metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

fac-Bromido/chlorido­(0.50/0.50)[3-carbamoyl-1-(1,10-phenanthrolin-2-ylmeth­yl)pyridinium-κ2N,N′]tri­carbonyl­manganese(I) 0.49-bromide 0.51-chloride methanol monosolvate

CROSSMARK_Color_square_no_text.svg

aGraduate School of Science and Engineering, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, bInstitute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, and cDepartment of Industrial Systems Engineering, Cluster of Science and Engineering, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
*Correspondence e-mail: daio@sss.fukushima-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 December 2018; accepted 19 December 2018; online 4 January 2018)

The title complex, [MnBr0.50Cl0.50(C19H15N4O)(CO)3]Br0.49Cl0.51·CH3OH, exhibits substitutional disorder of the halogen ligand in the asymmetric unit, with almost the same occupancies for Br and Cl. The MnI atom is coordinated in a distorted octa­hedral environment by three carbonyl C atoms, the disordered X ligand (X = Br or Cl) and two N atoms from the 1,10-phenanthroline ligand bearing a nicotinamide pendant moiety. The cation displays a fac configuration of the carbonyl ligands. There is another disorder between the chloride ligand and its trans-situated carbonyl ligand, and between Cl and Br at the position of the counter-anion. In the crystal, inter­molecular C—H⋯X, N—H⋯X, O—H⋯X (X = Br or Cl) and C—H⋯O hydrogen bonds lead to the formation of a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The group 7 metal complexes of general formula [MX(CO)3(N[^\wedge]N)] (M = MnI, ReI; X = Br, Cl; N[^\wedge]N = 2,2′-bi­pyridine or 1,10-phenanthroline derivatives) have been extensively studied for their catalytic CO2 reduction abilities over recent decades (Francke et al., 2018[Francke, R., Schille, B. & Roemelt, M. (2018). Chem. Rev. 118, 4631-4701.]). Because the single-electron reduction of CO2 is highly unfavorable, the reduction of CO2 via proton-assisted multi-electron transfer is one of the best strategies (Tanaka & Ooyama, 2002[Tanaka, K. & Ooyama, D. (2002). Coord. Chem. Rev. 226, 211-218.]). In fact, the introduction of phenolic functional groups into the bipyridyl supporting ligands, which can act as proton donors, have shown enhanced catalytic performance (Agarwal et al., 2015[Agarwal, J., Shaw, T. W., Schaefer, H. F. III & Bocarsly, A. B. (2015). Inorg. Chem. 54, 5285-5294.]). Thus, we focused on simulating the biological function of coenzyme nicotinamide adenine dinucleotide (NAD) that can transfer a hydride ion reversibly.

Herein we report on the synthesis and structural characterization of a new complex of the type fac-[MnX(CO)3(N[^\wedge]N)]+, in which the phenanthroline ligand (N[^\wedge]N) contains an NAD-mimic moiety (N-methyl­ated nicotinamide).

The title complex was synthesized by reacting bromido­penta­carbonyl­manganese(I) with 3-carbamoyl-1-(1,10-phen­an­throlin-2-ylmeth­yl)pyridinium chloride. As a consequence, the compound exhibits substitutional disorder of Cl and Br at the two halogen sites in the asymmetric unit. The halogen site (X1) bonded to Mn shows an occupancy of 1:1 for Br and Cl, just like the halogen site of the counter-anion (X2). The coordination environment of the central MnI atom in the complex cation is distorted octa­hedral, defined by two N atoms of the bidentate phenanthroline ligand, the X ligand and three carbonyl C atoms, whereby the carbonyl ligands are arranged in a fac configuration (Fig. 1[link]). The Mn—N bond lengths [2.054 (3) and 2.117 (2) Å] are similar to those previously reported for complexes of this type (fac-[MnBr(CO)3(N[^\wedge]N)], where N[^\wedge]N = 1,10-phenanthroline deriv­atives; Jimenez et al., 2015[Jimenez, J., Chakraborty, I. & Mascharak, P. K. (2015). Eur. J. Inorg. Chem. pp. 5021-5026.]; Kurtz et al., 2015[Kurtz, D. A., Dhakal, B., Hulme, R. J., Nichol, G. S. & Felton, G. A. N. (2015). Inorg. Chim. Acta, 427, 22-26.]). Of the three Mn—C bond lengths, the axial Mn—C one [1.846 (7) Å] is considerably longer compared to the equatorial Mn—C ones [1.807 (3) and 1.811 (3) Å] due to the trans influence of the halide ligands. In addition, there is another disorder of the Cl1 ligand that is split into one position near the Br1 ligand and a position opposite to that (Cl3) where it is positionally disordered with a carbonyl ligand (C1≡O1). The occupancies of Cl3 and C1≡O1 are 0.225 (6):0.775 (6). Due to the observed disorder, the compound crystallizes as a racemate, i.e. a mixture of C and A isomers in the unit cell. The nicotinamide moiety is located at the 2-position of the phenanthroline ligand, and is close to being perpendicular to the latter, with a dihedral angle of 84.2 (7)°. Also, there is intra­molecular C—H⋯O inter­action in the complex cation (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1⋯Br2a 0.88 2.68 3.478 (3) 152
N4—H1⋯Cl2b 0.88 2.46 3.279 (6) 155
N4—H2⋯Br2ai 0.88 2.48 3.326 (3) 162
N4—H2⋯Cl2bi 0.88 2.40 3.239 (6) 160
O5—H19⋯Br2ai 0.84 2.47 3.276 (3) 161
O5—H19⋯Cl2bi 0.84 2.41 3.218 (5) 163
C5—H4⋯O5ii 0.95 2.49 3.370 (4) 154
C6—H5⋯Br1biii 0.95 2.90 3.735 (4) 147
C16—H10⋯O4iv 0.99 2.39 3.120 (4) 130
C16—H11⋯Br2av 0.99 2.78 3.678 (3) 150
C17—H12⋯O1cvi 0.95 2.46 3.224 (5) 137
C19—H14⋯Br2ai 0.95 2.72 3.667 (3) 172
C19—H14⋯Cl2bi 0.95 2.77 3.702 (6) 167
C21—H15⋯O4 0.95 2.35 2.702 (4) 101
C21—H15⋯O4iv 0.95 2.33 3.074 (4) 135
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) -x+2, -y+1, -z+2; (v) x, y-1, z; (vi) x-1, y, z.
[Figure 1]
Figure 1
The structures of the mol­ecular components in the title salt (C isomer; i.e. only the major components of the disorder between X1 and C1≡O1 are shown), with atom labels and displacement ellipsoids for non-H atoms drawn at the 50% probability level.

In the crystal structure, a methanol solvent mol­ecule is incorporated per formula unit. There are weak C—H⋯X, N—H⋯X, O—H⋯X (X = Br or Cl) and C—H⋯O hydrogen bonds between the complex cation, the counter-anion and/or the solvent mol­ecule, leading to the formation of a three-dimensional network structure (Table 1[link], Fig. 2[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound with hydrogen bonds shown as dashed lines (for numerical values, see: Table 1[link]).

Synthesis and crystallization

The ligand, 3-carbamoyl-1-(1,10-phenanthrolin-2-ylmeth­yl)pyridinium chloride (pnaCl), was prepared as described by Engbersen et al. (1990[Engbersen, J. F. J., Koudijs, A. & Van der Plas, H. C. (1990). J. Org. Chem. 55, 3647-3654.]). It proved to be analytically and spectroscopically pure (IR and 1H NMR data). [MnBr(CO)5] (85 mg, 0.31 mmol) and pnaCl (106 mg, 0.27 mmol) were dissolved in methanol (15 ml). The reaction mixture was stirred in the dark at room temperature for 24 h. An excess of Et2O was added to the solution, and then it was allowed to stand at 277 K overnight. The resultant orange-coloured precipitate was collected by filtration and washed with Et2O, and then dried under vacuum (yield 144 mg, 94%). Crystals suitable for the X-ray diffraction experiment were grown by diffusion of Et2O into a methanol solution of the complex over a few days. From energy-dispersive X-ray (EDX) analysis of the crystals, the Mn/Br/Cl molar ratio could be estimated to be nearly 1:1:1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The two halide sites were refined as being substitutionally disordered between bromine and chlorine, with an occupancy of 0.5071 (10) for Br1 and of 0.507 (6) for {Cl1+Cl3}, and with 0.4929 (10) for Br2 and 0.5071 (10) for Cl2. The CO group (C1≡O1) and the Cl3 atom trans to this group were refined as being disordered over two sets of sites, with occupancies of 0.775 (6) for the carbonyl group and 0.225 (6) for the Cl3 ligand.

Table 2
Experimental details

Crystal data
Chemical formula [MnBr0.50Cl0.50(C19H15N4O)(CO)3]Br0.49Cl0.51·CH4O
Mr 601.72
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 93
a, b, c (Å) 7.9489 (2), 9.3587 (3), 16.6744 (5)
α, β, γ (°) 87.3910 (8), 76.4891 (8), 80.8427 (8)
V3) 1190.69 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.39
Crystal size (mm) 0.20 × 0.15 × 0.05
 
Data collection
Diffractometer Rigaku Saturn70
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB and PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.517, 0.620
No. of measured, independent and observed [I > 2σ(I)] reflections 12472, 5395, 5073
Rint 0.017
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.088, 1.15
No. of reflections 5395
No. of parameters 324
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.14, −0.62
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). REQAB and PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

fac-Bromido/chlorido(0.50/0.50)[3-carbamoyl-1-(1,10-phenanthrolin-2-ylmethyl)pyridinium-κ2N,N']tricarbonylmanganese(I) 0.49-bromide 0.51-chloride methanol monosolvate top
Crystal data top
[MnBr0.50Cl0.50(C19H15N4O)(CO)3]Br0.49Cl0.51·CH4OZ = 2
Mr = 601.72F(000) = 604.00
Triclinic, P1Dx = 1.678 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.9489 (2) ÅCell parameters from 11817 reflections
b = 9.3587 (3) Åθ = 3.2–27.5°
c = 16.6744 (5) ŵ = 2.39 mm1
α = 87.3910 (8)°T = 93 K
β = 76.4891 (8)°Prism, yellow
γ = 80.8427 (8)°0.20 × 0.15 × 0.05 mm
V = 1190.69 (6) Å3
Data collection top
Rigaku Saturn70
diffractometer
5073 reflections with F2 > 2.0σ(F2)
Detector resolution: 29.257 pixels mm-1Rint = 0.017
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1010
Tmin = 0.517, Tmax = 0.620k = 1212
12472 measured reflectionsl = 2121
5395 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0244P)2 + 2.2804P]
where P = (Fo2 + 2Fc2)/3
5395 reflections(Δ/σ)max = 0.013
324 parametersΔρmax = 1.14 e Å3
1 restraintΔρmin = 0.62 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br1b0.8929 (5)0.3755 (3)0.63846 (13)0.02015 (14)0.5071 (10)
Br2a0.7235 (3)1.08330 (19)1.08656 (7)0.02015 (14)0.4929 (10)
Mn11.16958 (5)0.27016 (4)0.67869 (2)0.01900 (10)
Cl1e0.9096 (19)0.3654 (13)0.6366 (7)0.02015 (14)0.282 (6)
Cl2b0.6988 (8)1.0673 (5)1.08955 (18)0.02015 (14)0.5071 (10)
Cl3d1.4134 (8)0.1740 (6)0.7245 (3)0.02015 (14)0.225 (6)
O1c1.4948 (5)0.1658 (3)0.73470 (17)0.0267 (7)0.775 (6)
O21.3608 (3)0.4822 (3)0.57446 (14)0.0396 (6)
O31.0876 (3)0.5106 (2)0.79685 (11)0.0256 (4)
O40.8059 (3)0.6321 (3)1.04873 (13)0.0320 (5)
O50.5308 (4)0.8025 (4)0.73664 (16)0.0522 (7)
O30d0.8464 (19)0.4043 (14)0.6329 (7)0.0256 (4)0.225 (6)
N11.2160 (3)0.1257 (3)0.58401 (13)0.0188 (4)
N21.0398 (3)0.1015 (2)0.74008 (13)0.0177 (4)
N30.8143 (3)0.3242 (3)0.88439 (13)0.0184 (4)
N40.5950 (3)0.7904 (3)1.00838 (14)0.0259 (5)
C1c1.3725 (8)0.2021 (5)0.7131 (3)0.0178 (10)0.775 (6)
C21.2855 (4)0.3997 (3)0.61360 (16)0.0253 (6)
C31.1152 (4)0.4113 (3)0.75533 (16)0.0256 (4)
C41.3042 (4)0.1405 (3)0.50646 (16)0.0228 (5)
C51.3240 (4)0.0364 (3)0.44579 (16)0.0244 (6)
C61.2507 (4)0.0874 (3)0.46607 (16)0.0232 (6)
C71.1544 (4)0.1062 (3)0.54725 (16)0.0206 (5)
C81.1403 (3)0.0044 (3)0.60407 (15)0.0178 (5)
C91.0684 (4)0.2294 (3)0.57349 (17)0.0243 (6)
C100.9738 (4)0.2399 (3)0.65167 (17)0.0237 (6)
C110.9597 (4)0.1300 (3)0.71097 (16)0.0205 (5)
C121.0435 (4)0.0076 (3)0.68730 (15)0.0182 (5)
C130.8665 (4)0.1387 (3)0.79310 (17)0.0248 (6)
C140.8659 (4)0.0318 (3)0.84659 (16)0.0238 (6)
C150.9550 (4)0.0861 (3)0.81856 (15)0.0192 (5)
C160.9553 (4)0.1955 (3)0.88158 (15)0.0196 (5)
C170.6990 (4)0.3362 (3)0.83615 (15)0.0219 (5)
C180.5748 (4)0.4589 (3)0.83982 (16)0.0246 (6)
C190.5704 (4)0.5694 (3)0.89289 (16)0.0218 (5)
C200.6896 (4)0.5542 (3)0.94311 (15)0.0195 (5)
C210.8099 (4)0.4289 (3)0.93797 (15)0.0195 (5)
C220.7012 (4)0.6639 (3)1.00468 (16)0.0221 (5)
C230.4337 (5)0.7208 (4)0.7017 (3)0.0389 (8)
C30d0.954 (3)0.358 (3)0.6374 (13)0.0256 (4)0.225 (6)
H10.59760.85641.04380.0310*
H20.52220.80780.97540.0310*
H31.35600.22550.49160.0273*
H41.38760.05140.39110.0293*
H51.26470.15960.42580.0278*
H61.07790.30450.53550.0292*
H70.91590.32160.66750.0284*
H80.80480.21760.81130.0298*
H90.80530.03700.90270.0286*
H101.07060.22920.86890.0235*
H110.93930.14840.93660.0235*
H120.70260.26040.79950.0263*
H130.49270.46720.80600.0295*
H140.48690.65480.89510.0262*
H150.89050.41650.97270.0234*
H160.34460.68460.74540.0467*
H170.51200.63900.67180.0467*
H180.37660.78180.66330.0467*
H190.46380.85190.77550.1825*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1b0.0210 (7)0.0174 (4)0.02220 (16)0.00054 (14)0.0062 (2)0.00383 (13)
Br2a0.0210 (7)0.0174 (4)0.02220 (16)0.00054 (14)0.0062 (2)0.00383 (13)
Mn10.02252 (19)0.01739 (18)0.01732 (18)0.00680 (14)0.00191 (14)0.00348 (14)
Cl1e0.0210 (7)0.0174 (4)0.02220 (16)0.00054 (14)0.0062 (2)0.00383 (13)
Cl2b0.0210 (7)0.0174 (4)0.02220 (16)0.00054 (14)0.0062 (2)0.00383 (13)
Cl3d0.0210 (7)0.0174 (4)0.02220 (16)0.00054 (14)0.0062 (2)0.00383 (13)
O1c0.0226 (18)0.0307 (15)0.0298 (15)0.0056 (11)0.0096 (13)0.0077 (11)
O20.0465 (14)0.0328 (12)0.0350 (12)0.0179 (10)0.0081 (10)0.0012 (9)
O30.0338 (9)0.0217 (7)0.0209 (7)0.0097 (6)0.0015 (7)0.0035 (6)
O40.0281 (11)0.0317 (11)0.0388 (12)0.0044 (9)0.0161 (9)0.0150 (9)
O50.0521 (16)0.0661 (18)0.0409 (14)0.0272 (14)0.0018 (12)0.0081 (13)
O30d0.0338 (9)0.0217 (7)0.0209 (7)0.0097 (6)0.0015 (7)0.0035 (6)
N10.0193 (10)0.0184 (10)0.0182 (10)0.0010 (8)0.0043 (8)0.0031 (8)
N20.0189 (10)0.0166 (10)0.0181 (10)0.0026 (8)0.0053 (8)0.0023 (8)
N30.0182 (10)0.0193 (10)0.0172 (10)0.0040 (8)0.0025 (8)0.0000 (8)
N40.0285 (12)0.0218 (11)0.0280 (12)0.0009 (9)0.0089 (10)0.0062 (9)
C1c0.027 (3)0.0108 (18)0.0118 (17)0.0012 (16)0.0020 (16)0.0024 (13)
C20.0287 (14)0.0241 (13)0.0219 (13)0.0064 (11)0.0006 (11)0.0058 (10)
C30.0338 (9)0.0217 (7)0.0209 (7)0.0097 (6)0.0015 (7)0.0035 (6)
C40.0229 (13)0.0237 (13)0.0206 (12)0.0032 (10)0.0028 (10)0.0021 (10)
C50.0226 (13)0.0300 (14)0.0190 (12)0.0002 (11)0.0033 (10)0.0040 (10)
C60.0240 (13)0.0258 (13)0.0202 (12)0.0028 (10)0.0089 (10)0.0073 (10)
C70.0228 (13)0.0188 (12)0.0218 (12)0.0012 (10)0.0101 (10)0.0043 (10)
C80.0176 (11)0.0162 (11)0.0198 (12)0.0004 (9)0.0064 (9)0.0028 (9)
C90.0306 (14)0.0180 (12)0.0274 (14)0.0009 (10)0.0132 (11)0.0069 (10)
C100.0306 (14)0.0168 (12)0.0274 (14)0.0058 (10)0.0121 (11)0.0028 (10)
C110.0253 (13)0.0157 (11)0.0229 (13)0.0041 (10)0.0096 (10)0.0011 (10)
C120.0198 (12)0.0157 (11)0.0206 (12)0.0015 (9)0.0079 (10)0.0025 (9)
C130.0303 (14)0.0201 (12)0.0259 (14)0.0095 (11)0.0069 (11)0.0022 (10)
C140.0276 (14)0.0241 (13)0.0208 (13)0.0079 (11)0.0048 (11)0.0004 (10)
C150.0216 (12)0.0181 (11)0.0185 (12)0.0020 (9)0.0061 (10)0.0010 (9)
C160.0218 (12)0.0187 (12)0.0183 (12)0.0013 (10)0.0055 (10)0.0013 (9)
C170.0268 (13)0.0226 (12)0.0181 (12)0.0049 (10)0.0076 (10)0.0015 (10)
C180.0274 (14)0.0260 (13)0.0222 (13)0.0022 (11)0.0108 (11)0.0003 (10)
C190.0226 (13)0.0208 (12)0.0209 (12)0.0024 (10)0.0035 (10)0.0012 (10)
C200.0185 (12)0.0210 (12)0.0179 (12)0.0040 (9)0.0012 (9)0.0018 (9)
C210.0183 (12)0.0227 (12)0.0173 (11)0.0039 (10)0.0024 (9)0.0036 (9)
C220.0190 (12)0.0230 (13)0.0235 (13)0.0032 (10)0.0019 (10)0.0052 (10)
C230.0406 (18)0.0377 (17)0.0436 (19)0.0116 (14)0.0181 (15)0.0081 (14)
C30d0.0338 (9)0.0217 (7)0.0209 (7)0.0097 (6)0.0015 (7)0.0035 (6)
Geometric parameters (Å, º) top
Br1b—Mn12.489 (4)C10—C111.433 (4)
Mn1—Cl1e2.365 (15)C11—C121.411 (4)
Mn1—Cl3d2.285 (7)C11—C131.402 (4)
Mn1—N12.054 (3)C13—C141.370 (4)
Mn1—N22.117 (2)C14—C151.408 (4)
Mn1—C1c1.846 (7)C15—C161.501 (4)
Mn1—C21.807 (3)C17—C181.384 (4)
Mn1—C31.811 (3)C18—C191.383 (4)
Mn1—C30d2.03 (3)C19—C201.392 (4)
Cl3d—O1c0.699 (8)C20—C211.382 (4)
O1c—C1c1.113 (8)C20—C221.513 (4)
O2—C21.140 (4)O5—H190.840
O3—C31.146 (4)N4—H10.880
O4—C221.228 (4)N4—H20.880
O5—C231.399 (6)C4—H30.950
O30d—C30d0.91 (3)C5—H40.950
N1—C41.332 (4)C6—H50.950
N1—C81.360 (4)C9—H60.950
N2—C121.370 (4)C10—H70.950
N2—C151.338 (3)C13—H80.950
N3—C161.503 (3)C14—H90.950
N3—C171.343 (4)C16—H100.990
N3—C211.346 (4)C16—H110.990
N4—C221.335 (4)C17—H120.950
C4—C51.401 (4)C18—H130.950
C5—C61.372 (4)C19—H140.950
C6—C71.409 (4)C21—H150.950
C7—C81.409 (4)C23—H160.980
C7—C91.433 (4)C23—H170.980
C8—C121.430 (4)C23—H180.980
C9—C101.352 (4)
Br1b···C173.328 (4)O1c···H4iv2.8763
Mn1···C163.508 (3)O1c···H5iv2.8998
Cl1e···C83.578 (12)O1c···H12v2.4627
Cl1e···C173.378 (11)O1c···H13v3.1062
O1c···C23.412 (5)O1c···H19iii3.0213
O1c···C33.447 (5)O2···H6vii2.9319
O2···C1c3.420 (5)O2···H16v3.4596
O2···C33.290 (4)O2···H17v2.8145
O2···C43.570 (4)O2···H18v3.2633
O2···C30d3.52 (3)O3···H7vii3.0598
O3···N33.063 (3)O3···H8vii3.0929
O3···C1c3.496 (5)O3···H13v3.2199
O3···C23.227 (3)O3···H16v2.7709
O3···C163.422 (4)O4···H10ii2.3939
O3···C203.492 (3)O4···H11ii3.1595
O3···C212.990 (3)O4···H13viii3.1904
O3···C30d3.52 (3)O4···H15ii2.3286
O4···C212.702 (4)O5···H4x2.4901
O30d···N13.568 (13)O5···H7vii3.0641
O30d···C23.423 (16)O5···H8vii2.7287
O30d···C33.292 (16)O5···H133.3285
O30d···C173.384 (12)O5···H142.8980
N1···C62.801 (4)O30d···H5xi2.8691
N2···N33.256 (3)O30d···H6xi2.8960
N2···C132.823 (4)O30d···H7vii2.8209
N2···C173.336 (3)O30d···H173.1266
N3···C33.012 (4)N1···H4iv3.4254
N3···C143.361 (4)N1···H6xi3.5858
N3···C192.744 (4)N1···H18iii3.5819
N4···C192.948 (4)N3···H2viii3.4669
C2···C43.042 (4)N4···H1i3.5748
C3···C153.509 (4)N4···H8vii3.3172
C3···C163.051 (4)N4···H9vii2.7806
C3···C173.439 (4)N4···H12viii3.5726
C3···C213.414 (4)C1c···H4iv3.1097
C4···C72.750 (4)C1c···H5iv3.2305
C4···C123.595 (4)C1c···H12v3.3991
C4···C30d3.525 (18)C1c···H13v3.3559
C5···C82.730 (4)C1c···H19iii3.4121
C7···C112.825 (4)C2···H6vii3.3623
C8···C102.814 (4)C2···H7vii3.5759
C8···C30d3.421 (19)C2···H17v3.3903
C9···C122.828 (4)C3···H7vii3.2235
C11···C152.754 (4)C3···H13v3.4225
C12···C142.719 (4)C3···H16v3.3464
C12···C30d3.49 (2)C4···H4iv3.5245
C14···C173.500 (4)C4···H6xi3.3882
C15···C172.824 (4)C4···H18x3.4677
C17···C202.751 (4)C5···H3iv3.5488
C17···C30d3.475 (19)C5···H18x3.2944
C18···C212.733 (5)C6···H3iv3.4069
Br2a···O5i3.276 (3)C7···H18iii2.9645
Br2a···N43.478 (4)C8···H5xi3.4524
Br2a···N4i3.326 (4)C8···H18iii2.8771
Br2a···C15ii3.452 (4)C9···H18iii3.1731
Br2a···C16ii3.464 (3)C10···H4xi3.3326
Cl2b···O5i3.218 (4)C10···H18iii3.2910
Cl2b···N43.279 (6)C11···H4xi3.5345
Cl2b···N4i3.238 (6)C11···H16iii3.4264
Cl2b···C15ii3.535 (6)C11···H18iii3.2024
Cl2b···C16ii3.493 (6)C12···H5xi3.5607
Cl3d···O5iii3.463 (6)C12···H18iii2.9951
Cl3d···C5iv3.567 (6)C13···H19xii3.2971
O1c···O5iii3.366 (4)C14···H2xii3.5494
O1c···C5iv3.513 (4)C17···H1viii3.4103
O1c···C6iv3.525 (4)C17···H2viii3.5459
O1c···C17v3.223 (5)C18···H163.1787
O1c···C18v3.537 (5)C18···H173.3003
O2···O2vi2.961 (3)C19···H8vii3.0075
O2···C9vii3.271 (4)C19···H163.4117
O2···C23v3.353 (5)C19···H193.3354
O3···O4ii3.079 (3)C20···H8vii3.0797
O3···C10vii3.459 (4)C20···H14viii3.4206
O3···C13vii3.473 (3)C21···H14viii3.3546
O4···O3ii3.079 (3)C21···H15ii3.5967
O4···N3ii3.540 (4)C22···H8vii3.3205
O4···C3ii3.463 (4)C22···H9vii3.3249
O4···C16ii3.120 (4)C22···H10ii3.3594
O4···C18viii3.374 (4)C22···H13viii3.4392
O4···C21ii3.075 (4)C22···H15ii3.3182
O5···Br2ai3.276 (3)C23···H3x3.3217
O5···Cl2bi3.218 (4)C23···H4x2.9310
O5···Cl3dix3.463 (6)C23···H132.9204
O5···O1cix3.366 (4)C23···H143.3662
O5···C5x3.370 (4)C30d···H5xi3.1093
O5···C10vii3.441 (4)C30d···H6xi3.0245
O5···C11vii3.491 (4)C30d···H7vii3.0143
O5···C13vii3.162 (5)H1···Br2a2.6768
O5···C183.583 (4)H1···Cl2b2.4605
O5···C193.360 (4)H1···Cl2bi3.5747
N3···O4ii3.540 (4)H1···O1cii3.5958
N4···Br2a3.478 (4)H1···N4i3.5748
N4···Br2ai3.326 (4)H1···C17viii3.4103
N4···Cl2b3.279 (6)H1···H1i3.3390
N4···Cl2bi3.238 (6)H1···H2i3.1598
N4···C14vii3.564 (4)H1···H9vii2.7846
N4···C17viii3.370 (4)H1···H9viii3.3154
N4···C18viii3.541 (4)H1···H10ii3.2747
C3···O4ii3.463 (4)H1···H12viii3.3723
C4···C5iv3.396 (4)H2···Br2ai2.4764
C4···C9xi3.493 (5)H2···Cl2bi2.3966
C5···Cl3div3.567 (6)H2···N3viii3.4669
C5···O1civ3.513 (4)H2···C14vii3.5494
C5···O5x3.370 (4)H2···C17viii3.5459
C5···C4iv3.396 (4)H2···H1i3.1598
C5···C9xi3.423 (4)H2···H8vii3.0982
C5···C10xi3.458 (4)H2···H9vii2.8713
C6···O1civ3.525 (4)H2···H9viii3.4147
C6···C7xi3.484 (4)H2···H11viii3.5835
C6···C8xi3.533 (4)H2···H193.4677
C7···C6xi3.484 (4)H3···C5iv3.5488
C7···C7xi3.525 (4)H3···C6iv3.4069
C8···C6xi3.533 (4)H3···C23x3.3217
C9···O2xii3.271 (4)H3···H5iv3.5554
C9···C4xi3.493 (5)H3···H6xi3.5399
C9···C5xi3.423 (4)H3···H17x2.9846
C10···O3xii3.459 (4)H3···H18x2.9324
C10···O5xii3.441 (4)H4···Cl3div2.9236
C10···C5xi3.458 (4)H4···O1civ2.8763
C11···O5xii3.491 (4)H4···O5x2.4901
C13···O3xii3.473 (3)H4···N1iv3.4254
C13···O5xii3.162 (5)H4···C1civ3.1097
C14···N4xii3.564 (4)H4···C4iv3.5245
C15···Br2aii3.452 (4)H4···C10xi3.3326
C15···Cl2bii3.535 (6)H4···C11xi3.5345
C16···Br2aii3.464 (3)H4···C23x2.9310
C16···Cl2bii3.493 (6)H4···H7xi3.4793
C16···O4ii3.120 (4)H4···H17x3.1945
C17···O1cxiii3.223 (5)H4···H18x2.6041
C17···N4viii3.370 (4)H4···H19x2.9179
C18···O1cxiii3.537 (5)H5···Br1bxi2.9032
C18···O4viii3.374 (4)H5···Cl1exi2.9010
C18···O53.583 (4)H5···Cl3div3.1256
C18···N4viii3.541 (4)H5···O1civ2.8998
C18···C22viii3.276 (4)H5···O30dxi2.8691
C18···C233.520 (5)H5···C1civ3.2305
C19···O53.360 (4)H5···C8xi3.4524
C19···C20viii3.305 (4)H5···C12xi3.5607
C19···C22viii3.433 (4)H5···C30dxi3.1093
C20···C19viii3.305 (4)H5···H3iv3.5554
C20···C20viii3.441 (4)H6···Br1bxi2.9532
C21···O4ii3.075 (4)H6···Cl1exi2.9268
C22···C18viii3.276 (4)H6···O2xii2.9319
C22···C19viii3.433 (4)H6···O30dxi2.8960
C23···O2xiii3.353 (5)H6···N1xi3.5858
C23···C183.520 (5)H6···C2xii3.3623
Br1b···H123.0025H6···C4xi3.3882
Mn1···H33.1408H6···C30dxi3.0245
Mn1···H103.1062H6···H3xi3.5399
Cl1e···H123.0389H7···Br1bxii2.9393
Cl3d···H103.1769H7···Cl1exii3.0081
O1c···H103.5624H7···O3xii3.0598
O2···H32.8354H7···O5xii3.0641
O3···H102.8542H7···O30dxii2.8209
O3···H153.1437H7···C2xii3.5759
O4···H12.4684H7···C3xii3.2235
O4···H23.0347H7···C30dxii3.0143
O4···H152.3527H7···H4xi3.4793
O30d···H123.0829H7···H17xii3.2739
O30d···H133.5235H8···O3xii3.0929
N1···H43.2469H8···O5xii2.7287
N2···H93.2548H8···N4xii3.3172
N2···H102.5845H8···C19xii3.0075
N2···H113.2203H8···C20xii3.0797
N2···H122.8282H8···C22xii3.3205
N3···H93.3914H8···H2xii3.0982
N3···H133.2172H8···H14xii2.9863
N4···H142.6912H8···H19xii2.8784
C1c···H103.0870H9···Br2axii3.2000
C2···H32.5668H9···Cl2bxii3.1874
C3···H102.4909H9···N4xii2.7806
C4···H53.2584H9···C22xii3.3249
C6···H33.2427H9···H1xii2.7846
C6···H62.6997H9···H1viii3.3154
C7···H43.2643H9···H2xii2.8713
C7···H73.2789H9···H2viii3.4147
C8···H33.1640H10···Br2aii3.2602
C8···H53.2753H10···Cl2bii3.2155
C8···H63.3067H10···O4ii2.3939
C9···H52.7033H10···C22ii3.3594
C10···H82.6885H10···H1ii3.2747
C11···H63.2820H11···Br2axii2.7844
C11···H93.2502H11···Br2aii3.1272
C12···H73.3110H11···Cl2bxii2.9562
C12···H83.2745H11···Cl2bii3.1918
C13···H72.6820H11···O4ii3.1595
C14···H103.2221H11···H2viii3.5835
C14···H112.5282H11···H11xiv3.5606
C14···H122.9878H12···Cl3dxiii3.0874
C15···H83.2700H12···O1cxiii2.4627
C15···H122.4487H12···N4viii3.5726
C16···H92.6158H12···C1cxiii3.3991
C16···H122.6637H12···H1viii3.3723
C16···H152.5356H13···Cl3dxiii3.3265
C17···H103.1293H13···O1cxiii3.1062
C17···H113.1153H13···O3xiii3.2199
C17···H143.2541H13···O4viii3.1904
C17···H153.1945H13···O53.3285
C19···H22.6032H13···C1cxiii3.3559
C19···H123.2517H13···C3xiii3.4225
C19···H153.2470H13···C22viii3.4392
C20···H13.2488H13···C232.9204
C20···H22.5439H13···H162.4806
C20···H133.2541H13···H172.6833
C21···H102.6383H13···H193.5907
C21···H112.6614H14···Br2ai2.7246
C21···H123.1977H14···Cl2bi2.7695
C21···H143.2504H14···O52.8980
C22···H142.7865H14···C20viii3.4206
C22···H152.5574H14···C21viii3.3546
C30d···H123.1595H14···C233.3662
H1···H143.5302H14···H8vii2.9863
H2···H142.0979H14···H15viii3.4238
H3···H42.3341H14···H162.9568
H4···H52.3311H14···H192.6711
H5···H62.5565H15···O4ii2.3286
H6···H72.2889H15···C21ii3.5967
H7···H82.5350H15···C22ii3.3182
H8···H92.3269H15···H14viii3.4238
H9···H103.4588H15···H15ii2.8357
H9···H112.3297H16···Br2ai3.5121
H9···H123.2974H16···O2xiii3.4596
H10···H123.3559H16···O3xiii2.7709
H10···H152.5364H16···C3xiii3.3464
H11···H123.3215H16···C11ix3.4264
H11···H152.5539H16···C183.1787
H12···H132.3344H16···C193.4117
H13···H142.3391H16···H132.4806
H16···H192.0894H16···H142.9568
H17···H192.6208H17···Br1b3.5386
H18···H192.2963H17···O2xiii2.8145
Br1b···H5xi2.9032H17···O30d3.1266
Br1b···H6xi2.9532H17···C2xiii3.3903
Br1b···H7vii2.9393H17···C183.3003
Br1b···H173.5386H17···H3x2.9846
Br2a···H12.6768H17···H4x3.1945
Br2a···H2i2.4764H17···H7vii3.2739
Br2a···H9vii3.2000H17···H132.6833
Br2a···H10ii3.2602H18···O2xiii3.2633
Br2a···H11vii2.7844H18···N1ix3.5819
Br2a···H11ii3.1272H18···C4x3.4677
Br2a···H14i2.7246H18···C5x3.2944
Br2a···H16i3.5121H18···C7ix2.9645
Br2a···H19i2.4721H18···C8ix2.8771
Cl1e···H5xi2.9010H18···C9ix3.1731
Cl1e···H6xi2.9268H18···C10ix3.2910
Cl1e···H7vii3.0081H18···C11ix3.2024
Cl2b···H12.4605H18···C12ix2.9951
Cl2b···H1i3.5747H18···H3x2.9324
Cl2b···H2i2.3966H18···H4x2.6041
Cl2b···H9vii3.1874H19···Br2ai2.4721
Cl2b···H10ii3.2155H19···Cl2bi2.4058
Cl2b···H11vii2.9562H19···Cl3dix3.0845
Cl2b···H11ii3.1918H19···O1cix3.0213
Cl2b···H14i2.7695H19···C1cix3.4121
Cl2b···H19i2.4058H19···C13vii3.2971
Cl3d···H4iv2.9236H19···C193.3354
Cl3d···H5iv3.1256H19···H23.4677
Cl3d···H12v3.0874H19···H4x2.9179
Cl3d···H13v3.3265H19···H8vii2.8784
Cl3d···H19iii3.0845H19···H133.5907
O1c···H1ii3.5958H19···H142.6711
Br1b—Mn1—Cl1e1.9 (3)C10—C11—C12119.6 (3)
Br1b—Mn1—Cl3d176.22 (13)C10—C11—C13122.8 (3)
Br1b—Mn1—N188.09 (9)C12—C11—C13117.6 (3)
Br1b—Mn1—N288.39 (9)N2—C12—C8117.2 (3)
Br1b—Mn1—C1c176.27 (15)N2—C12—C11123.7 (3)
Br1b—Mn1—C290.72 (11)C8—C12—C11119.1 (3)
Br1b—Mn1—C386.27 (12)C11—C13—C14118.9 (3)
Br1b—Mn1—C30d4.2 (6)C13—C14—C15120.1 (3)
Cl1e—Mn1—Cl3d177.5 (3)N2—C15—C14122.9 (3)
Cl1e—Mn1—N186.2 (3)N2—C15—C16120.0 (3)
Cl1e—Mn1—N288.3 (4)C14—C15—C16117.0 (2)
Cl1e—Mn1—C1c178.0 (4)N3—C16—C15113.0 (3)
Cl1e—Mn1—C290.5 (3)N3—C17—C18120.0 (3)
Cl1e—Mn1—C388.1 (3)C17—C18—C19119.9 (3)
Cl1e—Mn1—C30d3.3 (7)C18—C19—C20119.2 (3)
Cl3d—Mn1—N194.57 (14)C19—C20—C21118.8 (3)
Cl3d—Mn1—N289.46 (15)C19—C20—C22125.8 (3)
Cl3d—Mn1—C1c3.5 (2)C21—C20—C22115.4 (3)
Cl3d—Mn1—C291.83 (16)N3—C21—C20120.8 (3)
Cl3d—Mn1—C391.20 (16)O4—C22—N4123.6 (3)
Cl3d—Mn1—C30d179.1 (6)O4—C22—C20118.7 (3)
N1—Mn1—N279.58 (9)N4—C22—C20117.7 (3)
N1—Mn1—C1c95.58 (15)Mn1—C30d—O30d165 (2)
N1—Mn1—C292.57 (11)C23—O5—H19109.468
N1—Mn1—C3173.59 (11)C22—N4—H1120.002
N1—Mn1—C30d85.7 (6)C22—N4—H2119.996
N2—Mn1—C1c92.89 (16)H1—N4—H2120.002
N2—Mn1—C2172.13 (11)N1—C4—H3118.518
N2—Mn1—C3103.30 (10)C5—C4—H3118.509
N2—Mn1—C30d91.4 (6)C4—C5—H4120.287
C1c—Mn1—C288.49 (18)C6—C5—H4120.290
C1c—Mn1—C390.03 (17)C5—C6—H5120.347
C1c—Mn1—C30d175.7 (6)C7—C6—H5120.350
C2—Mn1—C384.44 (12)C7—C9—H6119.614
C2—Mn1—C30d87.4 (6)C10—C9—H6119.610
C3—Mn1—C30d88.4 (6)C9—C10—H7119.472
Mn1—Cl3d—O1c162.1 (6)C11—C10—H7119.465
Cl3d—O1c—C1c12.5 (5)C11—C13—H8120.538
Mn1—N1—C4127.60 (19)C14—C13—H8120.552
Mn1—N1—C8114.51 (16)C13—C14—H9119.946
C4—N1—C8117.8 (3)C15—C14—H9119.946
Mn1—N2—C12111.76 (15)N3—C16—H10108.976
Mn1—N2—C15131.55 (18)N3—C16—H11108.972
C12—N2—C15116.7 (2)C15—C16—H10108.971
C16—N3—C17122.5 (3)C15—C16—H11108.966
C16—N3—C21116.3 (3)H10—C16—H11107.774
C17—N3—C21121.2 (2)N3—C17—H12119.984
Mn1—C1c—O1c177.6 (4)C18—C17—H12119.985
Mn1—C2—O2177.9 (3)C17—C18—H13120.074
Mn1—C3—O3172.5 (3)C19—C18—H13120.073
N1—C4—C5123.0 (3)C18—C19—H14120.380
C4—C5—C6119.4 (3)C20—C19—H14120.381
C5—C6—C7119.3 (3)N3—C21—H15119.573
C6—C7—C8117.4 (3)C20—C21—H15119.578
C6—C7—C9123.3 (3)O5—C23—H16109.472
C8—C7—C9119.3 (3)O5—C23—H17109.465
N1—C8—C7123.0 (3)O5—C23—H18109.465
N1—C8—C12116.8 (3)H16—C23—H17109.478
C7—C8—C12120.2 (3)H16—C23—H18109.473
C7—C9—C10120.8 (3)H17—C23—H18109.474
C9—C10—C11121.1 (3)
Br1b—Mn1—N1—C491.10 (18)C17—N3—C16—C151.4 (3)
Br1b—Mn1—N1—C886.13 (15)C16—N3—C21—C20177.54 (18)
Br1b—Mn1—N2—C1284.85 (13)C21—N3—C16—C15178.19 (18)
Br1b—Mn1—N2—C1593.67 (18)C17—N3—C21—C202.0 (4)
Cl1e—Mn1—N1—C490.8 (4)C21—N3—C17—C181.2 (4)
Cl1e—Mn1—N1—C886.4 (4)N1—C4—C5—C60.2 (4)
Cl1e—Mn1—N2—C1283.0 (3)C4—C5—C6—C71.1 (4)
Cl1e—Mn1—N2—C1595.5 (3)C5—C6—C7—C80.7 (4)
Cl3d—Mn1—N1—C491.6 (2)C5—C6—C7—C9177.9 (3)
Cl3d—Mn1—N1—C891.19 (19)C6—C7—C8—N10.5 (4)
Cl3d—Mn1—N2—C1298.25 (17)C6—C7—C8—C12179.6 (2)
Cl3d—Mn1—N2—C1583.2 (2)C6—C7—C9—C10178.2 (3)
N1—Mn1—N2—C123.51 (13)C8—C7—C9—C100.3 (4)
N1—Mn1—N2—C15177.97 (19)C9—C7—C8—N1179.2 (3)
N2—Mn1—N1—C4179.82 (19)C9—C7—C8—C121.0 (4)
N2—Mn1—N1—C82.59 (14)N1—C8—C12—N21.9 (4)
C1c—Mn1—N1—C488.3 (3)N1—C8—C12—C11178.8 (2)
C1c—Mn1—N1—C894.5 (2)C7—C8—C12—N2177.9 (2)
C2—Mn1—N1—C40.5 (2)C7—C8—C12—C111.3 (4)
C2—Mn1—N1—C8176.77 (16)C7—C9—C10—C111.3 (5)
C30d—Mn1—N1—C487.6 (6)C9—C10—C11—C120.9 (4)
C30d—Mn1—N1—C889.6 (6)C9—C10—C11—C13178.4 (3)
C1c—Mn1—N2—C1298.65 (18)C10—C11—C12—N2178.8 (3)
C1c—Mn1—N2—C1582.8 (3)C10—C11—C12—C80.4 (4)
C3—Mn1—N2—C12170.64 (15)C10—C11—C13—C14177.2 (3)
C3—Mn1—N2—C157.9 (2)C12—C11—C13—C142.1 (4)
C30d—Mn1—N2—C1281.9 (6)C13—C11—C12—N20.5 (4)
C30d—Mn1—N2—C1596.6 (6)C13—C11—C12—C8179.7 (3)
Mn1—N1—C4—C5178.11 (15)C11—C13—C14—C151.2 (4)
Mn1—N1—C8—C7178.88 (15)C13—C14—C15—N21.4 (4)
Mn1—N1—C8—C121.3 (3)C13—C14—C15—C16177.3 (3)
C4—N1—C8—C71.4 (4)N2—C15—C16—N385.2 (3)
C4—N1—C8—C12178.8 (2)C14—C15—C16—N396.0 (3)
C8—N1—C4—C51.0 (4)N3—C17—C18—C190.4 (4)
Mn1—N2—C12—C84.0 (3)C17—C18—C19—C201.2 (4)
Mn1—N2—C12—C11176.83 (16)C18—C19—C20—C210.4 (4)
Mn1—N2—C15—C14175.56 (14)C18—C19—C20—C22179.5 (2)
Mn1—N2—C15—C165.7 (4)C19—C20—C21—N31.2 (4)
C12—N2—C15—C142.9 (4)C19—C20—C22—O4175.4 (3)
C12—N2—C15—C16175.8 (2)C19—C20—C22—N44.1 (4)
C15—N2—C12—C8177.3 (2)C21—C20—C22—O44.5 (4)
C15—N2—C12—C111.9 (4)C21—C20—C22—N4176.0 (2)
C16—N3—C17—C18178.30 (19)C22—C20—C21—N3178.89 (19)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+1, z+2; (iii) x+1, y1, z; (iv) x+3, y, z+1; (v) x+1, y, z; (vi) x+3, y+1, z+1; (vii) x, y+1, z; (viii) x+1, y+1, z+2; (ix) x1, y+1, z; (x) x+2, y+1, z+1; (xi) x+2, y, z+1; (xii) x, y1, z; (xiii) x1, y, z; (xiv) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···Br2a0.882.683.478 (3)152
N4—H1···Cl2b0.882.463.279 (6)155
N4—H2···Br2ai0.882.483.326 (3)162
N4—H2···Cl2bi0.882.403.239 (6)160
O5—H19···Br2ai0.842.473.276 (3)161
O5—H19···Cl2bi0.842.413.218 (5)163
C5—H4···O5x0.952.493.370 (4)154
C6—H5···Br1bxi0.952.903.735 (4)147
C16—H10···O4ii0.992.393.120 (4)130
C16—H11···Br2axii0.992.783.678 (3)150
C17—H12···O1cxiii0.952.463.224 (5)137
C19—H14···Br2ai0.952.723.667 (3)172
C19—H14···Cl2bi0.952.773.702 (6)167
C21—H15···O40.952.352.702 (4)101
C21—H15···O4ii0.952.333.074 (4)135
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+1, z+2; (x) x+2, y+1, z+1; (xi) x+2, y, z+1; (xii) x, y1, z; (xiii) x1, y, z.
 

References

First citationAgarwal, J., Shaw, T. W., Schaefer, H. F. III & Bocarsly, A. B. (2015). Inorg. Chem. 54, 5285–5294.  CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEngbersen, J. F. J., Koudijs, A. & Van der Plas, H. C. (1990). J. Org. Chem. 55, 3647–3654.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrancke, R., Schille, B. & Roemelt, M. (2018). Chem. Rev. 118, 4631–4701.  CrossRef CAS Google Scholar
First citationJimenez, J., Chakraborty, I. & Mascharak, P. K. (2015). Eur. J. Inorg. Chem. pp. 5021–5026.  CrossRef Google Scholar
First citationKurtz, D. A., Dhakal, B., Hulme, R. J., Nichol, G. S. & Felton, G. A. N. (2015). Inorg. Chim. Acta, 427, 22–26.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). REQAB and PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K. & Ooyama, D. (2002). Coord. Chem. Rev. 226, 211–218.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds