metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[(1,2,5,6-η)-Cyclo­octa-1,5-diene]bis­­(thio­cyanato-κS)platinum(II)

CROSSMARK_Color_square_no_text.svg

aChonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 28 January 2019; accepted 29 January 2019; online 31 January 2019)

In the title complex, [Pt(SCN)2(C8H12)], the PtII ion lies in a square-planar coordination geometry defined by the mid-points of the two π-coordinated double bonds of cyclo­octa-1,5-diene and two S-bound SCN anions. The complex is disposed about a mirror plane passing through the Pt atom and the SCN ligands, and bis­ecting the cyclo­octa-1,5-diene mol­ecule. The room-temperature crystal structure of the title complex was previously reported in the ortho­rhom­bic space group Pna21 [Musitu & Garcia-Blanco (1984). Acta Cryst. A40, C101]. The low-temperature structure presented herein represents a different (higher symmetry) ortho­rhom­bic space group Pnma whereby the PtII atom lies on a mirror plane, lacking in the earlier study.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

With reference to the title complex, [Pt(SCN)2(cod)], the crystal structures of related cod–PtII complexes [PtX2(cod)] (X = Cl, Br, I; cod = cyclo­octa-1,5-diene) have been determined previously. The chlorido complex [PtCl2(cod)] (Goel et al., 1982[Goel, A. B., Goel, S. & Van Der Veer, D. (1982). Inorg. Chim. Acta, 65, L205-L206.]; Syed et al., 1984[Syed, A., Stevens, E. D. & Cruz, S. G. (1984). Inorg. Chem. 23, 3673-3674.]; Musitu & Garcia-Blanco, 1984[Musitu, F. Mz. & Garcia-Blanco, S. (1984). Acta Cryst. A40, C101.]) and the bromido complex [PtBr2(cod)] (Musitu & Garcia-Blanco, 1984[Musitu, F. Mz. & Garcia-Blanco, S. (1984). Acta Cryst. A40, C101.]) both crystallize in the ortho­rhom­bic space group P212121. The iodido complex [PtI2(cod)] crystallizes in the monoclinic space group P21/n (Musitu & Garcia-Blanco, 1984[Musitu, F. Mz. & Garcia-Blanco, S. (1984). Acta Cryst. A40, C101.]). The room-temperature crystal structure of the title complex was previously reported in the ortho­rhom­bic space group Pna21 (Musitu & Garcia-Blanco, 1984[Musitu, F. Mz. & Garcia-Blanco, S. (1984). Acta Cryst. A40, C101.]). The low-temperature structure presented herein represents a different (higher symmetry) ortho­rhom­bic space group Pnma whereby the PtII atom lies on a mirror plane, lacking in the earlier study (Musitu & Garcia-Blanco, 1984[Musitu, F. Mz. & Garcia-Blanco, S. (1984). Acta Cryst. A40, C101.]).

In the title complex, the central PtII ion has a square-planar coordination geometry defined by the mid-points of the two π-coordinated double bonds of cyclo­octa-1,5-diene and two S atoms derived from two SCN anions (Fig. 1[link]). The complex is disposed about a mirror plane passing through the Pt atom and the SCN ligands, and bis­ecting cyclo­octa-1,5-diene. Therefore, the asymmetric unit contains one half of the complex mol­ecule. The cod ligand coordinates to the Pt atom in the boat conformation with the coordinated double-bond lengths of 1.386 (9) and 1.388 (9) Å, and with the cod ring angles lying in the range of 117.6 (4)–124.4 (3)°. The thio­cyanato ligands are linear displaying S—C—N bond angles of 179.0 (6) and 180.0 (5)°, and the S atoms are coordinated to the Pt atom with nearly tetra­hedral Pt—S—C bond angles of 106.0 (2) and 106.6 (2)°, characteristic of an S-bonded conformation (Ha, 2013[Ha, K. (2013). Z. Kristallogr. New Cryst. Struct. 228, 249-250.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex showing the atom labelling and displacement ellipsoids drawn at the 40% probability level for non-H atoms [symmetry code: (i) x, [{1\over 2}] − y, z].

Synthesis and crystallization

To a solution of K2PtCl4 (2.0820 g, 5.016 mmol) and KSCN (2.3967 g, 24.662 mmol) in H2O (40 ml) and EtOH (10 ml) was added cyclo­octa-1,5-diene (1.0235 g, 9.461 mmol) and refluxed for 2 h. The formed precipitate was separated by filtration, washed with H2O and acetone, and dried at 323 K, to give a light-yellow powder (1.4009 g). Yellow crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Pt(SCN)2(C8H12)]
Mr 419.43
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 223
a, b, c (Å) 16.8696 (12), 7.5226 (6), 9.0540 (6)
V3) 1148.98 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 12.54
Crystal size (mm) 0.21 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker PHOTON 100 CMOS detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.363, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 27245, 1237, 1178
Rint 0.082
(sin θ/λ)max−1) 0.620
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.045, 1.11
No. of reflections 1237
No. of parameters 79
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.79
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]a), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]b) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

[(1,2,5,6-η)-Cycloocta-1,5-diene]bis(thiocyanato-κS)platinum(II) top
Crystal data top
[Pt(SCN)2(C8H12)]Dx = 2.425 Mg m3
Mr = 419.43Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 9838 reflections
a = 16.8696 (12) Åθ = 2.4–26.1°
b = 7.5226 (6) ŵ = 12.54 mm1
c = 9.0540 (6) ÅT = 223 K
V = 1148.98 (14) Å3Block, yellow
Z = 40.21 × 0.15 × 0.10 mm
F(000) = 784
Data collection top
Bruker PHOTON 100 CMOS detector
diffractometer
1178 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.082
φ and ω scansθmax = 26.1°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2020
Tmin = 0.363, Tmax = 0.745k = 99
27245 measured reflectionsl = 1111
1237 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0127P)2 + 2.853P]
where P = (Fo2 + 2Fc2)/3
1237 reflections(Δ/σ)max < 0.001
79 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.79 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.99 Å (CH) or 0.98 Å (CH2) and with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.05447 (2)0.25000.10287 (2)0.01688 (8)
S10.07951 (8)0.25000.16871 (16)0.0318 (3)
C10.0816 (4)0.25000.3536 (7)0.0357 (14)
N10.0841 (4)0.25000.4801 (7)0.0551 (17)
S20.00113 (9)0.25000.13300 (15)0.0321 (3)
C20.0746 (4)0.25000.2528 (6)0.0311 (13)
N20.1258 (4)0.25000.3338 (5)0.0472 (14)
C30.0990 (2)0.1579 (6)0.3169 (4)0.0313 (9)
H30.05810.10370.38120.038*
C40.1716 (3)0.0447 (9)0.2949 (5)0.0622 (18)
H4A0.21150.08310.36690.075*
H4B0.15740.07810.31950.075*
C50.2080 (3)0.0436 (9)0.1537 (5)0.0610 (17)
H5A0.20860.07930.11800.073*
H5B0.26330.08050.16610.073*
C60.1717 (2)0.1577 (6)0.0354 (4)0.0293 (8)
H60.17320.10410.06440.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01299 (12)0.02235 (12)0.01529 (11)0.0000.00064 (6)0.000
S10.0154 (6)0.0481 (9)0.0317 (8)0.0000.0019 (5)0.000
C10.026 (3)0.039 (4)0.042 (4)0.0000.008 (3)0.000
N10.048 (3)0.078 (5)0.039 (3)0.0000.019 (3)0.000
S20.0240 (7)0.0505 (9)0.0217 (6)0.0000.0067 (5)0.000
C20.037 (3)0.042 (3)0.015 (2)0.0000.009 (2)0.000
N20.055 (3)0.067 (4)0.020 (3)0.0000.002 (3)0.000
C30.0253 (18)0.055 (2)0.0132 (15)0.0058 (18)0.0006 (14)0.0082 (16)
C40.046 (3)0.103 (5)0.038 (2)0.042 (3)0.011 (2)0.034 (3)
C50.056 (3)0.090 (4)0.037 (2)0.048 (3)0.011 (2)0.017 (3)
C60.0202 (17)0.049 (2)0.0189 (16)0.0121 (17)0.0042 (14)0.0008 (17)
Geometric parameters (Å, º) top
Pt1—C6i2.183 (3)C3—C41.505 (6)
Pt1—C62.183 (3)C3—H30.9900
Pt1—C3i2.191 (3)C4—C51.418 (6)
Pt1—C32.191 (3)C4—H4A0.9800
Pt1—S22.3324 (13)C4—H4B0.9800
Pt1—S12.3375 (13)C5—C61.503 (6)
S1—C11.674 (7)C5—H5A0.9800
C1—N11.146 (9)C5—H5B0.9800
S2—C21.676 (6)C6—C6i1.388 (9)
C2—N21.133 (8)C6—H60.9900
C3—C3i1.386 (9)
C6i—Pt1—C637.1 (2)C3i—C3—H3114.3
C6i—Pt1—C3i80.59 (14)C4—C3—H3114.3
C6—Pt1—C3i92.15 (14)Pt1—C3—H3114.3
C6i—Pt1—C392.15 (14)C5—C4—C3118.3 (4)
C6—Pt1—C380.58 (14)C5—C4—H4A107.7
C3i—Pt1—C336.9 (2)C3—C4—H4A107.7
C6i—Pt1—S296.21 (10)C5—C4—H4B107.7
C6—Pt1—S296.21 (10)C3—C4—H4B107.7
C3i—Pt1—S2161.39 (12)H4A—C4—H4B107.1
C3—Pt1—S2161.39 (12)C4—C5—C6117.6 (4)
C6i—Pt1—S1161.32 (11)C4—C5—H5A107.9
C6—Pt1—S1161.32 (11)C6—C5—H5A107.9
C3i—Pt1—S196.07 (10)C4—C5—H5B107.9
C3—Pt1—S196.07 (10)C6—C5—H5B107.9
S2—Pt1—S181.06 (5)H5A—C5—H5B107.2
C1—S1—Pt1106.0 (2)C6i—C6—C5124.8 (3)
N1—C1—S1179.0 (6)C6i—C6—Pt171.47 (11)
C2—S2—Pt1106.63 (19)C5—C6—Pt1110.6 (3)
N2—C2—S2180.0 (5)C6i—C6—H6114.1
C3i—C3—C4124.4 (3)C5—C6—H6114.1
C3i—C3—Pt171.56 (12)Pt1—C6—H6114.1
C4—C3—Pt1109.9 (3)
C3i—C3—C4—C568.8 (7)C4—C5—C6—C6i68.2 (7)
Pt1—C3—C4—C512.0 (7)C4—C5—C6—Pt113.0 (7)
C3—C4—C5—C60.6 (9)
Symmetry code: (i) x, y+1/2, z.
 

Acknowledgements

The author thanks the KBSI, Seoul Center, for the X-ray data collection.

Funding information

This study was supported financially by Chonnam National University (grant No. 2017–2777).

References

First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoel, A. B., Goel, S. & Van Der Veer, D. (1982). Inorg. Chim. Acta, 65, L205–L206.  CrossRef CAS Google Scholar
First citationHa, K. (2013). Z. Kristallogr. New Cryst. Struct. 228, 249–250.  CrossRef CAS Google Scholar
First citationMusitu, F. Mz. & Garcia-Blanco, S. (1984). Acta Cryst. A40, C101.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSyed, A., Stevens, E. D. & Cruz, S. G. (1984). Inorg. Chem. 23, 3673–3674.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds