organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-1-Benzoyl-5-benzyl­­idene-2-hy­droxy-4-oxo-4,5-di­hydro-1H-pyrrole-3-carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, bDepartment of Chemistry, Cauvery Institute of Technology, Mandya-571402, India, cDepartment of Chemistry, PESIT University, Bangalore-560085, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India
*Correspondence e-mail: akitsu2@rs.tus.ac.jp

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 29 January 2019; accepted 11 February 2019; online 22 February 2019)

The title compound, C19H12N2O3, obtained as an inter­mediate in the synthesis of a pyrrole derivative, is composed of a five-membered heterocycle with substituted groups via double or triple bonds as well as single bonds, without an asymmetric carbon atom. An intra­molecular O—H⋯O link occurs. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrrole is widely known as a biologically active scaffold, which possesses a diverse nature of activities (Tzankova et al., 2018[Tzankova, D., Vladimirova, S., Peikova, L. & Georgieva, M. (2018). J. Chem. Tech. Metallur. 53, 451-464.]). Pyrrole derivatives are biologically active and attract attention for the synthesis of new medicinal products (Guo et al., 2015[Guo, Z., Wei, X., Hua, Y., Chao, J. & Liu, D. (2015). Tetrahedron Lett. 56, 3919-3922.]); Mokrov et al., 2015[Mokrov, C. V., Deeva, O. A., Gudasheva, T. A., Yarkov, S. A., Yarkova, M. A. & Seredenin, S. B. (2015). Bioorg. Med. Chem. 23, 3368-3378.]). Here we report the crystal structure of (Z)-1-benzoyl-5-benzyl­idene-2-hy­droxy-4-oxo-4,5-di­hydro-1H-pyrrole-3-carbo­nitrile, which crystallizes in a chiral space group despite there being no apparent chiral moiety in the mol­ecule (Koshima & Matsuura, 1998[Koshima, H. & Matsuura, T. (1998). J. Syn. Org. Chem. Jpn. 56, 466-477.]; Matsuura & Koshima, 2005[Matsuura, T. & Koshima, H. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 7-24.]).

The mol­ecular structure of the title compound (Fig. 1[link]) is composed of a planar [maximum deviation of 0.051 (3) Å for atom C12] five-membered (N1/C8/C9/C11/C12) pyrrole ring in the usual geometry (Gainsford et al., 2013[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2013). Acta Cryst. E69, o1158.]) and two phenyl rings (C1–C6 and C14–19) arranged approximately parallel to each other [dihedral angle = 15.2 (2)°; torsion angles N1—C12—C13—C14 = 2.9 (6) and C12—N1—C7—C6 = 23.0 (5)°]. Pyrroles can incorporate various types of substituent groups (Sun et al., 2014[Sun, B., Ma, Q., Wang, Y., Zhao, Y., Liao, P. & Bi, X. (2014). Eur. J. Org. Chem. 2014, 7552-7555.]; Polindara-García & Miranda, 2012[Polindara-García, L. A. & Miranda, L. D. (2012). Org. Lett. 14, 5408-5411.]) and in this compound all five atoms in the pyrrole ring are substituted. An intra­molecular hydrogen bond (O2—H2⋯O1; Table 1[link]) is observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 2.10 2.769 (4) 138
O2—H2⋯N2i 0.82 2.52 3.074 (5) 126
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
The title compound with 50% probability ellipsoids for non-hydrogen atoms.

In the crystal, O2—H2⋯N2i hydrogen bonds (Fig. 2[link] and Table 1[link]) link the mol­ecules. In addition, the almost planar moieties of the mol­ecules, namely the phenyl and pyrrole rings, afford a helical step-like conformation with neighboring mol­ecules aligned along the b-axis direction (Fig. 3[link]).

[Figure 2]
Figure 2
Arrangement of molecules along the b-axis direction.
[Figure 3]
Figure 3
Hydrogen bonds (dashed lines) in the title structure.

A similar compound 4-methyl-5-(4-nitro­benzyl­idene)-2-oxo-2,5-di­hydro-1H-pyrrole-3-carbo­nitrile (Gainsford et al., 2013[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2013). Acta Cryst. E69, o1158.]) has already been reported and has a similar structure to the title compound. Narasegowda et al. (2005[Narasegowda, R. S., Malathy Sony, S. M., Mondal, S., Nagaraj, B., Yathirajan, H. S., Narasimhamurthy, T., Charles, P., Ponnuswamy, M. N., Nethaji, M. & Rathore, R. S. (2005). Acta Cryst. E61, o843-o845.]) reported a case of chiral crystallization in space group P212121, the same space group as the title compound. In contrast, our recent examples of chiral crystals composed of achiral molecules both crystallize in space group P21 (Yagi et al., 2018[Yagi, S., Haraguchi, T. & Akitsu, T. (2018). Acta Cryst. E74, 1421-1423.]; Yamazaki et al., 2018[Yamazaki, S., Nishiyama, K., Yagi, S., Haraguchi, T. & Akitsu, T. (2018). Acta Cryst. E74, 1424-1426.]). To the best of our knowledge, this is the first crystal structure reported for chiral crystallization of a pyrrole of this type.

Synthesis and crystallization

The title compound was obtained as an inter­mediate in the synthesis of pyrrole derivatives, namely treatment of 1-acetyl-2-amino-4-oxo-4,5-di­hydro-1H-pyrrole-3-carbo­nitrile, benzaldehyde and benzoyl chloride. X-ray quality crystals were obtained from slow evaporation of a methanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Since it is very difficult to determine the absolute structure reliably with Mo radiation, the choice of the absolute structure is arbitrary.

Table 2
Experimental details

Crystal data
Chemical formula C19H12N2O3
Mr 316.31
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 10.432 (2), 11.297 (2), 12.688 (2)
V3) 1495.3 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.58 × 0.27 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.55, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 8161, 3341, 3139
Rint 0.085
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.173, 1.08
No. of reflections 3341
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.46
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

(Z)-1-benzoyl-5-benzylidene-2-hydroxy-4-oxo-4,5-dihydro-1H-pyrrole-3-carbonitrile top
Crystal data top
C19H12N2O3Dx = 1.405 Mg m3
Mr = 316.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5372 reflections
a = 10.432 (2) Åθ = 2.4–27.5°
b = 11.297 (2) ŵ = 0.10 mm1
c = 12.688 (2) ÅT = 296 K
V = 1495.3 (5) Å3Prism, yellow
Z = 40.58 × 0.27 × 0.17 mm
F(000) = 656
Data collection top
Bruker APEXII CCD
diffractometer
3341 independent reflections
Radiation source: fine-focus sealed tube3139 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.085
φ and ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 138
Tmin = 0.55, Tmax = 0.97k = 1413
8161 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0946P)2 + 0.6486P]
where P = (Fo2 + 2Fc2)/3
3341 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were located on difference Fourier maps. The C-bound H atoms were constrained using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl H atom] The N-bound H atoms were constrained using a riding model [O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O) for amine H atoms]

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3806 (2)0.7264 (2)0.58946 (17)0.0230 (5)
O30.7778 (2)0.5105 (3)0.84556 (18)0.0268 (6)
O20.6352 (3)0.7026 (3)0.5317 (2)0.0357 (7)
H20.56010.71330.51510.054*
N10.5311 (3)0.6322 (3)0.6886 (2)0.0179 (6)
N20.9763 (3)0.6243 (3)0.6021 (2)0.0299 (7)
C70.4168 (3)0.6986 (3)0.6766 (2)0.0177 (7)
C110.7122 (3)0.5563 (3)0.7764 (2)0.0191 (7)
C120.5681 (3)0.5634 (3)0.7786 (2)0.0176 (6)
C90.7491 (3)0.6073 (3)0.6772 (3)0.0194 (7)
C60.3488 (3)0.7375 (3)0.7744 (2)0.0184 (6)
C80.6403 (3)0.6502 (3)0.6251 (2)0.0173 (6)
C140.3553 (3)0.4793 (3)0.8357 (3)0.0209 (7)
C130.4949 (3)0.5000 (3)0.8427 (2)0.0192 (7)
H130.53660.46410.89910.023*
C100.8740 (3)0.6158 (3)0.6366 (2)0.0208 (7)
C10.4160 (4)0.7778 (3)0.8625 (3)0.0223 (7)
H10.50510.77480.86390.027*
C50.2156 (3)0.7417 (3)0.7713 (3)0.0238 (7)
H50.17150.71680.71160.029*
C150.2784 (4)0.4872 (4)0.9260 (3)0.0263 (8)
H150.31520.50320.99120.032*
C190.2982 (4)0.4502 (3)0.7397 (3)0.0251 (7)
H190.34860.44360.67960.03*
C40.1494 (4)0.7839 (4)0.8589 (3)0.0305 (9)
H40.06020.78450.85870.037*
C180.1670 (4)0.4310 (4)0.7329 (3)0.0320 (9)
H180.13040.40990.66880.038*
C160.1462 (4)0.4711 (4)0.9175 (3)0.0321 (9)
H160.09520.47910.97710.039*
C20.3483 (4)0.8226 (4)0.9484 (3)0.0317 (9)
H2A0.39230.85091.00690.038*
C170.0900 (4)0.4435 (4)0.8225 (3)0.0340 (9)
H170.00170.43330.81790.041*
C30.2154 (5)0.8251 (4)0.9467 (3)0.0351 (9)
H30.17040.85431.00430.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0245 (12)0.0301 (13)0.0143 (11)0.0031 (11)0.0006 (9)0.0009 (10)
O30.0228 (12)0.0379 (15)0.0197 (11)0.0048 (12)0.0034 (9)0.0032 (11)
O20.0334 (15)0.0454 (18)0.0284 (14)0.0018 (15)0.0022 (12)0.0046 (13)
N10.0189 (14)0.0198 (13)0.0150 (13)0.0002 (12)0.0016 (9)0.0027 (11)
N20.0217 (15)0.0419 (19)0.0261 (15)0.0021 (15)0.0026 (12)0.0079 (15)
C70.0208 (16)0.0175 (14)0.0147 (14)0.0004 (13)0.0002 (11)0.0002 (12)
C110.0195 (15)0.0215 (15)0.0162 (15)0.0009 (13)0.0010 (12)0.0024 (12)
C120.0190 (15)0.0194 (15)0.0144 (14)0.0037 (13)0.0016 (11)0.0011 (12)
C90.0185 (16)0.0221 (16)0.0178 (15)0.0008 (13)0.0001 (11)0.0026 (13)
C60.0230 (15)0.0156 (14)0.0165 (15)0.0017 (13)0.0023 (11)0.0021 (11)
C80.0194 (15)0.0188 (14)0.0138 (14)0.0011 (12)0.0019 (12)0.0025 (11)
C140.0234 (17)0.0173 (15)0.0219 (15)0.0004 (13)0.0014 (12)0.0063 (12)
C130.0223 (16)0.0206 (16)0.0148 (14)0.0025 (13)0.0001 (11)0.0034 (13)
C100.0219 (16)0.0245 (17)0.0161 (14)0.0010 (14)0.0006 (12)0.0013 (12)
C10.0279 (18)0.0195 (15)0.0195 (16)0.0005 (14)0.0005 (12)0.0021 (13)
C50.0249 (17)0.0248 (16)0.0215 (17)0.0068 (15)0.0017 (12)0.0051 (13)
C150.0261 (18)0.0316 (19)0.0211 (16)0.0025 (16)0.0030 (13)0.0091 (14)
C190.0297 (18)0.0216 (16)0.0240 (17)0.0021 (15)0.0028 (13)0.0036 (14)
C40.0267 (18)0.036 (2)0.0292 (18)0.0116 (16)0.0082 (14)0.0073 (16)
C180.0297 (19)0.0320 (19)0.034 (2)0.0049 (17)0.0045 (15)0.0045 (16)
C160.0242 (19)0.037 (2)0.035 (2)0.0035 (17)0.0097 (14)0.0155 (17)
C20.047 (2)0.0283 (18)0.0201 (17)0.0029 (19)0.0030 (16)0.0051 (14)
C170.0204 (18)0.032 (2)0.050 (2)0.0048 (17)0.0012 (15)0.0140 (19)
C30.046 (2)0.034 (2)0.0249 (18)0.012 (2)0.0153 (16)0.0001 (16)
Geometric parameters (Å, º) top
O1—C71.211 (4)C13—H130.93
O3—C111.228 (4)C1—C21.394 (5)
O2—C81.326 (4)C1—H10.93
O2—H20.82C5—C41.393 (5)
N1—C81.410 (4)C5—H50.93
N1—C71.416 (4)C15—C161.395 (6)
N1—C121.434 (4)C15—H150.93
N2—C101.157 (5)C19—C181.388 (6)
C7—C61.495 (4)C19—H190.93
C11—C91.436 (4)C4—C31.390 (6)
C11—C121.506 (4)C4—H40.93
C12—C131.326 (5)C18—C171.400 (6)
C9—C81.401 (5)C18—H180.93
C9—C101.405 (5)C16—C171.376 (6)
C6—C51.391 (5)C16—H160.93
C6—C11.396 (5)C2—C31.387 (6)
C14—C191.395 (5)C2—H2A0.93
C14—C151.401 (5)C17—H170.93
C14—C131.478 (5)C3—H30.93
C8—O2—H2109.5C2—C1—H1120.3
C8—N1—C7122.9 (3)C6—C1—H1120.3
C8—N1—C12108.4 (3)C6—C5—C4119.0 (3)
C7—N1—C12126.8 (3)C6—C5—H5120.5
O1—C7—N1119.9 (3)C4—C5—H5120.5
O1—C7—C6122.2 (3)C16—C15—C14119.6 (4)
N1—C7—C6117.8 (3)C16—C15—H15120.2
O3—C11—C9130.2 (3)C14—C15—H15120.2
O3—C11—C12124.5 (3)C18—C19—C14120.8 (3)
C9—C11—C12105.2 (3)C18—C19—H19119.6
C13—C12—N1128.8 (3)C14—C19—H19119.6
C13—C12—C11123.9 (3)C3—C4—C5120.6 (4)
N1—C12—C11106.4 (3)C3—C4—H4119.7
C8—C9—C10123.7 (3)C5—C4—H4119.7
C8—C9—C11109.6 (3)C19—C18—C17120.0 (4)
C10—C9—C11126.7 (3)C19—C18—H18120.0
C5—C6—C1120.9 (3)C17—C18—H18120.0
C5—C6—C7117.4 (3)C17—C16—C15121.3 (4)
C1—C6—C7121.5 (3)C17—C16—H16119.4
O2—C8—C9127.5 (3)C15—C16—H16119.4
O2—C8—N1122.9 (3)C3—C2—C1120.1 (4)
C9—C8—N1109.6 (3)C3—C2—H2A119.9
C19—C14—C15119.0 (3)C1—C2—H2A119.9
C19—C14—C13120.7 (3)C16—C17—C18119.3 (3)
C15—C14—C13120.3 (3)C16—C17—H17120.4
C12—C13—C14128.0 (3)C18—C17—H17120.4
C12—C13—H13116.0C2—C3—C4120.1 (4)
C14—C13—H13116.0C2—C3—H3120.0
N2—C10—C9178.9 (4)C4—C3—H3120.0
C2—C1—C6119.4 (3)
C8—N1—C7—O137.5 (5)C7—N1—C8—O220.6 (5)
C12—N1—C7—O1160.3 (3)C12—N1—C8—O2174.4 (3)
C8—N1—C7—C6139.2 (3)C7—N1—C8—C9158.1 (3)
C12—N1—C7—C623.0 (5)C12—N1—C8—C96.9 (4)
C8—N1—C12—C13160.3 (3)N1—C12—C13—C142.9 (6)
C7—N1—C12—C1335.5 (5)C11—C12—C13—C14164.8 (3)
C8—N1—C12—C119.1 (3)C19—C14—C13—C1245.2 (6)
C7—N1—C12—C11155.2 (3)C15—C14—C13—C12135.6 (4)
O3—C11—C12—C1315.1 (5)C5—C6—C1—C20.2 (5)
C9—C11—C12—C13162.1 (3)C7—C6—C1—C2174.5 (3)
O3—C11—C12—N1174.9 (3)C1—C6—C5—C41.8 (5)
C9—C11—C12—N17.9 (3)C7—C6—C5—C4176.4 (3)
O3—C11—C9—C8179.2 (3)C19—C14—C15—C162.7 (5)
C12—C11—C9—C83.9 (4)C13—C14—C15—C16178.0 (4)
O3—C11—C9—C100.1 (6)C15—C14—C19—C180.9 (6)
C12—C11—C9—C10176.9 (3)C13—C14—C19—C18179.8 (3)
O1—C7—C6—C537.8 (5)C6—C5—C4—C32.3 (6)
N1—C7—C6—C5145.5 (3)C14—C19—C18—C171.5 (6)
O1—C7—C6—C1136.7 (4)C14—C15—C16—C172.2 (6)
N1—C7—C6—C139.9 (4)C6—C1—C2—C31.1 (6)
C10—C9—C8—O21.1 (6)C15—C16—C17—C180.2 (6)
C11—C9—C8—O2179.7 (3)C19—C18—C17—C162.1 (6)
C10—C9—C8—N1177.6 (3)C1—C2—C3—C40.6 (6)
C11—C9—C8—N11.7 (4)C5—C4—C3—C21.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.822.102.769 (4)138
O2—H2···N2i0.822.523.074 (5)126
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Acknowledgements

BPS thanks Cauvery Institute of Technology for basic research facilities.

Funding information

Funding for this research was provided under award No. F.18-1/2011 (BSR) UGC–BSR Faculty Fellowship to H. S. Yathirajan).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2013). Acta Cryst. E69, o1158.  CrossRef IUCr Journals Google Scholar
First citationGuo, Z., Wei, X., Hua, Y., Chao, J. & Liu, D. (2015). Tetrahedron Lett. 56, 3919–3922.  CrossRef CAS Google Scholar
First citationKoshima, H. & Matsuura, T. (1998). J. Syn. Org. Chem. Jpn. 56, 466–477.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatsuura, T. & Koshima, H. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 7–24.  Web of Science CrossRef CAS Google Scholar
First citationMokrov, C. V., Deeva, O. A., Gudasheva, T. A., Yarkov, S. A., Yarkova, M. A. & Seredenin, S. B. (2015). Bioorg. Med. Chem. 23, 3368–3378.  CrossRef CAS Google Scholar
First citationNarasegowda, R. S., Malathy Sony, S. M., Mondal, S., Nagaraj, B., Yathirajan, H. S., Narasimhamurthy, T., Charles, P., Ponnuswamy, M. N., Nethaji, M. & Rathore, R. S. (2005). Acta Cryst. E61, o843–o845.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPolindara-García, L. A. & Miranda, L. D. (2012). Org. Lett. 14, 5408–5411.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, B., Ma, Q., Wang, Y., Zhao, Y., Liao, P. & Bi, X. (2014). Eur. J. Org. Chem. 2014, 7552–7555.  CrossRef CAS Google Scholar
First citationTzankova, D., Vladimirova, S., Peikova, L. & Georgieva, M. (2018). J. Chem. Tech. Metallur. 53, 451–464.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYagi, S., Haraguchi, T. & Akitsu, T. (2018). Acta Cryst. E74, 1421–1423.  CrossRef IUCr Journals Google Scholar
First citationYamazaki, S., Nishiyama, K., Yagi, S., Haraguchi, T. & Akitsu, T. (2018). Acta Cryst. E74, 1424–1426.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds