metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2,2′-Bi­pyridine)(1,2-di­cyano­ethene-1,2-di­thiol­ato)platinum(II)

CROSSMARK_Color_square_no_text.svg

aUniversity of North Texas, 1155 Union Circle, Denton, TX 76203-5070, USA, bAustin College, 900 N Grand, Sherman, TX 75090, USA, and cRigaku Oxford Diffraction, 9009 New Trails Dr., The Woodlands, TX 77381, USA
*Correspondence e-mail: bsmucker@austincollege.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 January 2019; accepted 28 January 2019; online 31 January 2019)

In the crystal structure of the title complex, [Pt(C4N2S2)(C10H8N2)], the complex mol­ecules pack as head-to-tail/inversion dimers, which are stabilized by HOMO–LUMO inter­actions and a Pt⋯Pt distance of 3.6625 (8) Å. The dimers are linked by C—H⋯N hydrogen bonds, forming layers parallel to the (101) plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Since Eisenberg's initial report on luminescent platinum(II) di­imine di­thiol­ate complexes (Zuleta, et al. 1989[Zuleta, J. A., Chesta, C. A. & Eisenberg, R. (1989). J. Am. Chem. Soc. 111, 8916-8917.]), this class of compounds has been utilized in areas such as dye-sensitized solar cells (Islam et al., 2001[Islam, A., Sugihara, H., Hara, K., Singh, L. P., Katoh, R., Yanagida, M., Takahashi, Y., Murata, S., Arakawa, H. & Fujihashi, G. (2001). Inorg. Chem. 40, 5371-5380.]; Geary et al., 2005[Geary, E. A. M., Yellowlees, L. J., Jack, L. A., Oswald, I. D. H., Parsons, S., Hirata, N., Durrant, J. R. & Robertson, N. (2005). Inorg. Chem. 44, 242-250.]), photosplitting of water (Zhang et al., 2007[Zhang, J., Du, P., Schneider, J., Jarosz, P. & Eisenberg, R. (2007). J. Am. Chem. Soc. 129, 7726-7727.], Zarkadoulas et al., 2012[Zarkadoulas, A., Koutsouri, E. & Mitsopoulou, C. A. (2012). Coord. Chem. Rev. 256, 2424-2434.]) and non-linear optics (Cummings et al., 1997[Cummings, S. D., Cheng, L.-T. & Eisenberg, R. (1997). Chem. Mater. 9, 440-450.]). X-ray structures of platinum(II)di­thiol­ate complexes with modified bi­pyridine ligands are common in papers such as those describing the photophysical properties (Laza­rides et al., 2011[Lazarides, T., McCormick, T. M., Wilson, K. C., Lee, S., McCamant, D. W. & Eisenberg, R. (2011). J. Am. Chem. Soc. 133, 350-364.]), reaction kinetics (Stace et al., 2016[Stace, J. J., Ball, P. J., Shingade, V., Chatterjee, S., Shiveley, A., Fleeman, W. L., Staniszewski, A. J., Krause, J. A. & Connick, W. B. (2016). Inorg. Chim. Acta, 447, 98-104.]), or charge-transfer properties (Smucker et al., 2003[Smucker, B. W., Hudson, J. M., Omary, M. A. & Dunbar, K. R. (2003). Inorg. Chem. 42, 4714-4723.]; Browning et al., 2014[Browning, C., Hudson, J. M., Reinheimer, E. W., Kuo, F.-L., McDougald, R. N. Jr, Rabaâ, H., Pan, H., Bacsa, J., Wang, X., Dunbar, K. R., Shepherd, N. D. & Omary, M. A. (2014). J. Am. Chem. Soc. 136, 16185-16200.]) of these compounds. The crystal structure of one of the initial complexes, Pt(2,2′-bpy)(mnt), which inspired many variations, has heretofore not been published. This paper remedies the absence in the literature.

The title compound crystallized in the centrosymmetric monoclinic space group P21/n and contains a single mol­ecule of Pt(2,2′-bpy)(mnt) as the contents of its asymmetric unit (Fig. 1[link]). The platinum(II) atom has a square-pyramidal coordination sphere and the Pt—N and Pt—S bond distances (Table 1[link]) are typical for M(di­imine)(di­thiol­ate) mol­ecules. Within the complex there are short C—H⋯S inter­actions present (Fig. 1[link] and Table 2[link]).

Table 1
Selected Pt—N and Pt—S bond lengths (Å)

Bond Bond length
Pt1—S1 2.2487 (16)
Pt1—S2 2.2425 (17)
Pt1—N1 2.035 (5)
Pt1—N2 2.048 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯S1 0.94 2.67 3.260 (8) 121
C10—H10⋯S2 0.94 2.65 3.245 (6) 121
C2—H2⋯N3i 0.94 2.58 3.346 (10) 139
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with atom labeling. Displacement ellipsoids are drawn at the 50% probability level. The short intra­molecular C—H⋯S contacts are shown as dashed lines (Table 2[link]).

The structure contains head-to-tail (inversion) dimers of Pt(2,2′-bpy)(mnt), as shown in Fig. 2[link]. Intra­dimer integrity is maintained via HOMO–LUMO inter­actions whereby the former (of mixed metal/di­thiol­ate mol­ecular orbital character) overlaps with the latter (of primarily chelating di­imine ligand character) (Cummings & Eisenberg, 1996[Cummings, S. D. & Eisenberg, R. (1996). J. Am. Chem. Soc. 118, 1949-1960.]) at a distance (C2—C12i) of 3.408 (9) Å (see Fig. 2[link]). Additional integrity within the dimer is also maintained via contacts between the divalent platinum atoms at a distance of 3.6625 (8) Å.

[Figure 2]
Figure 2
A view of the inversion dimer of the title compound with select Pt1⋯Pt1i and C2⋯C12i/C12⋯C2i distances in Å [symmetry code: (i) = −x + 1, −y + 1, −z + 1].

Neighboring dimers of Pt(2,2′-bpy)(mnt) are linked by C—H⋯N hydrogen bonds (Table 2[link]), forming layers parallel to the (101) plane, as shown in Fig. 3[link]. Given the displacement of the two mol­ecules from the different dimers relative to one another (∼2.8 Å), inter­dimer structural integrity is not maintained by secondary Pt⋯Pt inter­actions. Rather, inter­actions between the π-electron density of the 2,2′-bi­pyridine ligand from one mol­ecule and the empty dz2 orbital from a platinum atom of the second are more likely. Weak ππ inter­actions may also be providing additional stability as the centroid-to-centroid distance between neighboring pyridyl rings was measured at 4.247 (4) Å, a distance close to the upper limit typical of such inter­actions (4.2 Å; Browning et al., 2014[Browning, C., Hudson, J. M., Reinheimer, E. W., Kuo, F.-L., McDougald, R. N. Jr, Rabaâ, H., Pan, H., Bacsa, J., Wang, X., Dunbar, K. R., Shepherd, N. D. & Omary, M. A. (2014). J. Am. Chem. Soc. 136, 16185-16200.]).

[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. Hydrogen bonds (Table 2[link]) and Pt⋯Pt inter­actions are shown as dashed lines.

Synthesis and crystallization

The title compound was synthesized according to published procedures (Zuleta et al., 1990[Zuleta, J. A., Burberry, M. S. & Eisenberg, R. (1990). Coord. Chem. Rev. 97, 47-64.]). Orange needles of Pt(2,2′-bpy)(mnt) resulted from the ambient cooling of a narrow glass tube containing a warm saturated DMF solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Pt(C4N2S2)(C10H8N2)]
Mr 491.45
Crystal system, space group Monoclinic, P21/n
Temperature (K) 220
a, b, c (Å) 10.087 (3), 7.349 (2), 19.442 (6)
β (°) 101.276 (6)
V3) 1413.4 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 10.22
Crystal size (mm) 0.12 × 0.05 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.007, 0.029
No. of measured, independent and observed [I > 2σ(I)] reflections 18409, 3118, 2556
Rint 0.063
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.05
No. of reflections 3118
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.09, −1.19
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(2,2'-Bipyridine)(1,2-dicyanoethene-1,2-dithiolato)platinum(II) top
Crystal data top
[Pt(C4N2S2)(C10H8N2)]F(000) = 920
Mr = 491.45Dx = 2.310 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.087 (3) ÅCell parameters from 8369 reflections
b = 7.349 (2) Åθ = 2.5–27.1°
c = 19.442 (6) ŵ = 10.22 mm1
β = 101.276 (6)°T = 220 K
V = 1413.4 (8) Å3Needle, orange
Z = 40.12 × 0.05 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
2556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
φ and ω scansθmax = 27.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.007, Tmax = 0.029k = 99
18409 measured reflectionsl = 2424
3118 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0442P)2]
where P = (Fo2 + 2Fc2)/3
3118 reflections(Δ/σ)max = 0.002
190 parametersΔρmax = 2.09 e Å3
0 restraintsΔρmin = 1.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.43643 (2)0.70734 (3)0.53458 (2)0.03903 (10)
S10.51148 (16)0.6436 (2)0.64868 (8)0.0470 (3)
S20.22499 (16)0.6416 (2)0.54649 (8)0.0469 (3)
N10.6216 (5)0.7728 (7)0.5150 (3)0.0396 (10)
N20.3858 (5)0.7650 (6)0.4297 (3)0.0392 (10)
C70.4693 (7)0.8661 (10)0.3301 (3)0.0522 (15)
H70.5421640.9049050.3101680.063*
C90.2366 (8)0.7948 (10)0.3194 (4)0.0572 (17)
H90.1492740.7820250.2921120.069*
C10.6228 (7)0.8192 (7)0.4475 (3)0.0420 (13)
C40.8613 (7)0.8111 (10)0.5421 (4)0.0558 (17)
H40.9421420.8082360.5756440.067*
C50.7390 (7)0.7732 (9)0.5608 (4)0.0492 (14)
H50.7384050.7463760.6080440.059*
C20.7416 (7)0.8605 (9)0.4255 (4)0.0522 (15)
H20.7403180.8932020.3785860.063*
C100.2615 (7)0.7526 (10)0.3897 (3)0.0499 (15)
H100.1894270.7140350.4103510.060*
C60.4905 (7)0.8193 (8)0.4000 (3)0.0421 (13)
C80.3413 (8)0.8561 (11)0.2894 (3)0.0587 (17)
H80.3256770.8904710.2419740.070*
C140.1239 (7)0.5176 (11)0.6564 (3)0.0565 (17)
N30.4007 (7)0.4658 (11)0.8047 (3)0.0749 (19)
N40.0271 (7)0.4718 (11)0.6732 (3)0.0722 (18)
C110.3675 (7)0.5754 (9)0.6776 (3)0.0501 (15)
C120.2442 (7)0.5745 (9)0.6334 (3)0.0494 (15)
C130.3842 (7)0.5158 (10)0.7483 (3)0.0550 (16)
C30.8621 (7)0.8531 (10)0.4734 (4)0.0537 (15)
H30.9442320.8766510.4590470.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.04558 (14)0.04030 (14)0.03045 (13)0.00093 (10)0.00560 (9)0.00120 (9)
S10.0534 (8)0.0553 (9)0.0311 (7)0.0029 (7)0.0052 (6)0.0021 (6)
S20.0495 (8)0.0539 (9)0.0372 (7)0.0007 (7)0.0080 (6)0.0017 (7)
N10.045 (3)0.038 (2)0.034 (2)0.001 (2)0.005 (2)0.0028 (19)
N20.045 (3)0.036 (2)0.035 (2)0.002 (2)0.004 (2)0.0001 (19)
C70.067 (4)0.049 (3)0.041 (3)0.004 (3)0.011 (3)0.006 (3)
C90.057 (4)0.068 (5)0.042 (4)0.003 (3)0.002 (3)0.007 (3)
C10.057 (3)0.032 (3)0.037 (3)0.001 (2)0.009 (3)0.005 (2)
C40.047 (4)0.063 (5)0.054 (4)0.008 (3)0.003 (3)0.003 (3)
C50.051 (3)0.056 (4)0.038 (3)0.001 (3)0.001 (3)0.003 (3)
C20.061 (4)0.046 (3)0.053 (4)0.004 (3)0.019 (3)0.010 (3)
C100.047 (3)0.062 (4)0.039 (3)0.000 (3)0.002 (3)0.003 (3)
C60.052 (3)0.037 (3)0.037 (3)0.005 (2)0.008 (2)0.001 (2)
C80.073 (4)0.063 (4)0.037 (3)0.001 (4)0.002 (3)0.007 (3)
C140.063 (4)0.065 (5)0.042 (3)0.004 (3)0.012 (3)0.007 (3)
N30.087 (5)0.092 (5)0.047 (3)0.002 (4)0.016 (3)0.008 (3)
N40.070 (4)0.090 (5)0.062 (4)0.016 (4)0.026 (3)0.003 (4)
C110.062 (4)0.055 (4)0.034 (3)0.004 (3)0.012 (3)0.003 (3)
C120.059 (4)0.048 (4)0.041 (3)0.004 (3)0.011 (3)0.005 (3)
C130.061 (4)0.059 (4)0.045 (4)0.002 (3)0.012 (3)0.000 (3)
C30.049 (3)0.055 (4)0.058 (4)0.010 (3)0.013 (3)0.010 (3)
Geometric parameters (Å, º) top
Pt1—S12.2487 (16)C1—C21.383 (9)
Pt1—S22.2425 (17)C1—C61.467 (9)
Pt1—N12.035 (5)C4—H40.9400
Pt1—N22.048 (5)C4—C51.381 (10)
S1—C111.731 (7)C4—C31.373 (10)
S2—C121.734 (6)C5—H50.9400
N1—C11.359 (8)C2—H20.9400
N1—C51.335 (8)C2—C31.381 (10)
N2—C101.343 (8)C10—H100.9400
N2—C61.358 (8)C8—H80.9400
C7—H70.9400C14—N41.139 (9)
C7—C61.378 (9)C14—C121.436 (9)
C7—C81.378 (10)N3—C131.137 (9)
C9—H90.9400C11—C121.367 (9)
C9—C101.377 (9)C11—C131.421 (9)
C9—C81.377 (10)C3—H30.9400
S2—Pt1—S189.82 (6)N1—C5—C4123.1 (6)
N1—Pt1—S195.12 (15)N1—C5—H5118.5
N1—Pt1—S2175.05 (14)C4—C5—H5118.5
N1—Pt1—N279.9 (2)C1—C2—H2120.5
N2—Pt1—S1174.88 (14)C3—C2—C1119.0 (6)
N2—Pt1—S295.18 (15)C3—C2—H2120.5
C11—S1—Pt1103.8 (2)N2—C10—C9121.8 (7)
C12—S2—Pt1103.6 (2)N2—C10—H10119.1
C1—N1—Pt1114.9 (4)C9—C10—H10119.1
C5—N1—Pt1127.0 (4)N2—C6—C7120.6 (6)
C5—N1—C1118.0 (6)N2—C6—C1114.9 (5)
C10—N2—Pt1125.8 (4)C7—C6—C1124.5 (6)
C10—N2—C6119.3 (5)C7—C8—H8120.5
C6—N2—Pt1114.9 (4)C9—C8—C7119.0 (6)
C6—C7—H7120.0C9—C8—H8120.5
C6—C7—C8120.0 (6)N4—C14—C12178.4 (7)
C8—C7—H7120.0C12—C11—S1121.0 (5)
C10—C9—H9120.4C12—C11—C13121.9 (6)
C10—C9—C8119.2 (7)C13—C11—S1117.1 (5)
C8—C9—H9120.4C14—C12—S2116.5 (5)
N1—C1—C2121.8 (6)C11—C12—S2121.7 (5)
N1—C1—C6115.4 (5)C11—C12—C14121.7 (6)
C2—C1—C6122.9 (6)N3—C13—C11178.1 (9)
C5—C4—H4120.7C4—C3—C2119.6 (6)
C3—C4—H4120.7C4—C3—H3120.2
C3—C4—C5118.6 (7)C2—C3—H3120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S10.942.673.260 (8)121
C10—H10···S20.942.653.245 (6)121
C2—H2···N3i0.942.583.346 (10)139
Symmetry code: (i) x+1/2, y+3/2, z1/2.
Selected Pt—N and Pt—S bond lengths (Å) top
BondBond length
Pt1—S12.2487 (16)
Pt1—S22.2425 (17)
Pt1—N12.035 (5)
Pt1—N22.048 (5)
 

Acknowledgements

X-ray data were collected at the University of North Texas using a Bruker APEXII CCD diffractometer.

Funding information

Funding for this research was provided by: Welch Foundation (grant No. AD-0007).

References

First citationBrowning, C., Hudson, J. M., Reinheimer, E. W., Kuo, F.-L., McDougald, R. N. Jr, Rabaâ, H., Pan, H., Bacsa, J., Wang, X., Dunbar, K. R., Shepherd, N. D. & Omary, M. A. (2014). J. Am. Chem. Soc. 136, 16185–16200.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCummings, S. D., Cheng, L.-T. & Eisenberg, R. (1997). Chem. Mater. 9, 440–450.  CrossRef CAS Google Scholar
First citationCummings, S. D. & Eisenberg, R. (1996). J. Am. Chem. Soc. 118, 1949–1960.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeary, E. A. M., Yellowlees, L. J., Jack, L. A., Oswald, I. D. H., Parsons, S., Hirata, N., Durrant, J. R. & Robertson, N. (2005). Inorg. Chem. 44, 242–250.  CrossRef CAS Google Scholar
First citationIslam, A., Sugihara, H., Hara, K., Singh, L. P., Katoh, R., Yanagida, M., Takahashi, Y., Murata, S., Arakawa, H. & Fujihashi, G. (2001). Inorg. Chem. 40, 5371–5380.  CrossRef CAS Google Scholar
First citationLazarides, T., McCormick, T. M., Wilson, K. C., Lee, S., McCamant, D. W. & Eisenberg, R. (2011). J. Am. Chem. Soc. 133, 350–364.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmucker, B. W., Hudson, J. M., Omary, M. A. & Dunbar, K. R. (2003). Inorg. Chem. 42, 4714–4723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStace, J. J., Ball, P. J., Shingade, V., Chatterjee, S., Shiveley, A., Fleeman, W. L., Staniszewski, A. J., Krause, J. A. & Connick, W. B. (2016). Inorg. Chim. Acta, 447, 98–104.  CrossRef CAS Google Scholar
First citationZarkadoulas, A., Koutsouri, E. & Mitsopoulou, C. A. (2012). Coord. Chem. Rev. 256, 2424–2434.  CrossRef CAS Google Scholar
First citationZhang, J., Du, P., Schneider, J., Jarosz, P. & Eisenberg, R. (2007). J. Am. Chem. Soc. 129, 7726–7727.  CrossRef CAS Google Scholar
First citationZuleta, J. A., Burberry, M. S. & Eisenberg, R. (1990). Coord. Chem. Rev. 97, 47–64.  CrossRef CAS Google Scholar
First citationZuleta, J. A., Chesta, C. A. & Eisenberg, R. (1989). J. Am. Chem. Soc. 111, 8916–8917.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds