inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Dipotassium tetra­hydroxido­penta­oxido­tetra­borate monohydrate

CROSSMARK_Color_square_no_text.svg

aPG & Research Department of Physics, Presidency College (Autonomous), Chennai 600 005, Tamil Nadu, India, and bPG & Research Department of Physics, The New College (Autonomous), Chennai 600 014, Tamil Nadu, India
*Correspondence e-mail: mnizam.new@gmail.com, abhaskaran_68@yahoo.co.in

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 December 2018; accepted 23 January 2019; online 31 January 2019)

In the tetra­borate anion of the title compound, K2[B4O5(OH)4]·H2O, the bridging B—O bond lengths of the tetra­hedral BO4 and the trigonal-planar BO3 units are slightly longer than the corresponding terminal B—OH bond lengths. The crystal structure is stabilized by inter­molecular O—H⋯O, O—H⋯Owater and Owater—H⋯O hydrogen bonds, generating a three-dimensional network. The two potassium cations both show a coordination number of 9.

3D view (loading...)
[Scheme 3D1]

Structure description

Inorganic borates exhibit promising applications as non-linear optical materials, birefringent materials, ferroelectric and piezoelectric materials, or host materials for lumin­escence (Berger, 1950[Berger, S. V. (1950). Acta Chem. Scand. 4, 1054-1065.]; Heller et al., 1986[Heller, G. (1986). Top. Curr. Chem. 131, 39-98.]; Becker, 1998[Becker, P. (1998). Adv. Mater. 10, 979-992.]; Chen et al., 1999[Chen, C. T., Ye, N., Lin, J., Jiang, J., Zeng, W. R. & Wu, B. C. (1999). Adv. Mater. 11, 1071-1078.], 2007a[Chen, X., Li, M., Chang, X., Zang, H. & Xiao, W. (2007a). J. Solid State Chem. 180, 1658-1663.],b[Chen, X., Li, M., Zuo, J., Chang, X., Zang, H. & Xiao, W. (2007b). Solid State Sci. 9, 678-685.], 2010[Chen, X., Yang, C., Chang, X., Zang, H. & Xiao, W. (2010). J. Alloys Compd. 492, 543-547.], 2012[Chen, S., Pan, S., Wu, H., Han, J., Zhang, M. & Zhang, F. (2012). J. Mol. Struct. 1021, 118-122.]; Yu et al., 2011[Yu, H., Pan, S., Wu, H., Han, J., Dong, X. & Zhou, Z. (2011). J. Solid State Chem. 184, 1644-1648.]; Wu et al., 2012[Wu, H., Pan, S., Yu, H., Chen, Z. & Zhang, F. (2012). Solid State Sci. 14, 936-940.]; Strauss et al., 2016[Strauss, F., Rousse, G., Sougrati, M. T., Dalla Corte, D. A., Courty, M., Dominko, R. & Tarascon, J.-M. (2016). Inorg. Chem. 55, 12775-12782.]). In general, boron atoms in borates can be coordinated by either three or four oxygen atoms, forming trigonal–planar BO3 or tetra­hedral BO4 groups, respectively. These groups may condense with each other through common oxygen atoms to give polyborate anionic groups that can adopt different coordination modes to bind to metal cations. The crystal chemistry of the resultant borates is rich, including rings, loops, infinite chains, sheets or three-dimensional networks (Burns et al., 1995[Burns, P. C., Grice, J. D. & Hawthorne, F. C. (1995). Can. Mineral. 33, 1131-1151.]). Against this background, we report herein on the crystal structure of K2[B4O5(OH)4]·H2O, (I). This monohydrate is closely related to the corresponding dihydrate K2[B4O5(OH)4]·2H2O (Marezio et al., 1963[Marezio, M., Plettinger, H. A. & Zachariasen, W. H. (1963). Acta Cryst. 16, 975-980.]).

Fig. 1[link]. shows the asymmetric unit of (I). It features two K+ cations, one [B4O5(OH)4]2– tetra­borate anion and one water mol­ecule of crystallization. The anion comprises of two tetra­hedral BO4 (B2, B4) and two trigonal–planar BO3 (B1, B3) units, fused to a double ring via the central tetra­hedra. Both BO4 and BO3 groups are rather regular; the O—B—O angles in the tetra­hedra cover the range between 106.7 (2) and 111.51 (14)°, and those in the triangles between 116.26 (18) and 124.20 (17)°, with average O—B—O angles of 109.4 and 119.9°, respectively. The B—O bond lengths in the tetra­hedra range from 1.441 (2) to 1.512 (2) Å, and those in the trigonal–planar units between 1.356 (2) and 1.390 (2) Å. The average B—O bond lengths (1.478 and 1.370 Å, respectively) are in good agreement with the data reviewed by Hawthorne et al. (1996[Hawthorne, F. C., Burns, P. C. & Grice, J. D. (1996). Rev. Mineral. 33, 41-115.]), Chen et al. (2017[Chen, X.-A., Zhang, Y.-H., Chang, X.-A. & Xiao, W.-Q. (2017). Acta Cryst. E73, 1774-1778.]) or Zobetz (1982[Zobetz, E. (1982). Z. Kristallogr. 160, 81-92.]).

[Figure 1]
Figure 1
View of the asymmetric unit of (I) with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

All terminal O atoms (O2, O4, O7, O9) in the anion carry an additional hydrogen atom, and are active in inter­molecular O—H⋯O hydrogen bonding (Table 1[link], Fig. 2[link]), generating centrosymmetric hydrogen-bonded dimers with a cyclic R22(8) ring motif. The crystal packing further comprises O—H⋯Owater and Owater—H⋯O hydrogen bonds whereby the water mol­ecule (O10) inter­acts with O1 and O6 of the anion to form R22(12) ring motifs. Taking all the hydrogen-bonding inter­actions together, a three-dimensional network arises. The two unique potassium cations are situated in between the anionic network, with K—O distances ranging from 2.731 (2) to 3.269 (2) Å, and with a coordination number of 9 for both cations.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯O8i 0.83 (2) 2.02 (2) 2.8385 (18) 173 (2)
O4—H4⋯O6ii 0.83 (2) 2.03 (2) 2.8338 (18) 164 (3)
O2—H2⋯O9iii 0.80 (2) 2.19 (2) 2.957 (2) 161 (3)
O10—H10A⋯O6 0.86 (2) 1.82 (2) 2.6704 (18) 175 (3)
O10—H10B⋯O1iv 0.85 (2) 2.10 (2) 2.850 (2) 146 (3)
O7—H7⋯O10v 0.83 (2) 2.00 (2) 2.823 (2) 169 (3)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1; (v) x, y+1, z.
[Figure 2]
Figure 2
The crystal packing of the title compound, stabilized by medium–strong O—H⋯O, O—H⋯Owater and Owater—H⋯O hydrogen bonds (shown as dashed lines; see Table 1[link] for numerical details).

Synthesis and crystallization

Potassium carbonate (13.8 g) and boric acid (6.1 g) were mixed in the molar ratio 1:1 to prepare an aqueous solution of potassium borate. By continuous stirring, the solution achieved super saturation conditions. Crystallization from this solution yielded good-quality crystals. In order to ensure the purity of the product, recrystallization was carried out for several times by using double-distilled water to get high-quality crystals. The crystals were grown by slow and controlled evaporation of the solvent in a constant temperature bath at 313 K. The period of growth ranged from 30 to 40 days. In this way, crystals of K2[B4O5(OH)4]·H2O with dimensions up to 7 × 9× 6 mm3 could be obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula K2[B4O5(OH)4]·H2O
Mr 287.49
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.1850 (6), 7.8479 (7), 8.9932 (8)
α, β, γ (°) 68.572 (1), 88.393 (2), 74.975 (1)
V3) 454.66 (7)
Z 2
Radiation type Cu Kα
μ (mm−1) 9.68
Crystal size (mm) 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker APEX3 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.428, 0.755
No. of measured, independent and observed [I > 2σ(I)] reflections 12205, 1782, 1685
Rint 0.048
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.08
No. of reflections 1782
No. of parameters 169
No. of restraints 8
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.26, −0.41
Computer programs: APEX3 and SAINT (Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Dipotassium tetrahydroxidopentaoxidotetraborate monohydrate top
Crystal data top
K2(B4O5(OH)4)·H2OZ = 2
Mr = 287.49F(000) = 288
Triclinic, P1Dx = 2.100 Mg m3
a = 7.1850 (6) ÅCu Kα radiation, λ = 1.54178 Å
b = 7.8479 (7) ÅCell parameters from 9535 reflections
c = 8.9932 (8) Åθ = 5.3–72.9°
α = 68.572 (1)°µ = 9.68 mm1
β = 88.393 (2)°T = 296 K
γ = 74.975 (1)°Block, colourless
V = 454.66 (7) Å30.15 × 0.15 × 0.10 mm
Data collection top
Bruker APEX3 CMOS
diffractometer
1685 reflections with I > 2σ(I)
Radiation source: micro-focus sealed tubeRint = 0.048
ω and φ scanθmax = 72.5°, θmin = 5.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 88
Tmin = 0.428, Tmax = 0.755k = 99
12205 measured reflectionsl = 1111
1782 independent reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.3324P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1782 reflectionsΔρmax = 0.26 e Å3
169 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The O-bound hydrogen atoms were located in a difference Fourier map and were refined with distance restraints of O—H = 0.85 (2) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.09251 (7)0.38216 (6)0.80053 (5)0.02243 (14)
K20.20676 (6)1.09022 (6)0.19990 (5)0.02022 (13)
O10.30645 (19)0.80307 (18)0.52405 (15)0.0163 (3)
O20.0185 (2)0.7652 (2)0.44414 (18)0.0278 (4)
O30.11229 (19)0.64763 (19)0.72235 (16)0.0170 (3)
O40.2514 (2)0.44850 (18)0.98578 (16)0.0165 (3)
O50.20264 (19)0.78980 (17)0.89638 (15)0.0147 (3)
O60.45190 (18)0.59912 (16)0.78995 (15)0.0118 (3)
O70.2574 (2)1.07780 (19)0.88399 (17)0.0193 (3)
O80.40972 (19)0.93391 (17)0.70523 (15)0.0148 (3)
O90.64504 (19)0.74772 (18)0.58708 (16)0.0167 (3)
O100.5427 (3)0.2666 (2)0.75091 (19)0.0276 (4)
B10.1486 (3)0.7371 (3)0.5679 (3)0.0154 (4)
B20.2586 (3)0.6167 (3)0.8510 (2)0.0125 (4)
B30.2906 (3)0.9315 (3)0.8275 (2)0.0127 (4)
B40.4565 (3)0.7673 (3)0.6519 (2)0.0111 (4)
H90.620 (3)0.843 (3)0.504 (2)0.030 (7)*
H40.351 (3)0.420 (4)1.043 (3)0.036 (8)*
H20.076 (3)0.735 (4)0.482 (4)0.049 (9)*
H10A0.508 (5)0.375 (3)0.759 (3)0.051 (9)*
H10B0.547 (5)0.285 (4)0.652 (2)0.049 (9)*
H70.329 (4)1.148 (4)0.842 (4)0.050 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0295 (3)0.0193 (2)0.0218 (2)0.00895 (17)0.00811 (18)0.01020 (17)
K20.0186 (2)0.0179 (2)0.0239 (2)0.00297 (16)0.00074 (17)0.00873 (16)
O10.0168 (7)0.0199 (6)0.0121 (6)0.0072 (5)0.0003 (5)0.0041 (5)
O20.0174 (8)0.0495 (10)0.0191 (8)0.0102 (7)0.0008 (6)0.0146 (7)
O30.0147 (6)0.0228 (7)0.0161 (6)0.0085 (5)0.0008 (5)0.0077 (5)
O40.0201 (7)0.0119 (6)0.0162 (7)0.0069 (5)0.0018 (6)0.0022 (5)
O50.0163 (6)0.0130 (6)0.0173 (6)0.0057 (5)0.0063 (5)0.0078 (5)
O60.0130 (6)0.0082 (5)0.0137 (6)0.0025 (5)0.0019 (5)0.0039 (5)
O70.0246 (7)0.0152 (7)0.0239 (7)0.0077 (6)0.0081 (6)0.0125 (6)
O80.0194 (7)0.0102 (6)0.0169 (6)0.0060 (5)0.0059 (5)0.0062 (5)
O90.0136 (7)0.0144 (6)0.0188 (7)0.0023 (5)0.0055 (5)0.0037 (5)
O100.0435 (9)0.0161 (7)0.0268 (8)0.0075 (6)0.0089 (7)0.0127 (6)
B10.0142 (10)0.0179 (10)0.0155 (10)0.0022 (8)0.0007 (8)0.0091 (8)
B20.0131 (10)0.0117 (9)0.0127 (9)0.0040 (7)0.0011 (8)0.0039 (7)
B30.0145 (10)0.0107 (9)0.0122 (9)0.0018 (7)0.0003 (8)0.0044 (7)
B40.0113 (9)0.0105 (9)0.0124 (9)0.0031 (7)0.0023 (8)0.0051 (7)
Geometric parameters (Å, º) top
K1—O32.7315 (14)O4—B21.441 (2)
K1—O5i2.7608 (14)O4—K1i2.7783 (14)
K1—O4i2.7782 (14)O4—K2x2.8624 (13)
K1—O2ii2.8174 (16)O4—H40.825 (17)
K1—O7iii2.8759 (15)O5—B31.363 (2)
K1—O9iv2.9741 (14)O5—B21.512 (2)
K1—O10iv3.0799 (18)O5—K1i2.7608 (14)
K1—O6iv3.2608 (13)O5—K2ix2.8982 (14)
K1—O43.2684 (14)O6—B41.451 (2)
K2—O10v2.7938 (16)O6—B21.471 (2)
K2—O8vi2.8461 (14)O6—K1xi3.2608 (13)
K2—O4vii2.8624 (13)O7—B31.383 (2)
K2—O7viii2.8877 (15)O7—K1xii2.8759 (15)
K2—O5ix2.8982 (14)O7—K2xiii2.8877 (15)
K2—O3ix2.9142 (15)O7—H70.834 (18)
K2—O12.9274 (13)O8—B31.372 (3)
K2—O9vi3.0031 (14)O8—B41.508 (2)
K2—O23.2690 (18)O8—K2vi2.8461 (14)
O1—B11.356 (3)O9—B41.453 (2)
O1—B41.497 (2)O9—K1xi2.9741 (14)
O2—B11.390 (2)O9—K2vi3.0031 (14)
O2—K1ii2.8174 (16)O9—H90.825 (17)
O2—H20.804 (17)O10—K2v2.7939 (16)
O3—B11.361 (3)O10—K1xi3.0799 (18)
O3—B21.495 (2)O10—H10A0.856 (17)
O3—K2ix2.9142 (15)O10—H10B0.850 (17)
O3—K1—O5i124.63 (4)B1—O3—K2ix107.19 (11)
O3—K1—O4i83.56 (4)B2—O3—K2ix98.46 (10)
O5i—K1—O4i52.02 (4)K1—O3—K2ix90.33 (4)
O3—K1—O2ii102.87 (5)B2—O4—K1i99.00 (10)
O5i—K1—O2ii127.95 (5)B2—O4—K2x167.17 (11)
O4i—K1—O2ii167.06 (5)K1i—O4—K2x90.48 (4)
O3—K1—O7iii91.40 (4)B2—O4—K191.71 (10)
O5i—K1—O7iii87.71 (4)K1i—O4—K1109.46 (4)
O4i—K1—O7iii121.96 (4)K2x—O4—K176.91 (3)
O2ii—K1—O7iii69.61 (4)B2—O4—H4105 (2)
O3—K1—O9iv72.91 (4)K1i—O4—H483 (2)
O5i—K1—O9iv117.88 (4)K2x—O4—H484 (2)
O4i—K1—O9iv77.28 (4)K1—O4—H4158 (2)
O2ii—K1—O9iv93.72 (4)B3—O5—B2118.48 (15)
O7iii—K1—O9iv154.34 (4)B3—O5—K1i135.06 (11)
O3—K1—O10iv149.75 (4)B2—O5—K1i97.85 (10)
O5i—K1—O10iv74.23 (4)B3—O5—K2ix112.27 (11)
O4i—K1—O10iv94.59 (4)B2—O5—K2ix98.67 (9)
O2ii—K1—O10iv74.14 (4)K1i—O5—K2ix85.04 (4)
O7iii—K1—O10iv114.49 (4)B4—O6—B2111.10 (13)
O9iv—K1—O10iv77.23 (4)B4—O6—K1xi95.42 (10)
O3—K1—O6iv108.12 (4)B2—O6—K1xi153.42 (10)
O5i—K1—O6iv75.04 (4)B3—O7—K1xii122.95 (11)
O4i—K1—O6iv55.28 (4)B3—O7—K2xiii132.83 (12)
O2ii—K1—O6iv111.80 (4)K1xii—O7—K2xiii83.18 (4)
O7iii—K1—O6iv159.03 (4)B3—O7—H7110 (2)
O9iv—K1—O6iv44.97 (3)K1xii—O7—H795 (2)
O10iv—K1—O6iv49.71 (4)K2xiii—O7—H7106 (2)
O3—K1—O445.69 (3)B3—O8—B4118.94 (14)
O5i—K1—O485.16 (4)B3—O8—K2vi111.12 (11)
O4i—K1—O470.54 (5)B4—O8—K2vi97.89 (10)
O2ii—K1—O4121.96 (4)B4—O9—K1xi108.04 (10)
O7iii—K1—O465.58 (4)B4—O9—K2vi92.77 (10)
O9iv—K1—O4111.87 (4)K1xi—O9—K2vi84.16 (4)
O10iv—K1—O4159.30 (4)B4—O9—H999.7 (15)
O6iv—K1—O4123.31 (3)K1xi—O9—H9152.0 (16)
O10v—K2—O8vi68.19 (4)K2vi—O9—H998.6 (18)
O10v—K2—O4vii126.34 (5)K2v—O10—K1xi85.71 (5)
O8vi—K2—O4vii78.89 (4)K2v—O10—H10A155 (2)
O10v—K2—O7viii74.82 (4)K1xi—O10—H10A72 (2)
O8vi—K2—O7viii100.77 (4)K2v—O10—H10B85 (2)
O4vii—K2—O7viii71.12 (4)K1xi—O10—H10B99 (2)
O10v—K2—O5ix126.21 (4)H10A—O10—H10B108 (2)
O8vi—K2—O5ix165.60 (4)O1—B1—O3124.20 (17)
O4vii—K2—O5ix90.65 (4)O1—B1—O2116.26 (18)
O7viii—K2—O5ix84.92 (4)O3—B1—O2119.54 (18)
O10v—K2—O3ix154.22 (5)O1—B1—K252.28 (9)
O8vi—K2—O3ix118.33 (4)O3—B1—K2162.79 (13)
O4vii—K2—O3ix78.91 (4)O2—B1—K266.91 (11)
O7viii—K2—O3ix124.27 (4)O1—B1—K2ix123.52 (12)
O5ix—K2—O3ix49.06 (3)O3—B1—K2ix51.40 (9)
O10v—K2—O159.69 (4)O2—B1—K2ix95.47 (12)
O8vi—K2—O171.95 (4)K2—B1—K2ix114.13 (6)
O4vii—K2—O1144.45 (4)O4—B2—O6111.51 (14)
O7viii—K2—O1133.55 (4)O4—B2—O3108.42 (14)
O5ix—K2—O1113.64 (4)O6—B2—O3110.00 (15)
O3ix—K2—O197.25 (4)O4—B2—O5110.66 (15)
O10v—K2—O9vi108.20 (4)O6—B2—O5109.36 (14)
O8vi—K2—O9vi48.87 (4)O3—B2—O5106.78 (14)
O4vii—K2—O9vi75.56 (4)O4—B2—K1i55.65 (9)
O7viii—K2—O9vi138.95 (4)O6—B2—K1i133.31 (11)
O5ix—K2—O9vi119.08 (4)O3—B2—K1i116.64 (12)
O3ix—K2—O9vi70.02 (4)O5—B2—K1i55.37 (8)
O1—K2—O9vi70.06 (4)O4—B2—K2ix103.66 (11)
O10v—K2—O271.45 (5)O6—B2—K2ix144.84 (11)
O8vi—K2—O2115.02 (4)O3—B2—K2ix56.29 (8)
O4vii—K2—O2161.79 (4)O5—B2—K2ix55.77 (8)
O7viii—K2—O2115.01 (4)K1i—B2—K2ix68.57 (4)
O5ix—K2—O273.42 (4)O5—B3—O8122.62 (16)
O3ix—K2—O283.88 (4)O5—B3—O7118.18 (18)
O1—K2—O243.80 (4)O8—B3—O7119.19 (17)
O9vi—K2—O2104.13 (4)O5—B3—K2vi129.93 (12)
B1—O1—B4118.49 (15)O8—B3—K2vi47.92 (9)
B1—O1—K2106.22 (11)O7—B3—K2vi92.06 (11)
B4—O1—K2132.16 (10)O6—B4—O9111.38 (14)
B1—O2—K1ii126.73 (13)O6—B4—O1110.21 (14)
B1—O2—K290.06 (12)O9—B4—O1109.12 (15)
K1ii—O2—K281.83 (4)O6—B4—O8107.72 (14)
B1—O2—H2109 (2)O9—B4—O8109.87 (14)
K1ii—O2—H2105 (2)O1—B4—O8108.48 (14)
K2—O2—H2149 (2)O6—B4—K2vi99.24 (10)
B1—O3—B2117.57 (15)O9—B4—K2vi61.95 (9)
B1—O3—K1121.32 (11)O1—B4—K2vi150.20 (12)
B2—O3—K1114.18 (10)O8—B4—K2vi56.04 (8)
B4—O1—B1—O33.3 (3)B3—O5—B2—O4145.94 (16)
K2—O1—B1—O3159.13 (16)K1i—O5—B2—O46.65 (15)
B4—O1—B1—O2176.73 (16)K2ix—O5—B2—O492.79 (13)
K2—O1—B1—O220.86 (19)B3—O5—B2—O622.7 (2)
B4—O1—B1—K2162.41 (17)K1i—O5—B2—O6129.86 (12)
B4—O1—B1—K2ix66.24 (18)K2ix—O5—B2—O6144.00 (11)
K2—O1—B1—K2ix96.17 (11)B3—O5—B2—O396.26 (18)
B2—O3—B1—O11.4 (3)K1i—O5—B2—O3111.15 (12)
K1—O3—B1—O1150.56 (14)K2ix—O5—B2—O325.01 (14)
K2ix—O3—B1—O1108.18 (18)B3—O5—B2—K1i152.59 (16)
B2—O3—B1—O2178.60 (16)K2ix—O5—B2—K1i86.14 (5)
K1—O3—B1—O229.4 (2)B3—O5—B2—K2ix121.27 (15)
K2ix—O3—B1—O271.82 (19)K1i—O5—B2—K2ix86.14 (5)
B2—O3—B1—K273.6 (5)B2—O5—B3—O88.0 (2)
K1—O3—B1—K2137.3 (4)K1i—O5—B3—O8147.81 (13)
K2ix—O3—B1—K236.0 (5)K2ix—O5—B3—O8106.03 (16)
B2—O3—B1—K2ix109.58 (15)B2—O5—B3—O7171.96 (15)
K1—O3—B1—K2ix101.26 (11)K1i—O5—B3—O732.2 (2)
K1ii—O2—B1—O162.0 (2)K2ix—O5—B3—O773.99 (17)
K2—O2—B1—O117.83 (16)B2—O5—B3—K2vi51.8 (2)
K1ii—O2—B1—O3118.01 (17)K1i—O5—B3—K2vi87.94 (18)
K2—O2—B1—O3162.16 (16)K2ix—O5—B3—K2vi165.90 (8)
K1ii—O2—B1—K279.83 (12)B4—O8—B3—O54.2 (2)
K1ii—O2—B1—K2ix166.25 (9)K2vi—O8—B3—O5116.66 (16)
K2—O2—B1—K2ix113.93 (5)B4—O8—B3—O7175.75 (15)
K1i—O4—B2—O6128.59 (12)K2vi—O8—B3—O763.32 (18)
K2x—O4—B2—O694.2 (5)B4—O8—B3—K2vi112.44 (15)
K1—O4—B2—O6121.41 (13)K1xii—O7—B3—O577.59 (19)
K1i—O4—B2—O3110.17 (13)K2xiii—O7—B3—O536.5 (2)
K2x—O4—B2—O327.0 (6)K1xii—O7—B3—O8102.43 (17)
K1—O4—B2—O30.16 (13)K2xiii—O7—B3—O8143.50 (13)
K1i—O4—B2—O56.62 (14)K1xii—O7—B3—K2vi144.00 (8)
K2x—O4—B2—O5143.8 (5)K2xiii—O7—B3—K2vi101.93 (13)
K1—O4—B2—O5116.63 (12)B2—O6—B4—O9177.72 (14)
K2x—O4—B2—K1i137.2 (5)K1xi—O6—B4—O93.91 (14)
K1—O4—B2—K1i110.00 (6)B2—O6—B4—O156.45 (18)
K1i—O4—B2—K2ix51.57 (8)K1xi—O6—B4—O1125.17 (12)
K2x—O4—B2—K2ix85.6 (5)B2—O6—B4—O861.73 (17)
K1—O4—B2—K2ix58.43 (6)K1xi—O6—B4—O8116.65 (12)
B4—O6—B2—O4178.63 (13)B2—O6—B4—K2vi118.90 (12)
K1xi—O6—B2—O45.0 (3)K1xi—O6—B4—K2vi59.48 (6)
B4—O6—B2—O358.31 (18)K1xi—O9—B4—O64.49 (16)
K1xi—O6—B2—O3125.31 (19)K2vi—O9—B4—O689.24 (13)
B4—O6—B2—O558.66 (18)K1xi—O9—B4—O1126.38 (11)
K1xi—O6—B2—O5117.7 (2)K2vi—O9—B4—O1148.87 (11)
B4—O6—B2—K1i118.89 (15)K1xi—O9—B4—O8114.80 (12)
K1xi—O6—B2—K1i57.5 (3)K2vi—O9—B4—O830.05 (13)
B4—O6—B2—K2ix1.1 (3)K1xi—O9—B4—K2vi84.75 (6)
K1xi—O6—B2—K2ix175.28 (8)B1—O1—B4—O625.8 (2)
B1—O3—B2—O4151.09 (16)K2—O1—B4—O6177.26 (9)
K1—O3—B2—O40.22 (18)B1—O1—B4—O9148.38 (15)
K2ix—O3—B2—O494.41 (13)K2—O1—B4—O954.66 (19)
B1—O3—B2—O628.9 (2)B1—O1—B4—O891.93 (18)
K1—O3—B2—O6122.39 (12)K2—O1—B4—O865.03 (19)
K2ix—O3—B2—O6143.42 (11)B1—O1—B4—K2vi145.0 (2)
B1—O3—B2—O589.65 (19)K2—O1—B4—K2vi12.0 (3)
K1—O3—B2—O5119.05 (12)B3—O8—B4—O630.2 (2)
K2ix—O3—B2—O524.85 (14)K2vi—O8—B4—O689.31 (12)
B1—O3—B2—K1i148.80 (13)B3—O8—B4—O9151.68 (15)
K1—O3—B2—K1i59.89 (12)K2vi—O8—B4—O932.19 (14)
K2ix—O3—B2—K1i34.30 (10)B3—O8—B4—O189.11 (18)
B1—O3—B2—K2ix114.50 (15)K2vi—O8—B4—O1151.40 (11)
K1—O3—B2—K2ix94.20 (8)B3—O8—B4—K2vi119.49 (15)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z+1; (iii) x, y1, z; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y+2, z+1; (vii) x, y+1, z1; (viii) x, y, z1; (ix) x, y+2, z+1; (x) x, y1, z+1; (xi) x+1, y, z; (xii) x, y+1, z; (xiii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O8vi0.83 (2)2.02 (2)2.8385 (18)173 (2)
O4—H4···O6xiv0.83 (2)2.03 (2)2.8338 (18)164 (3)
O2—H2···O9iv0.80 (2)2.19 (2)2.957 (2)161 (3)
O10—H10A···O60.86 (2)1.82 (2)2.6704 (18)175 (3)
O10—H10B···O1v0.85 (2)2.10 (2)2.850 (2)146 (3)
O7—H7···O10xii0.83 (2)2.00 (2)2.823 (2)169 (3)
Symmetry codes: (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y+2, z+1; (xii) x, y+1, z; (xiv) x+1, y+1, z+2.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the X-ray data collection.

References

First citationBecker, P. (1998). Adv. Mater. 10, 979–992.  CrossRef CAS Google Scholar
First citationBerger, S. V. (1950). Acta Chem. Scand. 4, 1054–1065.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurns, P. C., Grice, J. D. & Hawthorne, F. C. (1995). Can. Mineral. 33, 1131–1151.  CAS Google Scholar
First citationChen, C. T., Ye, N., Lin, J., Jiang, J., Zeng, W. R. & Wu, B. C. (1999). Adv. Mater. 11, 1071–1078.  Web of Science CrossRef CAS Google Scholar
First citationChen, S., Pan, S., Wu, H., Han, J., Zhang, M. & Zhang, F. (2012). J. Mol. Struct. 1021, 118–122.  CrossRef CAS Google Scholar
First citationChen, X., Li, M., Chang, X., Zang, H. & Xiao, W. (2007a). J. Solid State Chem. 180, 1658–1663.  CrossRef CAS Google Scholar
First citationChen, X., Li, M., Zuo, J., Chang, X., Zang, H. & Xiao, W. (2007b). Solid State Sci. 9, 678–685.  CrossRef CAS Google Scholar
First citationChen, X., Yang, C., Chang, X., Zang, H. & Xiao, W. (2010). J. Alloys Compd. 492, 543–547.  CrossRef CAS Google Scholar
First citationChen, X.-A., Zhang, Y.-H., Chang, X.-A. & Xiao, W.-Q. (2017). Acta Cryst. E73, 1774–1778.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHawthorne, F. C., Burns, P. C. & Grice, J. D. (1996). Rev. Mineral. 33, 41–115.  CAS Google Scholar
First citationHeller, G. (1986). Top. Curr. Chem. 131, 39–98.  CrossRef CAS Google Scholar
First citationMarezio, M., Plettinger, H. A. & Zachariasen, W. H. (1963). Acta Cryst. 16, 975–980.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrauss, F., Rousse, G., Sougrati, M. T., Dalla Corte, D. A., Courty, M., Dominko, R. & Tarascon, J.-M. (2016). Inorg. Chem. 55, 12775–12782.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H., Pan, S., Yu, H., Chen, Z. & Zhang, F. (2012). Solid State Sci. 14, 936–940.  CrossRef CAS Google Scholar
First citationYu, H., Pan, S., Wu, H., Han, J., Dong, X. & Zhou, Z. (2011). J. Solid State Chem. 184, 1644–1648.  CrossRef CAS Google Scholar
First citationZobetz, E. (1982). Z. Kristallogr. 160, 81–92.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds