (17) | 0.0173 (15) | 0.0219 (15) | 0.0004 (13) | 0.0014 (12) | 0.0063 (12) |
C13 | 0.0223 (16) | 0.0206 (16) | 0.0148 (14) | 0.0025 (13) | 0.0001 (11) | 0.0034 (13) |
C10 | 0.0219 (16) | 0.0245 (17) | 0.0161 (14) | 0.0010 (14) | −0.0006 (12) | 0.0013 (12) |
C1 | 0.0279 (18) | 0.0195 (15) | 0.0195 (16) | 0.0005 (14) | −0.0005 (12) | −0.0021 (13) |
C5 | 0.0249 (17) | 0.0248 (16) | 0.0215 (17) | 0.0068 (15) | 0.0017 (12) | 0.0051 (13) |
C15 | 0.0261 (18) | 0.0316 (19) | 0.0211 (16) | 0.0025 (16) | 0.0030 (13) | 0.0091 (14) |
C19 | 0.0297 (18) | 0.0216 (16) | 0.0240 (17) | −0.0021 (15) | 0.0028 (13) | 0.0036 (14) |
C4 | 0.0267 (18) | 0.036 (2) | 0.0292 (18) | 0.0116 (16) | 0.0082 (14) | 0.0073 (16) |
C18 | 0.0297 (19) | 0.0320 (19) | 0.034 (2) | −0.0049 (17) | −0.0045 (15) | 0.0045 (16) |
C16 | 0.0242 (19) | 0.037 (2) | 0.035 (2) | 0.0035 (17) | 0.0097 (14) | 0.0155 (17) |
C2 | 0.047 (2) | 0.0283 (18) | 0.0201 (17) | 0.0029 (19) | 0.0030 (16) | −0.0051 (14) |
C17 | 0.0204 (18) | 0.032 (2) | 0.050 (2) | −0.0048 (17) | 0.0012 (15) | 0.0140 (19) |
C3 | 0.046 (2) | 0.034 (2) | 0.0249 (18) | 0.012 (2) | 0.0153 (16) | −0.0001 (16) |
O1—C7 | 1.211 (4) | C13—H13 | 0.93 |
O3—C11 | 1.228 (4) | C1—C2 | 1.394 (5) |
O2—C8 | 1.326 (4) | C1—H1 | 0.93 |
O2—H2 | 0.82 | C5—C4 | 1.393 (5) |
N1—C8 | 1.410 (4) | C5—H5 | 0.93 |
N1—C7 | 1.416 (4) | C15—C16 | 1.395 (6) |
N1—C12 | 1.434 (4) | C15—H15 | 0.93 |
N2—C10 | 1.157 (5) | C19—C18 | 1.388 (6) |
C7—C6 | 1.495 (4) | C19—H19 | 0.93 |
C11—C9 | 1.436 (4) | C4—C3 | 1.390 (6) |
C11—C12 | 1.506 (4) | C4—H4 | 0.93 |
C12—C13 | 1.326 (5) | C18—C17 | 1.400 (6) |
C9—C8 | 1.401 (5) | C18—H18 | 0.93 |
C9—C10 | 1.405 (5) | C16—C17 | 1.376 (6) |
C6—C5 | 1.391 (5) | C16—H16 | 0.93 |
C6—C1 | 1.396 (5) | C2—C3 | 1.387 (6) |
C14—C19 | 1.395 (5) | C2—H2A | 0.93 |
C14—C15 | 1.401 (5) | C17—H17 | 0.93 |
C14—C13 | 1.478 (5) | C3—H3 | 0.93 |
C8—O2—H2 | 109.5 | C2—C1—H1 | 120.3 |
C8—N1—C7 | 122.9 (3) | C6—C1—H1 | 120.3 |
C8—N1—C12 | 108.4 (3) | C6—C5—C4 | 119.0 (3) |
C7—N1—C12 | 126.8 (3) | C6—C5—H5 | 120.5 |
O1—C7—N1 | 119.9 (3) | C4—C5—H5 | 120.5 |
O1—C7—C6 | 122.2 (3) | C16—C15—C14 | 119.6 (4) |
N1—C7—C6 | 117.8 (3) | C16—C15—H15 | 120.2 |
O3—C11—C9 | 130.2 (3) | C14—C15—H15 | 120.2 |
O3—C11—C12 | 124.5 (3) | C18—C19—C14 | 120.8 (3) |
C9—C11—C12 | 105.2 (3) | C18—C19—H19 | 119.6 |
C13—C12—N1 | 128.8 (3) | C14—C19—H19 | 119.6 |
C13—C12—C11 | 123.9 (3) | C3—C4—C5 | 120.6 (4) |
N1—C12—C11 | 106.4 (3) | C3—C4—H4 | 119.7 |
C8—C9—C10 | 123.7 (3) | C5—C4—H4 | 119.7 |
C8—C9—C11 | 109.6 (3) | C19—C18—C17 | 120.0 (4) |
C10—C9—C11 | 126.7 (3) | C19—C18—H18 | 120.0 |
C5—C6—C1 | 120.9 (3) | C17—C18—H18 | 120.0 |
C5—C6—C7 | 117.4 (3) | C17—C16—C15 | 121.3 (4) |
C1—C6—C7 | 121.5 (3) | C17—C16—H16 | 119.4 |
O2—C8—C9 | 127.5 (3) | C15—C16—H16 | 119.4 |
O2—C8—N1 | 122.9 (3) | C3—C2—C1 | 120.1 (4) |
C9—C8—N1 | 109.6 (3) | C3—C2—H2A | 119.9 |
C19—C14—C15 | 119.0 (3) | C1—C2—H2A | 119.9 |
C19—C14—C13 | 120.7 (3) | C16—C17—C18 | 119.3 (3) |
C15—C14—C13 | 120.3 (3) | C16—C17—H17 | 120.4 |
C12—C13—C14 | 128.0 (3) | C18—C17—H17 | 120.4 |
C12—C13—H13 | 116.0 | C2—C3—C4 | 120.1 (4) |
C14—C13—H13 | 116.0 | C2—C3—H3 | 120.0 |
N2—C10—C9 | 178.9 (4) | C4—C3—H3 | 120.0 |
C2—C1—C6 | 119.4 (3) | ||
C8—N1—C7—O1 | 37.5 (5) | C7—N1—C8—O2 | −20.6 (5) |
C12—N1—C7—O1 | −160.3 (3) | C12—N1—C8—O2 | 174.4 (3) |
C8—N1—C7—C6 | −139.2 (3) | C7—N1—C8—C9 | 158.1 (3) |
C12—N1—C7—C6 | 23.0 (5) | C12—N1—C8—C9 | −6.9 (4) |
C8—N1—C12—C13 | −160.3 (3) | N1—C12—C13—C14 | 2.9 (6) |
C7—N1—C12—C13 | 35.5 (5) | C11—C12—C13—C14 | −164.8 (3) |
C8—N1—C12—C11 | 9.1 (3) | C19—C14—C13—C12 | 45.2 (6) |
C7—N1—C12—C11 | −155.2 (3) | C15—C14—C13—C12 | −135.6 (4) |
O3—C11—C12—C13 | −15.1 (5) | C5—C6—C1—C2 | 0.2 (5) |
C9—C11—C12—C13 | 162.1 (3) | C7—C6—C1—C2 | 174.5 (3) |
O3—C11—C12—N1 | 174.9 (3) | C1—C6—C5—C4 | −1.8 (5) |
C9—C11—C12—N1 | −7.9 (3) | C7—C6—C5—C4 | −176.4 (3) |
O3—C11—C9—C8 | −179.2 (3) | C19—C14—C15—C16 | −2.7 (5) |
C12—C11—C9—C8 | 3.9 (4) | C13—C14—C15—C16 | 178.0 (4) |
O3—C11—C9—C10 | 0.1 (6) | C15—C14—C19—C18 | 0.9 (6) |
C12—C11—C9—C10 | −176.9 (3) | C13—C14—C19—C18 | −179.8 (3) |
O1—C7—C6—C5 | 37.8 (5) | C6—C5—C4—C3 | 2.3 (6) |
N1—C7—C6—C5 | −145.5 (3) | C14—C19—C18—C17 | 1.5 (6) |
O1—C7—C6—C1 | −136.7 (4) | C14—C15—C16—C17 | 2.2 (6) |
N1—C7—C6—C1 | 39.9 (4) | C6—C1—C2—C3 | 1.1 (6) |
C10—C9—C8—O2 | 1.1 (6) | C15—C16—C17—C18 | 0.2 (6) |
C11—C9—C8—O2 | −179.7 (3) | C19—C18—C17—C16 | −2.1 (6) |
C10—C9—C8—N1 | −177.6 (3) | C1—C2—C3—C4 | −0.6 (6) |
C11—C9—C8—N1 | 1.7 (4) | C5—C4—C3—C2 | −1.1 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 0.82 | 2.10 | 2.769 (4) | 138 |
O2—H2···N2i | 0.82 | 2.52 | 3.074 (5) | 126 |
Symmetry code: (i) x−1/2, −y+3/2, −z+1. |
Acknowledgements
BPS thanks Cauvery Institute of Technology for basic research facilities.
Funding information
Funding for this research was provided under award No. F.18-1/2011 (BSR) UGC–BSR Faculty Fellowship to H. S. Yathirajan).
References
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2013). Acta Cryst. E69, o1158. CrossRef IUCr Journals Google Scholar
Guo, Z., Wei, X., Hua, Y., Chao, J. & Liu, D. (2015). Tetrahedron Lett. 56, 3919–3922. CrossRef CAS Google Scholar
Koshima, H. & Matsuura, T. (1998). J. Syn. Org. Chem. Jpn. 56, 466–477. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matsuura, T. & Koshima, H. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 7–24. Web of Science CrossRef CAS Google Scholar
Mokrov, C. V., Deeva, O. A., Gudasheva, T. A., Yarkov, S. A., Yarkova, M. A. & Seredenin, S. B. (2015). Bioorg. Med. Chem. 23, 3368–3378. CrossRef CAS Google Scholar
Narasegowda, R. S., Malathy Sony, S. M., Mondal, S., Nagaraj, B., Yathirajan, H. S., Narasimhamurthy, T., Charles, P., Ponnuswamy, M. N., Nethaji, M. & Rathore, R. S. (2005). Acta Cryst. E61, o843–o845. Web of Science CrossRef IUCr Journals Google Scholar
Polindara-García, L. A. & Miranda, L. D. (2012). Org. Lett. 14, 5408–5411. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, B., Ma, Q., Wang, Y., Zhao, Y., Liao, P. & Bi, X. (2014). Eur. J. Org. Chem. 2014, 7552–7555. CrossRef CAS Google Scholar
Tzankova, D., Vladimirova, S., Peikova, L. & Georgieva, M. (2018). J. Chem. Tech. Metallur. 53, 451–464. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yagi, S., Haraguchi, T. & Akitsu, T. (2018). Acta Cryst. E74, 1421–1423. CrossRef IUCr Journals Google Scholar
Yamazaki, S., Nishiyama, K., Yagi, S., Haraguchi, T. & Akitsu, T. (2018). Acta Cryst. E74, 1424–1426. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.