metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Rubidium bis­­(2-methyl­lactato)borate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Government Arts College (Autonomous), Kumbakonam 612 002, Tamilnadu, India, and bPrincipal Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 December 2018; accepted 8 January 2019; online 15 January 2019)

The asymmetric unit of the inorganic–organic hybrid salt, poly[aqua[μ4-bis(2-methyllactato)borato]rubidium], [Rb(C8H12BO6)(H2O)]n, comprises a rubidium cation, a bis­(2-methyl­lactato)borate anion, and a water mol­ecule of crystallization. The rubidium cation is pseudo-octa­hedrally coordinated by five O atoms from four bis­(2-methyl­lactato)borate ligands and by a water mol­ecule. The presence of four coordinating O atoms within the anion lead to the formation of a polymeric three-dimensional framework structure that is consolidated by additional O—H⋯O hydrogen-bonding inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Alkaline cations such as lithium and potassium are used in the development of batteries. Allen et al. (2012[Allen, J. L., Paillard, E., Boyle, P. D. & Henderson, W. A. (2012). Acta Cryst. E68, m749.]) have reported the crystal structure of lithium bis­(2-methyl­lactato)borate monohydrate. In our current study we have replaced the lithium cation by a rubidium cation and report here single-crystal growth and structural analysis of rubidium bis­(2-methyl­lactato)borate monohydrate. Whereas the lithium salt crystallizes in the space group Pbca with Z = 8, the rubidium salt crystallizes in space group P21/n with Z = 4.

The asymmetric unit of the title compound comprises a rubidium cation, a bis­(2-methyl­lactato)borate anion, and a water mol­ecule of crystallization (Fig. 1[link]). The structural features of the anion are very similar to that of the lithium salt (Allen et al., 2012[Allen, J. L., Paillard, E., Boyle, P. D. & Henderson, W. A. (2012). Acta Cryst. E68, m749.]), in particular with respect to B—O bond lengths (Table 1[link]). The five-membered ring O1/C2/C1/O2/B1 adopts a half-chair conformation with a twist on the O1—C2 bond [puckering parameters Q2 = 0.077 (3) Å, φ2 = 198 (2)°] whereas the O4/C5/C6/O5/B1 ring adopts a slightly distorted half-chair conformation with a twist on the O5—B1 bond [puckering parameters Q2 = 0.141 (3) Å, φ2 = 303 (1)°]. The dihedral angle between the least-squares planes of the two five-membered rings is 89.30 (14)°. The rubidium cation is sixfold coordinated by one water mol­ecule (O7) and five O atoms (O1, O6i, O6ii, O3iii and O5; symmetry codes as in Table 1[link]) from four bis­(2-methyl­lactato)borate ligands, one of which coordinates in a bidentate mode (Table 1[link]). The presence of four coordinating oxygen atoms per anion leads to the formation of a three-dimensional framework structure. Additional hydrogen bonds between the water mol­ecules and one of the O atoms of the BO4 tetra­hedron (O5) and one of the carbonyl O atoms (O3) stabilizes the structural set-up (Fig. 2[link], Table 2[link]).

Table 1
Selected bond lengths (Å)

Rb1—O7 2.833 (3) Rb1—O3iii 3.115 (2)
Rb1—O6i 2.8852 (19) O1—B1 1.432 (3)
Rb1—O6ii 2.932 (2) O2—B1 1.507 (3)
Rb1—O5 2.9766 (17) O4—B1 1.506 (3)
Rb1—O1 3.0316 (18) O5—B1 1.438 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H2⋯O5iii 0.84 (2) 2.22 (2) 3.049 (3) 169 (5)
O7—H1⋯O3iv 0.86 (4) 2.14 (4) 2.826 (4) 137 (4)
Symmetry codes: (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y+1, z.
[Figure 1]
Figure 1
The asymmetric unit of the title compound showing the atom numbering with displacement ellipsoids drawn at the 25% probability level.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the a axis. Dashed lines indicate hydrogen bonds.

Synthesis and crystallization

The title compound was synthesized by reacting 2-methyl­lactic acid, boric acid and rubidium carbonate (molar ratio 4:2:1) in double distilled water. Slow evaporation of the solvent yielded good quality crystals within a period of 50 days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Rb(C8H12BO6)(H2O)]
Mr 318.47
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 8.3075 (3), 10.4488 (4), 15.5630 (6)
β (°) 92.202 (2)
V3) 1349.92 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.69
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.518, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 39188, 4927, 2964
Rint 0.062
(sin θ/λ)max−1) 0.760
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.105, 1.05
No. of reflections 4927
No. of parameters 160
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.80
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT 2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Poly[aqua[µ4-bis(2-methyllactato)borato]rubidium] top
Crystal data top
[Rb(C8H12BO6)(H2O)]F(000) = 640
Mr = 318.47Dx = 1.567 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.3075 (3) ÅCell parameters from 9895 reflections
b = 10.4488 (4) Åθ = 3.1–30.4°
c = 15.5630 (6) ŵ = 3.69 mm1
β = 92.202 (2)°T = 296 K
V = 1349.92 (9) Å3Block, colourless
Z = 40.15 × 0.10 × 0.10 mm
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
4927 independent reflections
Radiation source: fine-focus sealed tube2964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω and φ scanθmax = 32.7°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1012
Tmin = 0.518, Tmax = 0.746k = 1515
39188 measured reflectionsl = 2323
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.7957P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
4927 reflectionsΔρmax = 0.54 e Å3
160 parametersΔρmin = 0.80 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms of the water molecule were discernable from difference Fourier maps and were refined with a distance constraint of d(O—H) = 0.85 (2) Å and Uiso(H) = 1.2Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.15594 (3)1.03371 (3)0.62254 (2)0.04816 (10)
C10.3793 (3)0.6083 (3)0.64453 (16)0.0424 (6)
C20.2674 (3)0.6658 (3)0.57496 (16)0.0421 (6)
C30.2814 (5)0.5932 (4)0.4905 (2)0.0764 (11)
H3A0.2418980.5075680.4970880.115*
H3B0.2188250.6359640.4459760.115*
H3C0.3922030.5904590.4752350.115*
C40.0954 (4)0.6685 (4)0.6045 (3)0.0769 (11)
H4A0.0568360.5824330.6104910.115*
H4B0.0922860.7115330.6589290.115*
H4C0.0282430.7131390.5628600.115*
C50.7099 (3)0.9182 (3)0.59312 (15)0.0379 (5)
C60.6303 (3)0.9805 (3)0.66890 (15)0.0368 (5)
C70.6093 (4)1.1224 (3)0.6535 (2)0.0615 (8)
H7A0.7130661.1627250.6530850.092*
H7B0.5535191.1358580.5990300.092*
H7C0.5478651.1587000.6984250.092*
C80.7251 (4)0.9526 (4)0.75202 (19)0.0634 (9)
H8A0.8283180.9937510.7508960.095*
H8B0.6671260.9846110.7997090.095*
H8C0.7397600.8619160.7580720.095*
O10.32554 (19)0.79284 (16)0.56594 (11)0.0390 (4)
O20.4970 (2)0.68714 (18)0.66442 (12)0.0474 (5)
O30.3631 (3)0.5045 (2)0.67894 (15)0.0624 (6)
O40.6196 (2)0.82640 (19)0.56029 (11)0.0459 (4)
O50.47576 (18)0.91984 (17)0.66951 (10)0.0372 (4)
O60.8396 (2)0.9478 (2)0.56534 (13)0.0547 (5)
B10.4744 (3)0.8096 (3)0.61421 (17)0.0365 (6)
O70.1465 (4)1.2961 (3)0.6680 (2)0.0984 (10)
H10.221 (4)1.340 (4)0.645 (3)0.118*
H20.108 (5)1.339 (4)0.708 (2)0.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.03750 (14)0.05453 (19)0.05188 (16)0.00398 (12)0.00565 (10)0.00967 (13)
C10.0420 (13)0.0423 (16)0.0427 (13)0.0021 (12)0.0025 (10)0.0019 (12)
C20.0403 (13)0.0405 (15)0.0449 (13)0.0107 (11)0.0069 (10)0.0040 (11)
C30.121 (3)0.055 (2)0.0518 (18)0.008 (2)0.0172 (19)0.0080 (16)
C40.0384 (16)0.075 (3)0.117 (3)0.0077 (16)0.0017 (17)0.034 (2)
C50.0289 (11)0.0460 (15)0.0384 (12)0.0019 (10)0.0009 (9)0.0065 (11)
C60.0341 (11)0.0423 (15)0.0337 (11)0.0091 (11)0.0021 (9)0.0000 (10)
C70.078 (2)0.0421 (17)0.0656 (18)0.0124 (16)0.0160 (16)0.0013 (15)
C80.0521 (17)0.096 (3)0.0408 (14)0.0111 (17)0.0098 (12)0.0050 (16)
O10.0356 (9)0.0355 (10)0.0450 (9)0.0057 (7)0.0100 (7)0.0052 (7)
O20.0438 (10)0.0402 (11)0.0569 (11)0.0035 (8)0.0167 (8)0.0063 (9)
O30.0730 (15)0.0468 (12)0.0664 (13)0.0106 (10)0.0102 (11)0.0177 (10)
O40.0349 (9)0.0563 (12)0.0471 (9)0.0034 (8)0.0086 (7)0.0139 (9)
O50.0292 (8)0.0409 (10)0.0418 (9)0.0081 (7)0.0058 (7)0.0061 (7)
O60.0330 (9)0.0748 (15)0.0568 (11)0.0074 (9)0.0094 (8)0.0067 (10)
B10.0296 (12)0.0405 (17)0.0392 (14)0.0011 (11)0.0005 (10)0.0008 (12)
O70.129 (3)0.0592 (17)0.111 (2)0.0272 (17)0.0615 (19)0.0241 (16)
Geometric parameters (Å, º) top
Rb1—O72.833 (3)C4—H4B0.9600
Rb1—O6i2.8852 (19)C4—H4C0.9600
Rb1—O6ii2.932 (2)C5—O61.216 (3)
Rb1—O52.9766 (17)C5—O41.309 (3)
Rb1—O13.0316 (18)C5—C61.521 (4)
Rb1—O3iii3.115 (2)C6—O51.432 (3)
Rb1—B13.539 (3)C6—C71.511 (4)
Rb1—C5ii3.612 (2)C6—C81.516 (4)
Rb1—C1iii3.730 (3)C7—H7A0.9600
Rb1—Rb1iv4.5823 (5)C7—H7B0.9600
Rb1—H13.27 (4)C7—H7C0.9600
C1—O31.219 (3)C8—H8A0.9600
C1—O21.307 (3)C8—H8B0.9600
C1—C21.523 (3)C8—H8C0.9600
C2—O11.421 (3)O1—B11.432 (3)
C2—C41.518 (4)O2—B11.507 (3)
C2—C31.526 (4)O4—B11.506 (3)
C3—H3A0.9600O5—B11.438 (3)
C3—H3B0.9600O7—H10.857 (18)
C3—H3C0.9600O7—H20.844 (18)
C4—H4A0.9600
O7—Rb1—O6i110.16 (9)O1—C2—C3110.0 (2)
O7—Rb1—O6ii100.75 (8)C4—C2—C3112.0 (3)
O6i—Rb1—O6ii76.06 (6)C1—C2—C3110.6 (3)
O7—Rb1—O5111.01 (9)C2—C3—H3A109.5
O6i—Rb1—O5138.17 (6)C2—C3—H3B109.5
O6ii—Rb1—O5103.06 (5)H3A—C3—H3B109.5
O7—Rb1—O1153.31 (8)C2—C3—H3C109.5
O6i—Rb1—O194.58 (5)H3A—C3—H3C109.5
O6ii—Rb1—O175.01 (5)H3B—C3—H3C109.5
O5—Rb1—O147.09 (4)C2—C4—H4A109.5
O7—Rb1—O3iii81.04 (8)C2—C4—H4B109.5
O6i—Rb1—O3iii101.25 (6)H4A—C4—H4B109.5
O6ii—Rb1—O3iii177.14 (6)C2—C4—H4C109.5
O5—Rb1—O3iii78.24 (5)H4A—C4—H4C109.5
O1—Rb1—O3iii104.41 (5)H4B—C4—H4C109.5
O7—Rb1—B1132.64 (9)O6—C5—O4123.3 (2)
O6i—Rb1—B1117.12 (6)O6—C5—C6125.7 (2)
O6ii—Rb1—B188.23 (6)O4—C5—C6110.9 (2)
O5—Rb1—B123.52 (5)O6—C5—Rb1ii47.56 (13)
O1—Rb1—B123.60 (5)O4—C5—Rb1ii86.10 (13)
O3iii—Rb1—B192.18 (6)C6—C5—Rb1ii145.07 (17)
O7—Rb1—C5ii96.29 (8)O5—C6—C7109.7 (2)
O6i—Rb1—C5ii93.82 (5)O5—C6—C8110.2 (2)
O6ii—Rb1—C5ii17.83 (5)C7—C6—C8112.2 (2)
O5—Rb1—C5ii88.82 (5)O5—C6—C5103.41 (19)
O1—Rb1—C5ii71.47 (5)C7—C6—C5110.4 (2)
O3iii—Rb1—C5ii164.71 (6)C8—C6—C5110.6 (2)
B1—Rb1—C5ii78.48 (6)C6—C7—H7A109.5
O7—Rb1—C1iii63.35 (8)C6—C7—H7B109.5
O6i—Rb1—C1iii105.08 (6)H7A—C7—H7B109.5
O6ii—Rb1—C1iii163.70 (6)C6—C7—H7C109.5
O5—Rb1—C1iii86.99 (5)H7A—C7—H7C109.5
O1—Rb1—C1iii120.69 (5)H7B—C7—H7C109.5
O3iii—Rb1—C1iii17.75 (6)C6—C8—H8A109.5
B1—Rb1—C1iii105.10 (6)C6—C8—H8B109.5
C5ii—Rb1—C1iii155.85 (6)H8A—C8—H8B109.5
O7—Rb1—Rb1iv109.65 (8)C6—C8—H8C109.5
O6i—Rb1—Rb1iv38.39 (4)H8A—C8—H8C109.5
O6ii—Rb1—Rb1iv37.67 (4)H8B—C8—H8C109.5
O5—Rb1—Rb1iv127.87 (3)C2—O1—B1110.61 (19)
O1—Rb1—Rb1iv83.38 (3)C2—O1—Rb1125.67 (15)
O3iii—Rb1—Rb1iv139.63 (5)B1—O1—Rb198.49 (15)
B1—Rb1—Rb1iv105.50 (4)C1—O2—B1109.58 (19)
C5ii—Rb1—Rb1iv55.45 (4)C1—O3—Rb1v111.07 (19)
C1iii—Rb1—Rb1iv141.08 (4)C5—O4—B1109.10 (19)
O7—Rb1—H114.0 (5)C6—O5—B1109.72 (18)
O6i—Rb1—H1118.9 (8)C6—O5—Rb1127.82 (14)
O6ii—Rb1—H192.0 (7)B1—O5—Rb1100.76 (13)
O5—Rb1—H1103.0 (8)C5—O6—Rb1vi141.11 (17)
O1—Rb1—H1140.3 (6)C5—O6—Rb1ii114.61 (16)
O3iii—Rb1—H190.2 (7)Rb1vi—O6—Rb1ii103.94 (6)
B1—Rb1—H1122.2 (7)O1—B1—O5113.5 (2)
C5ii—Rb1—H184.8 (6)O1—B1—O4114.6 (2)
C1iii—Rb1—H173.1 (6)O5—B1—O4104.6 (2)
Rb1iv—Rb1—H1109.0 (8)O1—B1—O2104.9 (2)
O3—C1—O2123.4 (2)O5—B1—O2111.8 (2)
O3—C1—C2126.1 (2)O4—B1—O2107.5 (2)
O2—C1—C2110.5 (2)O1—B1—Rb157.91 (12)
O3—C1—Rb1v51.18 (15)O5—B1—Rb155.72 (12)
O2—C1—Rb1v89.28 (14)O4—B1—Rb1123.99 (16)
C2—C1—Rb1v134.79 (17)O2—B1—Rb1128.41 (16)
O1—C2—C4109.9 (2)Rb1—O7—H1113 (3)
O1—C2—C1103.79 (19)Rb1—O7—H2135 (3)
C4—C2—C1110.3 (2)H1—O7—H2109 (3)
O3—C1—C2—O1172.0 (3)C8—C6—O5—B1105.2 (3)
O2—C1—C2—O17.0 (3)C5—C6—O5—B113.0 (2)
Rb1v—C1—C2—O1103.7 (2)C7—C6—O5—Rb18.8 (3)
O3—C1—C2—C454.3 (4)C8—C6—O5—Rb1132.8 (2)
O2—C1—C2—C4124.6 (3)C5—C6—O5—Rb1108.92 (18)
Rb1v—C1—C2—C414.0 (4)O4—C5—O6—Rb1vi143.6 (2)
O3—C1—C2—C370.1 (4)C6—C5—O6—Rb1vi36.5 (4)
O2—C1—C2—C3110.9 (3)Rb1ii—C5—O6—Rb1vi171.8 (4)
Rb1v—C1—C2—C3138.4 (2)O4—C5—O6—Rb1ii44.6 (3)
O6—C5—C6—O5174.6 (2)C6—C5—O6—Rb1ii135.3 (2)
O4—C5—C6—O55.3 (3)C2—O1—B1—O5129.3 (2)
Rb1ii—C5—C6—O5109.6 (3)Rb1—O1—B1—O54.0 (2)
O6—C5—C6—C757.3 (3)C2—O1—B1—O4110.6 (2)
O4—C5—C6—C7122.6 (3)Rb1—O1—B1—O4116.0 (2)
Rb1ii—C5—C6—C77.7 (4)C2—O1—B1—O27.0 (3)
O6—C5—C6—C867.4 (3)Rb1—O1—B1—O2126.33 (16)
O4—C5—C6—C8112.7 (2)C2—O1—B1—Rb1133.32 (19)
Rb1ii—C5—C6—C8132.5 (2)C6—O5—B1—O1141.1 (2)
C4—C2—O1—B1126.4 (3)Rb1—O5—B1—O14.1 (2)
C1—C2—O1—B18.4 (3)C6—O5—B1—O415.5 (2)
C3—C2—O1—B1109.9 (3)Rb1—O5—B1—O4121.45 (15)
C4—C2—O1—Rb18.8 (3)C6—O5—B1—O2100.5 (2)
C1—C2—O1—Rb1109.23 (18)Rb1—O5—B1—O2122.48 (16)
C3—C2—O1—Rb1132.4 (2)C6—O5—B1—Rb1136.98 (18)
O3—C1—O2—B1176.1 (3)C5—O4—B1—O1137.0 (2)
C2—C1—O2—B12.8 (3)C5—O4—B1—O512.1 (3)
Rb1v—C1—O2—B1135.54 (17)C5—O4—B1—O2106.9 (2)
O2—C1—O3—Rb1v56.6 (3)C5—O4—B1—Rb170.3 (2)
C2—C1—O3—Rb1v122.2 (2)C1—O2—B1—O12.4 (3)
O6—C5—O4—B1175.9 (2)C1—O2—B1—O5125.8 (2)
C6—C5—O4—B14.2 (3)C1—O2—B1—O4120.0 (2)
Rb1ii—C5—O4—B1152.81 (16)C1—O2—B1—Rb163.0 (3)
C7—C6—O5—B1130.8 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+2, z+1; (v) x+1/2, y1/2, z+3/2; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H2···O5iii0.84 (2)2.22 (2)3.049 (3)169 (5)
O7—H1···O3vii0.86 (4)2.14 (4)2.826 (4)137 (4)
Symmetry codes: (iii) x+1/2, y+1/2, z+3/2; (vii) x, y+1, z.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology Madras (IITM), Chennai 600 036, Tamilnadu, India, for recording the single-crystal X-ray diffraction data.

References

First citationAllen, J. L., Paillard, E., Boyle, P. D. & Henderson, W. A. (2012). Acta Cryst. E68, m749.  CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds