metal-organic compounds
(2,2′-Bipyridine)(1,2-dicyanoethene-1,2-dithiolato)platinum(II)
aUniversity of North Texas, 1155 Union Circle, Denton, TX 76203-5070, USA, bAustin College, 900 N Grand, Sherman, TX 75090, USA, and cRigaku Oxford Diffraction, 9009 New Trails Dr., The Woodlands, TX 77381, USA
*Correspondence e-mail: bsmucker@austincollege.edu
In the 4N2S2)(C10H8N2)], the complex molecules pack as head-to-tail/inversion dimers, which are stabilized by HOMO–LUMO interactions and a Pt⋯Pt distance of 3.6625 (8) Å. The dimers are linked by C—H⋯N hydrogen bonds, forming layers parallel to the (101) plane.
of the title complex, [Pt(CKeywords: crystal structure; platinum(II); diimine dithiolate; Pt⋯Pt interaction; hydrogen bonding.
CCDC reference: 1894191
Structure description
Since Eisenberg's initial report on luminescent platinum(II) diimine dithiolate complexes (Zuleta, et al. 1989), this class of compounds has been utilized in areas such as dye-sensitized solar cells (Islam et al., 2001; Geary et al., 2005), photosplitting of water (Zhang et al., 2007, Zarkadoulas et al., 2012) and non-linear optics (Cummings et al., 1997). X-ray structures of platinum(II)dithiolate complexes with modified bipyridine ligands are common in papers such as those describing the photophysical properties (Lazarides et al., 2011), reaction kinetics (Stace et al., 2016), or charge-transfer properties (Smucker et al., 2003; Browning et al., 2014) of these compounds. The of one of the initial complexes, Pt(2,2′-bpy)(mnt), which inspired many variations, has heretofore not been published. This paper remedies the absence in the literature.
The title compound crystallized in the centrosymmetric monoclinic P21/n and contains a single molecule of Pt(2,2′-bpy)(mnt) as the contents of its (Fig. 1). The platinum(II) atom has a square-pyramidal coordination sphere and the Pt—N and Pt—S bond distances (Table 1) are typical for M(diimine)(dithiolate) molecules. Within the complex there are short C—H⋯S interactions present (Fig. 1 and Table 2).
|
|
The structure contains head-to-tail (inversion) dimers of Pt(2,2′-bpy)(mnt), as shown in Fig. 2. Intradimer integrity is maintained via HOMO–LUMO interactions whereby the former (of mixed metal/dithiolate molecular orbital character) overlaps with the latter (of primarily chelating diimine ligand character) (Cummings & Eisenberg, 1996) at a distance (C2—C12i) of 3.408 (9) Å (see Fig. 2). Additional integrity within the dimer is also maintained via contacts between the divalent platinum atoms at a distance of 3.6625 (8) Å.
Neighboring dimers of Pt(2,2′-bpy)(mnt) are linked by C—H⋯N hydrogen bonds (Table 2), forming layers parallel to the (101) plane, as shown in Fig. 3. Given the displacement of the two molecules from the different dimers relative to one another (∼2.8 Å), interdimer structural integrity is not maintained by secondary Pt⋯Pt interactions. Rather, interactions between the π-electron density of the 2,2′-bipyridine ligand from one molecule and the empty dz2 orbital from a platinum atom of the second are more likely. Weak π–π interactions may also be providing additional stability as the centroid-to-centroid distance between neighboring pyridyl rings was measured at 4.247 (4) Å, a distance close to the upper limit typical of such interactions (4.2 Å; Browning et al., 2014).
Synthesis and crystallization
The title compound was synthesized according to published procedures (Zuleta et al., 1990). Orange needles of Pt(2,2′-bpy)(mnt) resulted from the ambient cooling of a narrow glass tube containing a warm saturated DMF solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3Structural data
CCDC reference: 1894191
https://doi.org/10.1107/S2414314619001585/su4170sup1.cif
contains datablocks I, GLOBAL. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619001585/su4170Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Pt(C4N2S2)(C10H8N2)] | F(000) = 920 |
Mr = 491.45 | Dx = 2.310 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.087 (3) Å | Cell parameters from 8369 reflections |
b = 7.349 (2) Å | θ = 2.5–27.1° |
c = 19.442 (6) Å | µ = 10.22 mm−1 |
β = 101.276 (6)° | T = 220 K |
V = 1413.4 (8) Å3 | Needle, orange |
Z = 4 | 0.12 × 0.05 × 0.01 mm |
Bruker APEXII CCD diffractometer | 2556 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.063 |
φ and ω scans | θmax = 27.1°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −12→12 |
Tmin = 0.007, Tmax = 0.029 | k = −9→9 |
18409 measured reflections | l = −24→24 |
3118 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0442P)2] where P = (Fo2 + 2Fc2)/3 |
3118 reflections | (Δ/σ)max = 0.002 |
190 parameters | Δρmax = 2.09 e Å−3 |
0 restraints | Δρmin = −1.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.43643 (2) | 0.70734 (3) | 0.53458 (2) | 0.03903 (10) | |
S1 | 0.51148 (16) | 0.6436 (2) | 0.64868 (8) | 0.0470 (3) | |
S2 | 0.22499 (16) | 0.6416 (2) | 0.54649 (8) | 0.0469 (3) | |
N1 | 0.6216 (5) | 0.7728 (7) | 0.5150 (3) | 0.0396 (10) | |
N2 | 0.3858 (5) | 0.7650 (6) | 0.4297 (3) | 0.0392 (10) | |
C7 | 0.4693 (7) | 0.8661 (10) | 0.3301 (3) | 0.0522 (15) | |
H7 | 0.542164 | 0.904905 | 0.310168 | 0.063* | |
C9 | 0.2366 (8) | 0.7948 (10) | 0.3194 (4) | 0.0572 (17) | |
H9 | 0.149274 | 0.782025 | 0.292112 | 0.069* | |
C1 | 0.6228 (7) | 0.8192 (7) | 0.4475 (3) | 0.0420 (13) | |
C4 | 0.8613 (7) | 0.8111 (10) | 0.5421 (4) | 0.0558 (17) | |
H4 | 0.942142 | 0.808236 | 0.575644 | 0.067* | |
C5 | 0.7390 (7) | 0.7732 (9) | 0.5608 (4) | 0.0492 (14) | |
H5 | 0.738405 | 0.746376 | 0.608044 | 0.059* | |
C2 | 0.7416 (7) | 0.8605 (9) | 0.4255 (4) | 0.0522 (15) | |
H2 | 0.740318 | 0.893202 | 0.378586 | 0.063* | |
C10 | 0.2615 (7) | 0.7526 (10) | 0.3897 (3) | 0.0499 (15) | |
H10 | 0.189427 | 0.714035 | 0.410351 | 0.060* | |
C6 | 0.4905 (7) | 0.8193 (8) | 0.4000 (3) | 0.0421 (13) | |
C8 | 0.3413 (8) | 0.8561 (11) | 0.2894 (3) | 0.0587 (17) | |
H8 | 0.325677 | 0.890471 | 0.241974 | 0.070* | |
C14 | 0.1239 (7) | 0.5176 (11) | 0.6564 (3) | 0.0565 (17) | |
N3 | 0.4007 (7) | 0.4658 (11) | 0.8047 (3) | 0.0749 (19) | |
N4 | 0.0271 (7) | 0.4718 (11) | 0.6732 (3) | 0.0722 (18) | |
C11 | 0.3675 (7) | 0.5754 (9) | 0.6776 (3) | 0.0501 (15) | |
C12 | 0.2442 (7) | 0.5745 (9) | 0.6334 (3) | 0.0494 (15) | |
C13 | 0.3842 (7) | 0.5158 (10) | 0.7483 (3) | 0.0550 (16) | |
C3 | 0.8621 (7) | 0.8531 (10) | 0.4734 (4) | 0.0537 (15) | |
H3 | 0.944232 | 0.876651 | 0.459047 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.04558 (14) | 0.04030 (14) | 0.03045 (13) | −0.00093 (10) | 0.00560 (9) | −0.00120 (9) |
S1 | 0.0534 (8) | 0.0553 (9) | 0.0311 (7) | −0.0029 (7) | 0.0052 (6) | 0.0021 (6) |
S2 | 0.0495 (8) | 0.0539 (9) | 0.0372 (7) | −0.0007 (7) | 0.0080 (6) | 0.0017 (7) |
N1 | 0.045 (3) | 0.038 (2) | 0.034 (2) | −0.001 (2) | 0.005 (2) | −0.0028 (19) |
N2 | 0.045 (3) | 0.036 (2) | 0.035 (2) | −0.002 (2) | 0.004 (2) | −0.0001 (19) |
C7 | 0.067 (4) | 0.049 (3) | 0.041 (3) | −0.004 (3) | 0.011 (3) | 0.006 (3) |
C9 | 0.057 (4) | 0.068 (5) | 0.042 (4) | −0.003 (3) | −0.002 (3) | 0.007 (3) |
C1 | 0.057 (3) | 0.032 (3) | 0.037 (3) | −0.001 (2) | 0.009 (3) | −0.005 (2) |
C4 | 0.047 (4) | 0.063 (5) | 0.054 (4) | −0.008 (3) | 0.003 (3) | −0.003 (3) |
C5 | 0.051 (3) | 0.056 (4) | 0.038 (3) | −0.001 (3) | 0.001 (3) | −0.003 (3) |
C2 | 0.061 (4) | 0.046 (3) | 0.053 (4) | −0.004 (3) | 0.019 (3) | −0.010 (3) |
C10 | 0.047 (3) | 0.062 (4) | 0.039 (3) | 0.000 (3) | 0.002 (3) | 0.003 (3) |
C6 | 0.052 (3) | 0.037 (3) | 0.037 (3) | −0.005 (2) | 0.008 (2) | −0.001 (2) |
C8 | 0.073 (4) | 0.063 (4) | 0.037 (3) | 0.001 (4) | 0.002 (3) | 0.007 (3) |
C14 | 0.063 (4) | 0.065 (5) | 0.042 (3) | −0.004 (3) | 0.012 (3) | −0.007 (3) |
N3 | 0.087 (5) | 0.092 (5) | 0.047 (3) | 0.002 (4) | 0.016 (3) | 0.008 (3) |
N4 | 0.070 (4) | 0.090 (5) | 0.062 (4) | −0.016 (4) | 0.026 (3) | −0.003 (4) |
C11 | 0.062 (4) | 0.055 (4) | 0.034 (3) | −0.004 (3) | 0.012 (3) | −0.003 (3) |
C12 | 0.059 (4) | 0.048 (4) | 0.041 (3) | −0.004 (3) | 0.011 (3) | −0.005 (3) |
C13 | 0.061 (4) | 0.059 (4) | 0.045 (4) | −0.002 (3) | 0.012 (3) | 0.000 (3) |
C3 | 0.049 (3) | 0.055 (4) | 0.058 (4) | −0.010 (3) | 0.013 (3) | −0.010 (3) |
Pt1—S1 | 2.2487 (16) | C1—C2 | 1.383 (9) |
Pt1—S2 | 2.2425 (17) | C1—C6 | 1.467 (9) |
Pt1—N1 | 2.035 (5) | C4—H4 | 0.9400 |
Pt1—N2 | 2.048 (5) | C4—C5 | 1.381 (10) |
S1—C11 | 1.731 (7) | C4—C3 | 1.373 (10) |
S2—C12 | 1.734 (6) | C5—H5 | 0.9400 |
N1—C1 | 1.359 (8) | C2—H2 | 0.9400 |
N1—C5 | 1.335 (8) | C2—C3 | 1.381 (10) |
N2—C10 | 1.343 (8) | C10—H10 | 0.9400 |
N2—C6 | 1.358 (8) | C8—H8 | 0.9400 |
C7—H7 | 0.9400 | C14—N4 | 1.139 (9) |
C7—C6 | 1.378 (9) | C14—C12 | 1.436 (9) |
C7—C8 | 1.378 (10) | N3—C13 | 1.137 (9) |
C9—H9 | 0.9400 | C11—C12 | 1.367 (9) |
C9—C10 | 1.377 (9) | C11—C13 | 1.421 (9) |
C9—C8 | 1.377 (10) | C3—H3 | 0.9400 |
S2—Pt1—S1 | 89.82 (6) | N1—C5—C4 | 123.1 (6) |
N1—Pt1—S1 | 95.12 (15) | N1—C5—H5 | 118.5 |
N1—Pt1—S2 | 175.05 (14) | C4—C5—H5 | 118.5 |
N1—Pt1—N2 | 79.9 (2) | C1—C2—H2 | 120.5 |
N2—Pt1—S1 | 174.88 (14) | C3—C2—C1 | 119.0 (6) |
N2—Pt1—S2 | 95.18 (15) | C3—C2—H2 | 120.5 |
C11—S1—Pt1 | 103.8 (2) | N2—C10—C9 | 121.8 (7) |
C12—S2—Pt1 | 103.6 (2) | N2—C10—H10 | 119.1 |
C1—N1—Pt1 | 114.9 (4) | C9—C10—H10 | 119.1 |
C5—N1—Pt1 | 127.0 (4) | N2—C6—C7 | 120.6 (6) |
C5—N1—C1 | 118.0 (6) | N2—C6—C1 | 114.9 (5) |
C10—N2—Pt1 | 125.8 (4) | C7—C6—C1 | 124.5 (6) |
C10—N2—C6 | 119.3 (5) | C7—C8—H8 | 120.5 |
C6—N2—Pt1 | 114.9 (4) | C9—C8—C7 | 119.0 (6) |
C6—C7—H7 | 120.0 | C9—C8—H8 | 120.5 |
C6—C7—C8 | 120.0 (6) | N4—C14—C12 | 178.4 (7) |
C8—C7—H7 | 120.0 | C12—C11—S1 | 121.0 (5) |
C10—C9—H9 | 120.4 | C12—C11—C13 | 121.9 (6) |
C10—C9—C8 | 119.2 (7) | C13—C11—S1 | 117.1 (5) |
C8—C9—H9 | 120.4 | C14—C12—S2 | 116.5 (5) |
N1—C1—C2 | 121.8 (6) | C11—C12—S2 | 121.7 (5) |
N1—C1—C6 | 115.4 (5) | C11—C12—C14 | 121.7 (6) |
C2—C1—C6 | 122.9 (6) | N3—C13—C11 | 178.1 (9) |
C5—C4—H4 | 120.7 | C4—C3—C2 | 119.6 (6) |
C3—C4—H4 | 120.7 | C4—C3—H3 | 120.2 |
C3—C4—C5 | 118.6 (7) | C2—C3—H3 | 120.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···S1 | 0.94 | 2.67 | 3.260 (8) | 121 |
C10—H10···S2 | 0.94 | 2.65 | 3.245 (6) | 121 |
C2—H2···N3i | 0.94 | 2.58 | 3.346 (10) | 139 |
Symmetry code: (i) x+1/2, −y+3/2, z−1/2. |
Bond | Bond length |
Pt1—S1 | 2.2487 (16) |
Pt1—S2 | 2.2425 (17) |
Pt1—N1 | 2.035 (5) |
Pt1—N2 | 2.048 (5) |
Acknowledgements
X-ray data were collected at the University of North Texas using a Bruker APEXII CCD diffractometer.
Funding information
Funding for this research was provided by: Welch Foundation (grant No. AD-0007).
References
Browning, C., Hudson, J. M., Reinheimer, E. W., Kuo, F.-L., McDougald, R. N. Jr, Rabaâ, H., Pan, H., Bacsa, J., Wang, X., Dunbar, K. R., Shepherd, N. D. & Omary, M. A. (2014). J. Am. Chem. Soc. 136, 16185–16200. CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cummings, S. D., Cheng, L.-T. & Eisenberg, R. (1997). Chem. Mater. 9, 440–450. CrossRef CAS Google Scholar
Cummings, S. D. & Eisenberg, R. (1996). J. Am. Chem. Soc. 118, 1949–1960. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Geary, E. A. M., Yellowlees, L. J., Jack, L. A., Oswald, I. D. H., Parsons, S., Hirata, N., Durrant, J. R. & Robertson, N. (2005). Inorg. Chem. 44, 242–250. CrossRef CAS Google Scholar
Islam, A., Sugihara, H., Hara, K., Singh, L. P., Katoh, R., Yanagida, M., Takahashi, Y., Murata, S., Arakawa, H. & Fujihashi, G. (2001). Inorg. Chem. 40, 5371–5380. CrossRef CAS Google Scholar
Lazarides, T., McCormick, T. M., Wilson, K. C., Lee, S., McCamant, D. W. & Eisenberg, R. (2011). J. Am. Chem. Soc. 133, 350–364. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smucker, B. W., Hudson, J. M., Omary, M. A. & Dunbar, K. R. (2003). Inorg. Chem. 42, 4714–4723. Web of Science CrossRef PubMed CAS Google Scholar
Stace, J. J., Ball, P. J., Shingade, V., Chatterjee, S., Shiveley, A., Fleeman, W. L., Staniszewski, A. J., Krause, J. A. & Connick, W. B. (2016). Inorg. Chim. Acta, 447, 98–104. CrossRef CAS Google Scholar
Zarkadoulas, A., Koutsouri, E. & Mitsopoulou, C. A. (2012). Coord. Chem. Rev. 256, 2424–2434. CrossRef CAS Google Scholar
Zhang, J., Du, P., Schneider, J., Jarosz, P. & Eisenberg, R. (2007). J. Am. Chem. Soc. 129, 7726–7727. CrossRef CAS Google Scholar
Zuleta, J. A., Burberry, M. S. & Eisenberg, R. (1990). Coord. Chem. Rev. 97, 47–64. CrossRef CAS Google Scholar
Zuleta, J. A., Chesta, C. A. & Eisenberg, R. (1989). J. Am. Chem. Soc. 111, 8916–8917. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.