metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­aqua­bis­­[4-(di­methyl­amino)pyridine-κN1]bis­­[2-(1,3-dioxo-2,3-di­hydro-1H-isoindol-2-yl)acetato-κO1]cobalt(II)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Physicochimie Analytique et Cristallochimie de Matériaux, Organométalliques et Biomoléculaires, Université des Frères Mentouri Constantine 1, 25000 Constantine, Algeria, bEcole Normale Supérieure de Constantine Assia Djebar, Ville Universitaire Ali Mendjeli, Constantine, Algeria, and cInstitut Jean Lamour, Campus Artem, 2 allée André Guinier, BP 50840, 54011, Nancy Cedex, France
*Correspondence e-mail: bouzidi_henia@yahoo.fr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 7 January 2019; accepted 25 January 2019; online 31 January 2019)

In the mononuclear title complex, [Co(C10H6NO4)2(C7H10N2)2(H2O)2], the CoII ion is located on an inversion centre and has a distorted octa­hedral coordination geometry of type CoN2O4 by two N atoms from the two 4-(di­methyl­amino)­pyridine (DMAP) ligands, two carboxyl­ate O atoms from the two deprotonated N-phthaloylglycine (Nphgly) ligands [systematic name: 2-(1,3-dioxo-2,3-di­hydro-1H-isoindol-2-yl)acetate] and two coordination water mol­ecules. In the crystal, O—H⋯O, C—H⋯O hydrogen bonds and ππ stacking inter­actions link the mol­ecules into the supra­molecular structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Paramagnetic materials and extended structures based on transition metals have found wide applications in mol­ecular magnetism (Pavlishchuk et al., 2010[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851-4858.], 2011[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826-4836.]; Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]). The Lewis base 4-di­methyl­amino­pyridine (DMAP), a derivative of pyridine, finds use as a homogeneous catalyst in cellulose acyl­ation for the synthesis of biodegradable plastics (Satgé et al., 2004[Satgé, C., Granet, R., Verneuil, B., Branland, P. & Krausz, P. (2004). C. R. Chim. 7, 135-142.]). DMAP is also known to form transition-metal complexes which exhibit luminescence properties (Araki et al., 2005[Araki, H., Tsuge, K., Sasaki, Y., Ishizaka, S. & Kitamura, N. (2005). Inorg. Chem. 44, 9667-9675.]; Liu et al., 2015[Liu, X., Akerboom, S., de Jong, M., Mutikainen, I., Tanase, S., Meijerink, A. & Bouwman, E. (2015). Inorg. Chem. 54, 11323-11329.]). The possibility of combining the DMAP ligand with a wide variety of co-ligands leads to an extensive variety of coordination modes. We report here the synthesis and crystal structure of a cobalt(II) complex with 4-(di­methyl­amino)­pyridine and N-phthaloylglycine.

In the title complex, the cobalt(II) ion is located on an inversion center. The complex comprises two deprotonated N-phthaloylglycine ligands in a monodentate coordination mode and two 4-(di­methyl­amino)­pyridine ligands. The slightly distorted coordination sphere CoN2O4 coordination sphere is completed by two aqua ligands (Fig. 1[link]). The four oxygen atoms occupy the equatorial plane of the complex in a trans configuration and the DMAP ligands are coordinated through their N atoms in the axial positions. The Co—N bond length of 2.1293 (16) Å is in agreement with those retrieved from literature (Guenifa et al., 2013[Guenifa, F., Zeghouan, O., Hadjadj, N., Bendjeddou, L. & Merazig, H. (2013). Acta Cryst. E69, m175.]). The DMAP ligands are planar. The Co—O bond length of the Nphgly ligand is 2.0984 (13) Å and is shorter than that of the terminal aqua ligand of 2.1533 (14) Å. This is expected and is in agreement with bond lengths reported in the related structure of [Co(C5HF6O2)2(H2O)2]·2H2O (Tominaga & Mochida, 2017[Tominaga, T. & Mochida, T. (2017). IUCrData, 2, x170002.]). The dihedral angles formed between the mean planes through the four O atoms and the DMAP ring is 89.79 (1)°. Intra­molecular O—H⋯O hydrogen bonding is observed between the carboxyl­ate oxygen atoms and the coordinating water mol­ecules, generating an S(6) ring motif.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement spheres drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.

The complex cations are connected via C—H⋯O and O—H⋯O hydrogen bonds into infinite chains parallel to [100] (Fig. 2[link], Table 1[link]). The O—H⋯O hydrogen bonds generate R22(18) motifs (Fig. 2[link]). There are face-to-face ππ inter­actions between the benzene ring of the Nphgly ligand and the pyridine ring [Cg3⋯Cg2(−1 + x, y, z) = 3.735 (7) Å; Cg2 and Cg3 are the centroids of the NA1/CA11–CA15 and C4A–CA9 rings, respectively] (Fig. 3[link]). This combination of hydrogen bonds and stacking inter­actions builds a three-dimensional network structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O2A 0.86 (1) 1.83 (1) 2.648 (2) 158 (2)
O1W—H21W⋯O3Ai 0.85 (1) 2.02 (1) 2.853 (2) 168 (2)
C14A—H14A⋯O2Aii 0.93 2.40 3.160 (3) 139
Symmetry codes: (i) -x, -y+2, -z+2; (ii) x+1, y, z.
[Figure 2]
Figure 2
Partial view of the crystal structure of the title compound showing the formation of R22(18) rings. The C—H⋯O and O—H⋯O hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
ππ inter­actions (dashed lines) between the 4-(di­methyl­amino)­pyridine and benzene rings of N-phthaloylglycine in the title compound [symmetry codes: (i) = −1 + x, y, z; (ii) = 1 + x, y, z].

Synthesis and crystallization

CoCl2·6H2O (0.237 g, 1 mmol) was dissolved in an ethanol solution (20 ml). 4-(Di­methyl­amino)-pyridine (0.122 g, 1 mmol) was added to this solution and the mixture was stirred for 15 min to obtain a blue solution. Then N-phthaloylglycine (0.205 g, 1 mmol) was added and the mixture was stirred for additional 20 min. Single crystals suitable for X-ray diffraction were obtained from a methanol solution of the title complex by slow evaporation.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Co(C10H6NO4)2(C7H10N2)2(H2O)2]
Mr 747.62
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.6830 (9), 10.2560 (11), 11.2980 (12)
α, β, γ (°) 83.547 (3), 72.194 (3), 68.901 (3)
V3) 893.70 (17)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.54
Crystal size (mm) 0.10 × 0.09 × 0.08
 
Data collection
Diffractometer Bruker APEXII QUAZAR CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.950, 0.970
No. of measured, independent and observed [I > 2σ(I)] reflections 22559, 4629, 3658
Rint 0.060
(sin θ/λ)max−1) 0.677
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.05
No. of reflections 4629
No. of parameters 238
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and POVRay (Persistence of Vision Team, 2004[Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: https://www.povray.org/.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008) and POVRay (Persistence of Vision Team, 2004).

\ Diaquabis[4-(dimethylamino)pyridine-κN1]bis[2-(1,3-dioxo-2,3-\ dihydro-1H-isoindol-2-yl)acetato-κO1]cobalt(II) top
Crystal data top
[Co(C10H6NO4)2(C7H10N2)2(H2O)2]Z = 1
Mr = 747.62F(000) = 389
Triclinic, P1Dx = 1.389 Mg m3
a = 8.6830 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2560 (11) ÅCell parameters from 2690 reflections
c = 11.2980 (12) Åθ = 1.9–28.8°
α = 83.547 (3)°µ = 0.54 mm1
β = 72.194 (3)°T = 293 K
γ = 68.901 (3)°Prism, blue
V = 893.70 (17) Å30.1 × 0.09 × 0.08 mm
Data collection top
Bruker APEXII QUAZAR CCD
diffractometer
3658 reflections with I > 2σ(I)
Radiation source: ImuSRint = 0.060
f\ and ω scansθmax = 28.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.950, Tmax = 0.970k = 1313
22559 measured reflectionsl = 1515
4629 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.3707P]
where P = (Fo2 + 2Fc2)/3
4629 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.32 e Å3
3 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50001.00001.00000.03061 (12)
O1A0.45480 (17)0.99688 (14)0.82838 (12)0.0374 (3)
O1W0.24026 (17)1.13925 (15)1.07614 (13)0.0390 (3)
H11W0.195 (3)1.152 (3)1.0160 (14)0.059*
H21W0.176 (3)1.113 (3)1.1393 (13)0.059*
N1A0.5758 (2)1.17785 (17)0.93996 (15)0.0369 (4)
N3A0.1690 (2)1.0721 (2)0.63725 (15)0.0414 (4)
O2A0.1816 (2)1.1375 (2)0.85983 (15)0.0614 (5)
C3A0.0278 (3)1.0292 (2)0.66807 (18)0.0392 (4)
O3A0.0192 (2)0.92469 (18)0.72650 (16)0.0568 (4)
C4A0.1014 (2)1.1350 (2)0.61425 (18)0.0382 (4)
C9A0.0343 (3)1.2380 (2)0.55858 (19)0.0413 (5)
O4A0.2396 (2)1.2623 (2)0.54431 (19)0.0698 (5)
C15A0.7243 (3)1.1837 (2)0.9467 (2)0.0398 (4)
H15A0.79441.10680.98030.048*
C1A0.3167 (2)1.0511 (2)0.79943 (17)0.0360 (4)
C10A0.1395 (3)1.2001 (2)0.57571 (19)0.0445 (5)
C13A0.6808 (3)1.4125 (2)0.85706 (19)0.0446 (5)
C5A0.2617 (3)1.1408 (3)0.6127 (2)0.0505 (6)
H5A0.30761.07250.65100.061*
C2A0.3226 (3)1.0008 (3)0.6763 (2)0.0486 (5)
H2A10.42071.01300.61260.058*
H2A20.34060.90160.68280.058*
C11A0.4790 (3)1.2922 (2)0.8915 (2)0.0422 (5)
H11A0.37461.29260.88520.051*
C6A0.3516 (3)1.2532 (3)0.5512 (3)0.0628 (7)
H6A0.45981.26000.54760.075*
C14A0.7810 (3)1.2935 (2)0.9083 (2)0.0462 (5)
H14A0.88621.28950.91610.055*
N2A0.7346 (3)1.5225 (2)0.8160 (2)0.0621 (6)
C12A0.5239 (3)1.4080 (2)0.8508 (2)0.0473 (5)
H12A0.45011.48390.81890.057*
C8A0.1236 (3)1.3495 (3)0.4985 (2)0.0576 (6)
H8A0.07841.41870.46140.069*
C7A0.2841 (3)1.3549 (3)0.4955 (3)0.0665 (7)
H7A0.34761.42880.45490.080*
C17A0.8965 (4)1.5217 (3)0.8262 (3)0.0851 (10)
H17A0.91441.60700.79230.128*
H17B0.98851.44370.78090.128*
H17C0.89441.51380.91210.128*
C16A0.6279 (5)1.6452 (3)0.7642 (3)0.0781 (9)
H16A0.68561.71220.73970.117*
H16B0.51981.68580.82570.117*
H16C0.60761.61860.69310.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03132 (19)0.03084 (19)0.02919 (19)0.00865 (14)0.01154 (14)0.00303 (13)
O1A0.0352 (7)0.0442 (8)0.0327 (7)0.0094 (6)0.0153 (6)0.0023 (6)
O1W0.0374 (7)0.0412 (8)0.0356 (7)0.0113 (6)0.0099 (6)0.0015 (6)
N1A0.0391 (9)0.0342 (8)0.0355 (9)0.0106 (7)0.0113 (7)0.0027 (7)
N3A0.0377 (9)0.0592 (11)0.0321 (9)0.0177 (8)0.0166 (7)0.0031 (8)
O2A0.0413 (9)0.0829 (12)0.0446 (9)0.0075 (8)0.0197 (7)0.0162 (8)
C3A0.0415 (10)0.0486 (11)0.0269 (9)0.0165 (9)0.0067 (8)0.0030 (8)
O3A0.0597 (10)0.0536 (10)0.0508 (10)0.0212 (8)0.0081 (8)0.0090 (8)
C4A0.0353 (10)0.0508 (12)0.0287 (9)0.0143 (9)0.0077 (8)0.0069 (8)
C9A0.0408 (11)0.0518 (12)0.0333 (10)0.0160 (9)0.0137 (8)0.0004 (9)
O4A0.0642 (11)0.0924 (14)0.0743 (13)0.0521 (11)0.0290 (10)0.0267 (11)
C15A0.0382 (10)0.0334 (10)0.0438 (11)0.0092 (8)0.0105 (9)0.0008 (8)
C1A0.0334 (9)0.0418 (10)0.0308 (10)0.0093 (8)0.0117 (8)0.0026 (8)
C10A0.0456 (12)0.0620 (14)0.0334 (10)0.0264 (10)0.0149 (9)0.0069 (9)
C13A0.0542 (13)0.0338 (10)0.0352 (11)0.0148 (9)0.0036 (9)0.0065 (8)
C5A0.0376 (11)0.0687 (15)0.0472 (13)0.0214 (10)0.0056 (9)0.0155 (11)
C2A0.0405 (11)0.0639 (14)0.0393 (11)0.0081 (10)0.0187 (9)0.0050 (10)
C11A0.0429 (11)0.0392 (10)0.0413 (11)0.0100 (9)0.0138 (9)0.0039 (8)
C6A0.0345 (12)0.090 (2)0.0603 (16)0.0078 (12)0.0171 (11)0.0200 (14)
C14A0.0395 (11)0.0405 (11)0.0548 (13)0.0141 (9)0.0059 (10)0.0063 (9)
N2A0.0835 (16)0.0378 (10)0.0592 (13)0.0285 (10)0.0027 (11)0.0004 (9)
C12A0.0577 (13)0.0324 (10)0.0412 (12)0.0062 (9)0.0120 (10)0.0037 (8)
C8A0.0572 (14)0.0620 (15)0.0525 (14)0.0174 (12)0.0219 (12)0.0113 (11)
C7A0.0504 (14)0.0755 (18)0.0601 (16)0.0012 (13)0.0250 (12)0.0009 (14)
C17A0.086 (2)0.0629 (18)0.104 (3)0.0485 (17)0.0064 (19)0.0085 (17)
C16A0.120 (3)0.0393 (13)0.0609 (17)0.0300 (15)0.0058 (17)0.0068 (12)
Geometric parameters (Å, º) top
Co1—O1A2.0984 (13)C13A—N2A1.354 (3)
Co1—O1Ai2.0984 (13)C13A—C14A1.402 (3)
Co1—N1A2.1293 (16)C13A—C12A1.404 (3)
Co1—N1Ai2.1293 (16)C5A—C6A1.387 (4)
Co1—O1Wi2.1533 (14)C5A—H5A0.9300
Co1—O1W2.1533 (14)C2A—H2A10.9700
O1A—C1A1.254 (2)C2A—H2A20.9700
O1W—H11W0.859 (9)C11A—C12A1.369 (3)
O1W—H21W0.848 (9)C11A—H11A0.9300
N1A—C15A1.337 (3)C6A—C7A1.376 (4)
N1A—C11A1.345 (2)C6A—H6A0.9300
N3A—C3A1.383 (3)C14A—H14A0.9300
N3A—C10A1.391 (3)N2A—C17A1.442 (4)
N3A—C2A1.447 (3)N2A—C16A1.452 (4)
O2A—C1A1.235 (2)C12A—H12A0.9300
C3A—O3A1.208 (3)C8A—C7A1.385 (4)
C3A—C4A1.482 (3)C8A—H8A0.9300
C4A—C5A1.377 (3)C7A—H7A0.9300
C4A—C9A1.386 (3)C17A—H17A0.9600
C9A—C8A1.371 (3)C17A—H17B0.9600
C9A—C10A1.485 (3)C17A—H17C0.9600
O4A—C10A1.203 (3)C16A—H16A0.9600
C15A—C14A1.363 (3)C16A—H16B0.9600
C15A—H15A0.9300C16A—H16C0.9600
C1A—C2A1.518 (3)
O1A—Co1—O1Ai180.0N2A—C13A—C12A123.2 (2)
O1A—Co1—N1A89.62 (6)C14A—C13A—C12A115.20 (19)
O1Ai—Co1—N1A90.38 (6)C4A—C5A—C6A117.0 (2)
O1A—Co1—N1Ai90.38 (6)C4A—C5A—H5A121.5
O1Ai—Co1—N1Ai89.62 (6)C6A—C5A—H5A121.5
N1A—Co1—N1Ai180.0N3A—C2A—C1A114.20 (18)
O1A—Co1—O1Wi88.93 (5)N3A—C2A—H2A1108.7
O1Ai—Co1—O1Wi91.07 (5)C1A—C2A—H2A1108.7
N1A—Co1—O1Wi91.28 (6)N3A—C2A—H2A2108.7
N1Ai—Co1—O1Wi88.72 (6)C1A—C2A—H2A2108.7
O1A—Co1—O1W91.07 (5)H2A1—C2A—H2A2107.6
O1Ai—Co1—O1W88.93 (5)N1A—C11A—C12A124.4 (2)
N1A—Co1—O1W88.72 (6)N1A—C11A—H11A117.8
N1Ai—Co1—O1W91.28 (6)C12A—C11A—H11A117.8
O1Wi—Co1—O1W180.0C7A—C6A—C5A121.4 (2)
C1A—O1A—Co1128.90 (13)C7A—C6A—H6A119.3
Co1—O1W—H11W104.0 (17)C5A—C6A—H6A119.3
Co1—O1W—H21W118.6 (17)C15A—C14A—C13A120.1 (2)
H11W—O1W—H21W108.2 (14)C15A—C14A—H14A120.0
C15A—N1A—C11A114.92 (18)C13A—C14A—H14A120.0
C15A—N1A—Co1122.42 (13)C13A—N2A—C17A120.6 (2)
C11A—N1A—Co1122.66 (14)C13A—N2A—C16A120.6 (3)
C3A—N3A—C10A112.13 (17)C17A—N2A—C16A118.8 (2)
C3A—N3A—C2A124.14 (19)C11A—C12A—C13A120.2 (2)
C10A—N3A—C2A123.40 (19)C11A—C12A—H12A119.9
O3A—C3A—N3A124.6 (2)C13A—C12A—H12A119.9
O3A—C3A—C4A129.3 (2)C9A—C8A—C7A117.1 (3)
N3A—C3A—C4A106.07 (17)C9A—C8A—H8A121.5
C5A—C4A—C9A121.4 (2)C7A—C8A—H8A121.5
C5A—C4A—C3A130.6 (2)C6A—C7A—C8A121.5 (2)
C9A—C4A—C3A107.97 (17)C6A—C7A—H7A119.2
C8A—C9A—C4A121.6 (2)C8A—C7A—H7A119.2
C8A—C9A—C10A130.4 (2)N2A—C17A—H17A109.5
C4A—C9A—C10A107.96 (18)N2A—C17A—H17B109.5
N1A—C15A—C14A125.17 (19)H17A—C17A—H17B109.5
N1A—C15A—H15A117.4N2A—C17A—H17C109.5
C14A—C15A—H15A117.4H17A—C17A—H17C109.5
O2A—C1A—O1A127.18 (18)H17B—C17A—H17C109.5
O2A—C1A—C2A118.74 (17)N2A—C16A—H16A109.5
O1A—C1A—C2A114.08 (17)N2A—C16A—H16B109.5
O4A—C10A—N3A124.7 (2)H16A—C16A—H16B109.5
O4A—C10A—C9A129.6 (2)N2A—C16A—H16C109.5
N3A—C10A—C9A105.73 (17)H16A—C16A—H16C109.5
N2A—C13A—C14A121.6 (2)H16B—C16A—H16C109.5
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O2A0.86 (1)1.83 (1)2.648 (2)158 (2)
O1W—H21W···O3Aii0.85 (1)2.02 (1)2.853 (2)168 (2)
C14A—H14A···O2Aiii0.932.403.160 (3)139
Symmetry codes: (ii) x, y+2, z+2; (iii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development for support of this work and thank Professor Hebbachi Rabihe (Constantine 1 University) for providing the initial ligands.

References

First citationAraki, H., Tsuge, K., Sasaki, Y., Ishizaka, S. & Kitamura, N. (2005). Inorg. Chem. 44, 9667–9675.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuenifa, F., Zeghouan, O., Hadjadj, N., Bendjeddou, L. & Merazig, H. (2013). Acta Cryst. E69, m175.  CrossRef IUCr Journals Google Scholar
First citationLiu, X., Akerboom, S., de Jong, M., Mutikainen, I., Tanase, S., Meijerink, A. & Bouwman, E. (2015). Inorg. Chem. 54, 11323–11329.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.  Web of Science CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.  Web of Science CrossRef Google Scholar
First citationPersistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: https://www.povray.org/Google Scholar
First citationSatgé, C., Granet, R., Verneuil, B., Branland, P. & Krausz, P. (2004). C. R. Chim. 7, 135–142.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTominaga, T. & Mochida, T. (2017). IUCrData, 2, x170002.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds