metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tris(1,10-phenanthroline-κ2N,N′)cobalt(II) bis­­(2,4,5-tri­carb­­oxy­benzoate) monohydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Biology and Environment, Nanjing Polytechnic Institute, Nanjing, 210048, People's Republic of China
*Correspondence e-mail: zklong76@163.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 December 2018; accepted 11 January 2019; online 15 January 2019)

In the complex cation of the title salt, [Co(C12H8N2)3](C10H5O8)2·H2O, the CoII cation is situated on a twofold rotation axis and is coordinated in a distorted octa­hedral manner by six N atoms from three chelating 1,10-phenanthroline (phen) ligands. In the crystal, the non-coordinating 2,4,5-tri­carb­oxy­benzoate anions inter­act with each other via O—H⋯O hydrogen bonds, generating a two-dimensional network parallel to (100). Adjacent sheets are connected by waterO—H⋯Ocarboxyl­ate hydrogen bonds, resulting in a three-dimensional network structure that surrounds the complex cations.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzene-1,2,4,5-tetra­carb­oxy­lic acid has been widely used to construct materials with metal–organic framework structures, because it not only possesses different coordination modes depending on the four carboxyl groups that can be completely or only partially deprotonated, but it can also act as a hydrogen-bond acceptor or donor. 1,10-Phenanthroline (phen) has also been well employed as a chelating ligand in coordination chemistry and in the assembly of metal–organic frameworks. Many cobalt complexes with benzene-1,2,4,5-tetra­carboxyl­ate acid and phen have been synthesized and reported, such as catena-[(μ4-benzene-1,4-di­carboxyl­ato-2,5-di­carb­oxy­lic acid)(μ2-benzene-1,4-di­carboxyl­ato-2,5-di­carb­oxy­lic acid)di­aqua­bis­(1,10-phenanthroline)dicobalt(II)] (Hu et al., 2004[Hu, M.-L., Xiao, H.-P. & Yuan, J.-X. (2004). Acta Cryst. C60, m112-m113.]), (μ2-benzene-1,2,4,5-tetra­carboxyl­ato)hexa­aqua­bis­(1,10-phenanthroline)di­cobalt(II) dihydrate (Qi et al., 2005[Qi, Y.-F., Wang, X.-L., Wang, E.-B., Qin, C. & Na, H. (2005). J. Coord. Chem. 58, 1289-1297.]; Rogan et al., 2006[Rogan, J., Poleti, D. & Karanović, L. (2006). Z. Anorg. Allg. Chem. 632, 133-139.]), (μ2-benzene-1,2,4,5-tetra­carboxyl­ato)tetra­aqua­bis­(1,10-phenanthroline)dicobalt(II) (Shi et al., 2009[Shi, Z. F., Jin, J., Niu, S. Y., Zhang, L., Li, L. & Chi, Y. X. (2009). Acta Chim. Sinica, 67, 2087-2094.]), tri­aqua­(4,6-bis­(meth­oxy­carbon­yl)isophthalato)(1,10-phenanthroline)cobalt(II) methanol solvate (Baruah et al., 2007[Baruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479-4488.]), (1,10-phenanthroline)tri­aqua­(di­hydrogen benzene-1,2,4,5-tetra­carboxyl­ato)cobalt(II) monohydrate (Bo et al., 2007[Bo, Q. B., Zhao, S. Y., Zhang, Z. W., Sheng, Y. L., Sun, Z. X., Sun, G. X., Chen, C. L. & Li, Y. X. (2007). Russ. J. Coord. Chem. 33, 471-481.]). However, reports of benzene-1,2,4,5-tetra­carboxyl­ate acting only as a counter-anion are rare, e.g. tris­(1,10-phenanthroline)cobalt(II) 2,3,4-tri­carb­oxy­benzoate hemi(2,4-di­carb­oxy­benzene-1,3-di­carboxyl­ate) di­methyl­formamide solvate hexa­hydrate (Tao et al., 2012[Tao, B., Xia, H., Zhu, Y.-F. & Wang, X. (2012). Russ. J. Inorg. Chem. 57, 822-826.]) and bis­[tetra­aqua-(1,10-phenan­thro­line-N,N′)cobalt(II)] 1,2,4,5-benzene­tetra­carboxyl­ate (Wang et al., 2005[Wang, D.-Y., Liu, G., Zheng, B., Lu, J. & Hu, H.-M. (2005). Acta Cryst. E61, m925-m927.]). The title compound, tris­(1,10-phenan­thro­line-κ2N:N′)cobalt(II) bis­(2,4,5-tri­carb­oxy­benzoate) mono­hydrate, was obtained unintentionally during an attempt to synthesize a mixed-ligand cobalt complex with multi­carboxyl­ate and phen ligands via a hydro­thermal reaction.

The asymmetric unit of the title compound comprises one half of the complex [Co(phen)3]2+ cation, one benzene-1,2,4,5-tetra­carboxyl­ate anion and one half of a water mol­ecule of crystallization (Fig. 1[link]). The CoII atom lies on a twofold rotation axis, which bis­ects the phen ligand containing atom N3; the water mol­ecule of crystallization lies on the same rotation axis. In the complex cation, the CoII atom is coordinated in a distorted octa­hedral manner by six N atoms from three chelating 1,10-phenanthroline (phen) ligands (Table 1[link]). The N1—Co—N1i [symmetry code: (i) − x + 1, y, −z + [{1\over 2}]] angle is nearly linear [172.28 (9) Å]. The cis bond angles around the CoII atom range from 78.74 (6)–96.09 (6) Å. The planes of adjacent phen groups N1/N2/C1–C12 and N3/N3i/C13–C18/C13i–C18i and the symmetry-related counterpart of N1/N2/C1–C12 make dihedral angles of 85.27 (5) and 71.71 (4)°, respectively. In the 2,4,5-tri­carb­oxy­benzoate anion, the dihedral angles between the least-squares planes of the benzene ring and the carb­oxy/carboxyl­ate groups are 15.6 (3)° (C27/O5/O6), 4.7 (2)° (C26/O3/O4), 3.3 (3)° (C28/O3/O4) and 87.9 (3)° (C25/O1/O2). Thus, three of the appended groups are roughly coplanar with the central benzene plane, while the fourth is approximately normal to it (Fig. 1[link]). Intra­molecular O—H⋯O hydrogen bonding is observed for one of the three carb­oxy­lic groups to an adjacent carboxyl­ate O atom (O7—H3⋯O6; Table 2[link]).

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.1159 (17) Co1—N3 2.1412 (16)
Co1—N2 2.1251 (16)    
       
N1i—Co1—N1 172.28 (9) N1—Co1—N3 90.72 (6)
N1—Co1—N2i 96.09 (6) N1—Co1—N3i 95.27 (6)
N1—Co1—N2 78.74 (6)    
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1 0.82 2.05 2.854 (2) 165
O2—H1⋯O6ii 0.82 1.79 2.615 (2) 179
O4—H2⋯O5iii 0.82 1.87 2.681 (2) 170
O7—H3⋯O6 0.82 1.64 2.443 (2) 164
Symmetry codes: (ii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Expanded asymmetric unit of the title salt, showing the atom-numbering scheme, with displacement ellipsoids drawn at the 30% probability level. Unlabelled atoms are generated by the symmetry operation − x + 1, y, −z + [{1\over 2}].

In the crystal, neighbouring benzene-1,2,4,5-tetra­carboxyl­ate anions inter­act through carbox­ylO—H⋯Ocarboxyl­ate hydrogen bonds (O2—H1⋯Oii and O4—H2⋯O5iii) [symmetry codes as in Table 2[link]] to build up an extended two-dimensional network extending parallel to (100) within which an R66(38) motif can be discerned (Fig. 2[link], Table 2[link]). Adjacent sheets are inter­connected by water–carboxyl­ate hydrogen bonds O1W—H1WA⋯O1, resulting in a three-dimensional supra­molecular structure with channels along [100] that are filled by [Co(phen)3]2+ complex cations (Fig. 3[link]).

[Figure 2]
Figure 2
Supra­molecular sheet, formed by O—H⋯O hydrogen bonds (shown as dashed lines) between benzene-1,2,4,5-tetra­carboxyl­ate anions. The complex cations and water mol­ecules have been omitted for clarity. [Symmetry codes refer to Table 2[link].]
[Figure 3]
Figure 3
The packing of the title compound. All C-bound H atoms have been omitted for clarity and hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

0.1 mmol of CoSO4·7H2O, 0.3 mmol of 1,10-phenanthroline, 0.2 mmol of benzene-1,2,4,5-tetra­carb­oxy­lic acid and 15 ml of water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 393 K for 48 h. The tube was cooled to ambient temperature spontaneously, whereupon brown block-shaped crystals (51% yield, based on Co) suitable for X-ray analysis were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Co(C12H8N2)3](C10H5O8)2·H2O
Mr 1123.84
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 24.014 (2), 14.1324 (8), 15.8922 (12)
β (°) 116.505 (8)
V3) 4826.6 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.44
Crystal size (mm) 0.32 × 0.25 × 0.15
 
Data collection
Diffractometer Rigaku Mercury CCD
Absorption correction Multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.760, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11427, 5584, 4395
Rint 0.030
(sin θ/λ)max−1) 0.692
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.102, 1.03
No. of reflections 5584
No. of parameters 362
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.42
Computer programs: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Tris(1,10-phenanthroline-κ2N,N')cobalt(II) bis(2,4,5-tricarboxybenzoate) monohydrate top
Crystal data top
[Co(C12H8N2)3](C10H5O8)2·H2OF(000) = 2308
Mr = 1123.84Dx = 1.547 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.014 (2) ÅCell parameters from 3101 reflections
b = 14.1324 (8) Åθ = 3.9–29.3°
c = 15.8922 (12) ŵ = 0.44 mm1
β = 116.505 (8)°T = 173 K
V = 4826.6 (7) Å3Block, brown
Z = 40.32 × 0.25 × 0.15 mm
Data collection top
Rigaku Mercury CCD
diffractometer
5584 independent reflections
Radiation source: fine-focus sealed tube4395 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.030
Graphite Monochromator scansθmax = 29.5°, θmin = 3.5°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 3225
Tmin = 0.760, Tmax = 1.000k = 1917
11427 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0357P)2 + 4.8534P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5584 reflectionsΔρmax = 0.34 e Å3
362 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms bound to O atoms were located from a difference Fourier map and constrained to ride on their parent O atoms, with Uiso(H) = 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50001.19153 (3)0.25000.01770 (11)
N10.41551 (8)1.20161 (11)0.12526 (11)0.0194 (4)
N20.52417 (8)1.29112 (11)0.17159 (11)0.0193 (4)
N30.52863 (8)1.07406 (11)0.19354 (11)0.0203 (4)
C170.55687 (11)1.07451 (15)0.13810 (15)0.0266 (5)
H17A0.56631.13260.12000.032*
O10.59618 (7)0.47012 (11)0.39051 (12)0.0335 (4)
O1W0.50000.58043 (19)0.25000.0736 (10)
H1WA0.52980.54710.28290.110*
O20.68365 (8)0.46302 (10)0.52099 (11)0.0304 (4)
H10.71690.49010.55140.046*
O30.70717 (7)0.44158 (9)0.34916 (10)0.0259 (3)
O40.74848 (8)0.53589 (10)0.27884 (11)0.0328 (4)
H20.75780.48360.26650.049*
O50.73113 (8)0.86923 (10)0.28307 (12)0.0361 (4)
O60.71041 (7)0.94971 (9)0.38479 (11)0.0277 (4)
O70.64057 (8)0.93373 (10)0.45814 (13)0.0406 (5)
H30.65830.93830.42450.061*
O80.60100 (10)0.81840 (11)0.50479 (14)0.0500 (5)
C10.36137 (10)1.15973 (15)0.10432 (15)0.0256 (5)
H1A0.35741.12420.15060.031*
C20.31024 (11)1.16662 (16)0.01607 (16)0.0302 (5)
H2A0.27291.13690.00440.036*
C30.31572 (10)1.21766 (15)0.05299 (15)0.0287 (5)
H3A0.28241.22150.11260.034*
C40.37175 (10)1.26408 (14)0.03349 (14)0.0217 (4)
C50.38197 (11)1.31980 (15)0.10107 (15)0.0281 (5)
H5A0.34981.32670.16140.034*
C60.43679 (11)1.36204 (14)0.07933 (14)0.0263 (5)
H6A0.44221.39660.12500.032*
C70.48707 (10)1.35460 (13)0.01330 (14)0.0220 (4)
C80.54479 (10)1.40022 (14)0.04180 (16)0.0257 (5)
H8A0.55231.43650.00090.031*
C100.57776 (10)1.33611 (14)0.19553 (15)0.0246 (5)
H10A0.60861.33080.25710.030*
C120.42081 (9)1.25390 (13)0.05729 (13)0.0178 (4)
C110.47898 (9)1.30083 (13)0.08158 (13)0.0182 (4)
C190.66735 (9)0.59724 (13)0.41742 (14)0.0191 (4)
C200.70134 (9)0.60717 (13)0.36600 (13)0.0168 (4)
C210.71463 (9)0.69806 (13)0.34666 (13)0.0172 (4)
H21A0.73810.70480.31360.021*
C220.69446 (9)0.78005 (13)0.37449 (13)0.0161 (4)
C230.66035 (9)0.76940 (13)0.42697 (13)0.0185 (4)
C240.64829 (10)0.67741 (14)0.44699 (14)0.0222 (4)
H24A0.62630.66990.48210.027*
C250.64661 (11)0.50314 (14)0.43963 (15)0.0236 (5)
C260.71991 (9)0.51990 (13)0.33138 (13)0.0187 (4)
C270.71286 (10)0.87263 (13)0.34414 (14)0.0205 (4)
C280.63172 (11)0.84377 (15)0.46626 (16)0.0278 (5)
C90.58980 (11)1.39097 (15)0.13255 (16)0.0281 (5)
H9A0.62801.42100.15200.034*
C160.57307 (12)0.99218 (16)0.10572 (17)0.0347 (6)
H16A0.59280.99550.06700.042*
C150.55938 (12)0.90636 (16)0.13202 (17)0.0354 (6)
H15A0.56970.85080.11090.042*
C130.51427 (12)0.81529 (14)0.22173 (17)0.0319 (5)
H13A0.52390.75800.20260.038*
C180.51533 (9)0.98834 (13)0.21980 (13)0.0184 (4)
C140.52980 (11)0.90204 (14)0.19094 (15)0.0253 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0236 (2)0.01387 (18)0.01681 (19)0.0000.01004 (16)0.000
N10.0205 (9)0.0169 (8)0.0206 (8)0.0012 (7)0.0091 (7)0.0011 (7)
N20.0228 (9)0.0135 (7)0.0207 (8)0.0011 (7)0.0089 (7)0.0014 (7)
N30.0273 (10)0.0171 (8)0.0202 (8)0.0015 (7)0.0140 (8)0.0005 (7)
C170.0371 (13)0.0219 (10)0.0299 (12)0.0014 (10)0.0233 (11)0.0016 (9)
O10.0300 (9)0.0225 (8)0.0474 (10)0.0075 (7)0.0169 (8)0.0004 (7)
O1W0.068 (2)0.0336 (15)0.078 (2)0.0000.0035 (18)0.000
O20.0412 (10)0.0200 (7)0.0310 (8)0.0084 (7)0.0170 (8)0.0034 (7)
O30.0368 (9)0.0143 (7)0.0308 (8)0.0006 (6)0.0189 (7)0.0003 (6)
O40.0573 (11)0.0171 (7)0.0432 (10)0.0036 (7)0.0397 (9)0.0020 (7)
O50.0649 (12)0.0198 (8)0.0439 (10)0.0044 (8)0.0425 (9)0.0007 (7)
O60.0409 (10)0.0137 (6)0.0363 (9)0.0041 (7)0.0242 (8)0.0034 (6)
O70.0658 (13)0.0157 (7)0.0660 (12)0.0013 (8)0.0526 (11)0.0034 (8)
O80.0835 (15)0.0252 (9)0.0814 (14)0.0001 (9)0.0728 (13)0.0049 (9)
C10.0283 (12)0.0206 (10)0.0282 (11)0.0044 (9)0.0129 (10)0.0027 (9)
C20.0248 (12)0.0280 (11)0.0341 (12)0.0056 (10)0.0099 (10)0.0079 (10)
C30.0251 (12)0.0263 (11)0.0254 (11)0.0033 (10)0.0028 (10)0.0056 (9)
C40.0268 (11)0.0167 (9)0.0195 (10)0.0064 (9)0.0084 (9)0.0039 (8)
C50.0395 (14)0.0235 (10)0.0173 (10)0.0082 (10)0.0092 (10)0.0003 (9)
C60.0438 (14)0.0188 (10)0.0213 (10)0.0081 (10)0.0189 (10)0.0047 (9)
C70.0331 (12)0.0143 (9)0.0258 (11)0.0052 (9)0.0196 (10)0.0001 (8)
C80.0364 (13)0.0163 (9)0.0348 (12)0.0034 (9)0.0252 (11)0.0043 (9)
C100.0265 (12)0.0184 (9)0.0279 (11)0.0047 (9)0.0112 (10)0.0037 (9)
C120.0241 (11)0.0130 (8)0.0178 (9)0.0023 (8)0.0105 (8)0.0029 (8)
C110.0247 (11)0.0116 (8)0.0205 (10)0.0029 (8)0.0120 (9)0.0004 (8)
C190.0218 (11)0.0153 (9)0.0211 (10)0.0017 (8)0.0104 (9)0.0003 (8)
C200.0193 (10)0.0149 (9)0.0156 (9)0.0008 (8)0.0074 (8)0.0007 (8)
C210.0208 (10)0.0177 (9)0.0145 (9)0.0005 (8)0.0092 (8)0.0006 (8)
C220.0193 (10)0.0131 (8)0.0146 (9)0.0001 (8)0.0064 (8)0.0008 (7)
C230.0230 (11)0.0141 (9)0.0199 (10)0.0013 (8)0.0108 (9)0.0013 (8)
C240.0291 (12)0.0186 (10)0.0273 (11)0.0006 (9)0.0201 (10)0.0003 (8)
C250.0321 (13)0.0149 (9)0.0318 (12)0.0002 (9)0.0213 (10)0.0023 (9)
C260.0215 (11)0.0168 (9)0.0164 (9)0.0022 (8)0.0073 (8)0.0014 (8)
C270.0239 (11)0.0153 (9)0.0214 (10)0.0014 (8)0.0093 (9)0.0021 (8)
C280.0398 (14)0.0185 (10)0.0352 (12)0.0026 (10)0.0258 (11)0.0026 (9)
C90.0294 (12)0.0206 (10)0.0402 (13)0.0052 (10)0.0208 (11)0.0021 (10)
C160.0525 (16)0.0291 (12)0.0422 (14)0.0007 (11)0.0390 (13)0.0011 (11)
C150.0532 (16)0.0229 (11)0.0457 (15)0.0055 (11)0.0362 (13)0.0051 (11)
C130.0496 (15)0.0136 (9)0.0422 (13)0.0030 (10)0.0291 (12)0.0021 (9)
C180.0209 (10)0.0161 (9)0.0187 (9)0.0002 (8)0.0095 (8)0.0005 (8)
C140.0342 (13)0.0174 (10)0.0305 (11)0.0023 (9)0.0198 (10)0.0004 (9)
Geometric parameters (Å, º) top
Co1—N1i2.1158 (17)C5—C61.343 (3)
Co1—N12.1159 (17)C5—H5A0.9300
Co1—N2i2.1251 (16)C6—C71.432 (3)
Co1—N22.1251 (16)C6—H6A0.9300
Co1—N32.1412 (16)C7—C111.407 (3)
Co1—N3i2.1412 (16)C7—C81.408 (3)
N1—C11.329 (3)C8—C91.369 (3)
N1—C121.361 (2)C8—H8A0.9300
N2—C101.330 (3)C10—C91.395 (3)
N2—C111.363 (2)C10—H10A0.9300
N3—C171.330 (2)C12—C111.435 (3)
N3—C181.365 (2)C19—C241.380 (3)
C17—C161.396 (3)C19—C201.396 (3)
C17—H17A0.9300C19—C251.516 (3)
O1—C251.204 (3)C20—C211.391 (3)
O1W—H1WA0.8199C20—C261.497 (3)
O2—C251.326 (3)C21—C221.401 (3)
O2—H10.8200C21—H21A0.9300
O3—C261.215 (2)C22—C231.414 (3)
O4—C261.315 (2)C22—C271.526 (3)
O4—H20.8203C23—C241.399 (3)
O5—C271.232 (2)C23—C281.533 (3)
O6—C271.281 (2)C24—H24A0.9300
O7—C281.305 (2)C9—H9A0.9300
O7—H30.8200C16—C151.370 (3)
O8—C281.205 (3)C16—H16A0.9300
C1—C21.395 (3)C15—C141.407 (3)
C1—H1A0.9300C15—H15A0.9300
C2—C31.368 (3)C13—C13i1.352 (4)
C2—H2A0.9300C13—C141.430 (3)
C3—C41.401 (3)C13—H13A0.9300
C3—H3A0.9300C18—C141.400 (3)
C4—C121.405 (3)C18—C18i1.447 (4)
C4—C51.438 (3)
N1i—Co1—N1172.28 (9)C9—C10—H10A118.5
N1i—Co1—N2i78.74 (6)N1—C12—C4122.56 (19)
N1—Co1—N2i96.09 (6)N1—C12—C11117.53 (17)
N1i—Co1—N296.09 (6)C4—C12—C11119.91 (18)
N1—Co1—N278.74 (6)N2—C11—C7122.98 (19)
N2i—Co1—N297.05 (9)N2—C11—C12117.35 (17)
N1i—Co1—N395.27 (6)C7—C11—C12119.67 (18)
N1—Co1—N390.72 (6)C24—C19—C20119.07 (18)
N2i—Co1—N3169.13 (6)C24—C19—C25116.58 (17)
N2—Co1—N392.57 (6)C20—C19—C25124.27 (17)
N1i—Co1—N3i90.72 (6)C21—C20—C19118.30 (17)
N1—Co1—N3i95.27 (6)C21—C20—C26122.97 (17)
N2i—Co1—N3i92.57 (6)C19—C20—C26118.69 (17)
N2—Co1—N3i169.13 (6)C20—C21—C22123.24 (17)
N3—Co1—N3i78.33 (8)C20—C21—H21A118.4
C1—N1—C12118.09 (18)C22—C21—H21A118.4
C1—N1—Co1128.81 (14)C21—C22—C23118.10 (16)
C12—N1—Co1112.95 (13)C21—C22—C27114.80 (16)
C10—N2—C11117.90 (17)C23—C22—C27127.10 (17)
C10—N2—Co1129.17 (14)C24—C23—C22117.79 (17)
C11—N2—Co1112.59 (13)C24—C23—C28111.63 (17)
C17—N3—C18117.70 (17)C22—C23—C28130.58 (17)
C17—N3—Co1128.89 (14)C19—C24—C23123.47 (18)
C18—N3—Co1113.40 (12)C19—C24—H24A118.3
N3—C17—C16123.26 (19)C23—C24—H24A118.3
N3—C17—H17A118.4O1—C25—O2120.63 (19)
C16—C17—H17A118.4O1—C25—C19121.9 (2)
C25—O2—H1115.4O2—C25—C19117.07 (19)
C26—O4—H2105.8O3—C26—O4124.13 (18)
C28—O7—H3107.2O3—C26—C20121.18 (17)
N1—C1—C2123.0 (2)O4—C26—C20114.65 (16)
N1—C1—H1A118.5O5—C27—O6122.90 (18)
C2—C1—H1A118.5O5—C27—C22118.08 (17)
C3—C2—C1119.1 (2)O6—C27—C22118.99 (17)
C3—C2—H2A120.4O8—C28—O7120.27 (19)
C1—C2—H2A120.4O8—C28—C23119.38 (19)
C2—C3—C4119.7 (2)O7—C28—C23120.35 (18)
C2—C3—H3A120.1C8—C9—C10119.3 (2)
C4—C3—H3A120.1C8—C9—H9A120.3
C3—C4—C12117.49 (19)C10—C9—H9A120.3
C3—C4—C5123.9 (2)C15—C16—C17118.78 (19)
C12—C4—C5118.6 (2)C15—C16—H16A120.6
C6—C5—C4121.7 (2)C17—C16—H16A120.6
C6—C5—H5A119.1C16—C15—C14120.2 (2)
C4—C5—H5A119.1C16—C15—H15A119.9
C5—C6—C7120.81 (19)C14—C15—H15A119.9
C5—C6—H6A119.6C13i—C13—C14120.97 (12)
C7—C6—H6A119.6C13i—C13—H13A119.5
C11—C7—C8117.01 (19)C14—C13—H13A119.5
C11—C7—C6119.3 (2)N3—C18—C14123.14 (17)
C8—C7—C6123.70 (19)N3—C18—C18i117.43 (10)
C9—C8—C7119.77 (19)C14—C18—C18i119.43 (11)
C9—C8—H8A120.1C18—C14—C15116.94 (19)
C7—C8—H8A120.1C18—C14—C13119.60 (18)
N2—C10—C9123.0 (2)C15—C14—C13123.46 (19)
N2—C10—H10A118.5
C18—N3—C17—C160.3 (3)C20—C21—C22—C231.7 (3)
Co1—N3—C17—C16179.85 (18)C20—C21—C22—C27178.64 (18)
C12—N1—C1—C20.4 (3)C21—C22—C23—C240.7 (3)
Co1—N1—C1—C2174.80 (15)C27—C22—C23—C24179.77 (18)
N1—C1—C2—C30.8 (3)C21—C22—C23—C28179.3 (2)
C1—C2—C3—C41.7 (3)C27—C22—C23—C281.1 (4)
C2—C3—C4—C121.3 (3)C20—C19—C24—C231.1 (3)
C2—C3—C4—C5179.6 (2)C25—C19—C24—C23176.0 (2)
C3—C4—C5—C6179.19 (19)C22—C23—C24—C190.7 (3)
C12—C4—C5—C60.2 (3)C28—C23—C24—C19178.2 (2)
C4—C5—C6—C71.3 (3)C24—C19—C25—O183.3 (3)
C5—C6—C7—C111.1 (3)C20—C19—C25—O193.5 (3)
C5—C6—C7—C8177.31 (19)C24—C19—C25—O289.7 (2)
C11—C7—C8—C90.0 (3)C20—C19—C25—O293.5 (2)
C6—C7—C8—C9178.45 (19)C21—C20—C26—O3179.5 (2)
C11—N2—C10—C91.1 (3)C19—C20—C26—O31.7 (3)
Co1—N2—C10—C9171.70 (15)C21—C20—C26—O41.7 (3)
C1—N1—C12—C40.7 (3)C19—C20—C26—O4176.08 (18)
Co1—N1—C12—C4175.20 (14)C21—C22—C27—O515.1 (3)
C1—N1—C12—C11178.37 (17)C23—C22—C27—O5165.3 (2)
Co1—N1—C12—C115.7 (2)C21—C22—C27—O6162.90 (19)
C3—C4—C12—N10.1 (3)C23—C22—C27—O616.7 (3)
C5—C4—C12—N1179.20 (18)C24—C23—C28—O83.1 (3)
C3—C4—C12—C11179.20 (17)C22—C23—C28—O8175.6 (2)
C5—C4—C12—C111.7 (3)C24—C23—C28—O7176.9 (2)
C10—N2—C11—C71.2 (3)C22—C23—C28—O74.4 (4)
Co1—N2—C11—C7172.78 (14)C7—C8—C9—C100.1 (3)
C10—N2—C11—C12178.44 (17)N2—C10—C9—C80.5 (3)
Co1—N2—C11—C127.6 (2)N3—C17—C16—C150.0 (4)
C8—C7—C11—N20.6 (3)C17—C16—C15—C140.3 (4)
C6—C7—C11—N2179.17 (17)C17—N3—C18—C140.2 (3)
C8—C7—C11—C12178.97 (17)Co1—N3—C18—C14179.89 (17)
C6—C7—C11—C120.4 (3)C17—N3—C18—C18i179.9 (2)
N1—C12—C11—N21.3 (3)Co1—N3—C18—C18i0.0 (3)
C4—C12—C11—N2177.76 (16)N3—C18—C14—C150.1 (3)
N1—C12—C11—C7179.04 (17)C18i—C18—C14—C15179.8 (2)
C4—C12—C11—C71.8 (3)N3—C18—C14—C13180.0 (2)
C24—C19—C20—C210.0 (3)C18i—C18—C14—C130.2 (4)
C25—C19—C20—C21176.80 (19)C16—C15—C14—C180.3 (4)
C24—C19—C20—C26177.91 (18)C16—C15—C14—C13179.7 (2)
C25—C19—C20—C261.1 (3)C13i—C13—C14—C180.1 (4)
C19—C20—C21—C221.4 (3)C13i—C13—C14—C15179.9 (3)
C26—C20—C21—C22176.40 (18)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.822.052.854 (2)165
O2—H1···O6ii0.821.792.615 (2)179
O4—H2···O5iii0.821.872.681 (2)170
O7—H3···O60.821.642.443 (2)164
Symmetry codes: (ii) x+3/2, y+3/2, z+1; (iii) x+3/2, y1/2, z+1/2.
 

Funding information

This work was supported by the Scientific Research Foundation of Nanjing Polytechnic Institute (grant No. NHKY-2016–11).

References

First citationBaruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479–4488.  Web of Science CrossRef CAS Google Scholar
First citationBo, Q. B., Zhao, S. Y., Zhang, Z. W., Sheng, Y. L., Sun, Z. X., Sun, G. X., Chen, C. L. & Li, Y. X. (2007). Russ. J. Coord. Chem. 33, 471–481.  CrossRef CAS Google Scholar
First citationHu, M.-L., Xiao, H.-P. & Yuan, J.-X. (2004). Acta Cryst. C60, m112–m113.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationQi, Y.-F., Wang, X.-L., Wang, E.-B., Qin, C. & Na, H. (2005). J. Coord. Chem. 58, 1289–1297.  CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRogan, J., Poleti, D. & Karanović, L. (2006). Z. Anorg. Allg. Chem. 632, 133–139.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Z. F., Jin, J., Niu, S. Y., Zhang, L., Li, L. & Chi, Y. X. (2009). Acta Chim. Sinica, 67, 2087–2094.  CAS Google Scholar
First citationTao, B., Xia, H., Zhu, Y.-F. & Wang, X. (2012). Russ. J. Inorg. Chem. 57, 822–826.  CrossRef CAS Google Scholar
First citationWang, D.-Y., Liu, G., Zheng, B., Lu, J. & Hu, H.-M. (2005). Acta Cryst. E61, m925–m927.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds