organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-3-Butyl-5-(4-nitro­benzyl­­idene)thia­zolidine-2,4-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar, University, Muzaffarpur, Bihar, India, bDepartment of Chemistry, Govt. College For Women, Udhampur, Jammu and Kashmir, 182 101, India, cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, Atakum 55139 Samsun, Turkey, and dDepartment of Chemistry, National Taras Shevchenko University of Kiev, 64/13 Volodymyrska Street, City of Kyiv, 01601, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com, malinachem88@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 January 2019; accepted 18 January 2019; online 29 January 2019)

In the title compound, C14H14N2O4S, the benzene and thia­zolidine rings are almost coplanar with a dihedral angle of 2.98 (14)°. The butyl chain is directed almost perpendicular to the plane of the rest of the mol­ecule. In the crystal, a combination of C—H⋯O hydrogen bonds and offset ππ inter­actions leads to the formation of a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thia­zolidines are an important class of heteroaromatic compounds and have widespread applications from pharmaceuticals (Barreca et al., 2002[Barreca, M. L., Balzarini, J., Chimirri, A., De Clercq, E., De Luca, L., Höltje, H. D., Höltje, M., Monforte, A. M., Monforte, P., Pannecouque, C., Rao, A. & Zappalà, M. (2002). J. Med. Chem. 45, 5410-5413.]) to materials (Botti et al., 1996[Botti, P., Pallin, T. D. & Tam, J. P. (1996). J. Am. Chem. Soc. 118, 10018-10024.]). Substituted thia­zolidine derivatives represent important key inter­mediates for the synthesis of pharmacologically active drugs. The group has a wide range of biological activities such as anti­fungal, anti­proliferative, anti-inflammatory, anti­malarial, herbicidal, anti­viral (Samadhiya et al., 2012[Samadhiya, P., Sharma, R., Srivastava, S. K. & Srivastava, S. D. (2012). J. Sci. 20, 37-58.]), anti-convulsant (Pandey et al., 2011[Pandey, Y., Sharma, P. K., Kumar, N. & Singh, A. (2011). Int. J. Pharm. Tech. Res, 3, 980-985.]), anti­cancer and anti-oxidant, and also has inter­esting anti­microbial activity (influenza). In addition, anti­diabetic properties (Majed & Abid, 2015[Majed, A. A. & Abid, D. S. (2015). J. Sci. 33, 101-117.]) have been reported. There are numerous biologically active mol­ecules with five-membered rings containing two hetero atoms. Among them, thia­zolidines are the most extensively investigated class of compounds (Fun et al., 2011[Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.]). Thia­zolidine derivatives exhibit anti-HIV, anti­tuberculotic (Fun et al., 2011[Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.]), herbicidal, anti­neoplastic, hypolipidemic and anti-inflammatory activities (Vennila et al., 2011[Vennila, J. P., Thiruvadigal, D. J., Kavitha, H. P., Chakkaravarthi, G. & Manivannan, V. (2011). Acta Cryst. E67, o1902.]). Thia­zolidines have many inter­esting activity profiles, namely as COX-1 inhibitors, inhibitors of the bacterial enzyme MurB, which is a precursor, acting during the biosynthesis of peptidoglycan, non-nucleoside inhibitors of HIV–RT and anti-histaminic agents (Čačić et al., 2010[Čačić, M., Molnar, M., Šarkanj, B., Has-Schön, E. & Rajković, V. (2010). Molecules, 15, 6795-6809.]). The presence of a thia­zolidine ring in penicillin and related derivatives was the first recognition of its occurrence in nature (Čačić et al., 2010[Čačić, M., Molnar, M., Šarkanj, B., Has-Schön, E. & Rajković, V. (2010). Molecules, 15, 6795-6809.]).

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The benzene and thia­zolidinedione rings are inclined to each other by 2.98 (14)° and there is an intra­molecular C—H⋯S inter­action present forming an S(6) ring motif (Fig. 1[link] and Table 1[link]). The configuration about the C7=C8 bond is Z. The butyl chain is in a fully extended conformation and oriented normal to the thia­zolidinedione ring plane (Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯S1 0.93 2.55 3.256 (3) 133
C2—H2⋯O4i 0.93 2.45 3.139 (4) 131
C5—H5⋯O2ii 0.93 2.60 3.468 (4) 156
C11—H11B⋯O3iii 0.97 2.60 3.281 (3) 128
Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular C—H⋯S inter­action (see Table 1[link]) is shown as a dashed line.

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming rectangular panels lying parallel to the bc plane (Fig. 2[link] and Table 1[link]). The bulky aliphatic substituents are oriented out of the plane of the mol­ecule to occupy the space between the panels (Figs. 2[link] and 3[link]). The panels are linked by offset ππ inter­actions involving inversion-related benzene rings, so forming a three-dimensional structure [Cg2⋯Cg2iv = 3.882 (2) Å, Cg2 is the centroid of the C1–C6 ring, α = 0.00 (14), β = 25.6°, inter­planar distance = 3.503 (1) Å, offset = 1.675 Å, symmetry code (iv): −x + 1, −y + 1, −z + 1].

[Figure 2]
Figure 2
A partial view along the a axis of the crystal packing of the title compound. Dashed lines indicate hydrogen bonds (Table 1[link]) and H atoms not involved in these inter­actions have been omitted.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. Dashed lines indicate hydrogen bonds (Table 1[link]) and H atoms not involved in these inter­actions have been omitted.

A search of the Cambridge Structural Database (CSD, version 5.39, update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 5-(benzyl­idene)-thia­zolidine-2,4-diones gave 12 hits. The compounds closest to the title compound are ethyl [(5Z)-5-(4-methyl­benzyl­idene)-2,4-dioxo-1,3-thia­zolidin-3-yl] acetate (CSD refcode APAJEI; Khalid et al., 2016[Khalid, K., Tachallait, H., Khalid, B., Mague, J. T. & Ramli, Y. (2016). IUCrData, 1, x160851.]) and ethyl [(5Z)-5-(4-meth­oxy­benzyl­idene)-2,4-dioxo-1,3-thia­zolidin-3-yl] acetate (IQUHIN; Tachallait et al., 2016[Tachallait, H., Karrouchi, K., Bougrin, K., Mague, J. T. & Ramli, Y. (2016). IUCrData, 1, x161041.]). As in the title compound, there is an intra­molecular C—H⋯S inter­action present in both compounds, and the benzene and thia­zolidine rings are inclined to each other by 5.33 (8) and 1.49 (6)°, respectively, compared to 2.98 (14)° in the title compound.

Synthesis and crystallization

An aqueous solution (15 ml) of chloro­acetic acid (0.075 M) was placed in a 100 ml round-bottom flask and thio­urea (0.075 M) was added with continuous stirring for 20 min. The reaction mixture was refluxed for 40 h at 373–383 K. On cooling, the contents of the flask solidified into a white needle-like product. This product was filtered and washed with a sufficient amount of water to remove untreated substrates. It was dried and recrystallized with methanol to get pure thia­zolidine-2,4-dione. A stirred solution of thia­zolidine-2,4-dione (9 mmol) in 20 ml glacial acetic acid was buffered with sodium acetate (18 mmol) followed by the addition of 4-nitro­benzaldehyde (9 mmol), then refluxed with stirring for 6 h for Knoevenagel's condensation. The final reaction mixture was poured into ice-cold water, resulting in the precipitation of 5-(4-nitro­benzyl­idene)thia­zolidine-2,4-dione. The precipitate was filtered through a Buchner funnel and thoroughly washed with cold water. Finally, recrystallization was achieved with methanol, and the recrystallized product was dried in a vacuum desiccator over fused calcium chloride. In the last step, the product (4.5 mmol) was dissolved in 30 ml of anhydrous DMF and solid sodium hydride (20 mmol) was slowly added. The reaction mixture was stirred at ambient temperature until hydrogen gas bubbles had stopped. The transparent solution with suspended sodium hydride particles was filtered. The filtrate was added dropwise to a solution of 1-chloro­butane (11.25 mmol in 20 ml of anhydrous DMF). The resulting reaction mixture was stirred at ambient temperature under a nitro­gen atmosphere for 1 h. The solvent was removed, and the residue washed with hexane several times to remove any excess of 1-chloro­butane. Finally, the product was dried overnight under vacuum in a vacuum desiccator over fused calcium chloride. The compound was then dissolved in methanol and fine needle-like crystals of the title compound were obtained after two days on slow evaporation of the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H14N2O4S
Mr 306.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 7.2595 (8), 27.492 (3), 7.9630 (9)
β (°) 113.072 (8)
V3) 1462.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.74 × 0.54 × 0.28
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32 and X-SHAPE; Stoe & Cie, 2017[Stoe & Cie (2017). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.833, 0.936
No. of measured, independent and observed [I > 2σ(I)] reflections 8120, 2855, 1430
Rint 0.078
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.141, 0.83
No. of reflections 2855
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.22
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2017[Stoe & Cie (2017). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2017); cell refinement: X-AREA (Stoe & Cie, 2017); data reduction: X-RED32 (Stoe & Cie, 2017); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(Z)-3-Butyl-5-(4-nitrobenzylidene)thiazolidine-2,4-dione top
Crystal data top
C14H14N2O4SF(000) = 640
Mr = 306.33Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.2595 (8) ÅCell parameters from 9040 reflections
b = 27.492 (3) Åθ = 1.5–27.5°
c = 7.9630 (9) ŵ = 0.24 mm1
β = 113.072 (8)°T = 296 K
V = 1462.1 (3) Å3Prism, yellow
Z = 40.74 × 0.54 × 0.28 mm
Data collection top
Stoe IPDS 2
diffractometer
2855 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1430 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.078
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.5°
rotation method scansh = 88
Absorption correction: integration
(X-RED32 & X-SHAPE; Stoe & Cie, 2017)
k = 3333
Tmin = 0.833, Tmax = 0.936l = 99
8120 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.0719P)2]
where P = (Fo2 + 2Fc2)/3
2855 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24335 (11)0.62282 (3)0.56254 (11)0.0773 (3)
O40.2873 (3)0.57655 (7)1.0303 (3)0.0904 (6)
N20.2667 (3)0.64894 (8)0.8866 (3)0.0700 (6)
O30.2360 (3)0.71142 (7)0.6862 (3)0.1027 (7)
N10.2171 (4)0.40379 (12)0.1189 (4)0.0844 (7)
O10.2111 (4)0.36052 (9)0.1416 (4)0.1175 (9)
C40.2562 (3)0.49850 (9)0.5495 (3)0.0611 (6)
C90.2755 (4)0.59888 (10)0.8958 (4)0.0673 (7)
C50.2708 (4)0.44824 (9)0.5746 (4)0.0665 (7)
H50.2903850.4353850.6883470.080*
C80.2653 (3)0.57709 (9)0.7210 (3)0.0621 (6)
C10.2298 (4)0.43668 (10)0.2678 (4)0.0665 (7)
C20.2147 (4)0.48596 (11)0.2365 (4)0.0723 (7)
H20.1964100.4983080.1223120.087*
O20.2101 (4)0.42141 (11)0.0246 (4)0.1234 (9)
C70.2705 (3)0.52875 (9)0.7049 (4)0.0643 (7)
H70.2858200.5115290.8100950.077*
C30.2272 (4)0.51661 (10)0.3763 (4)0.0687 (7)
H30.2161510.5499950.3559390.082*
C60.2567 (4)0.41738 (10)0.4346 (4)0.0700 (7)
H60.2652270.3838980.4525330.084*
C100.2485 (4)0.66871 (10)0.7210 (4)0.0763 (8)
C120.4807 (5)0.68443 (11)1.1853 (4)0.0922 (10)
H12A0.4721210.6985101.2937610.111*
H12B0.5411450.6525091.2177390.111*
C110.2710 (4)0.67873 (10)1.0404 (4)0.0838 (9)
H11A0.1862050.6638441.0946280.101*
H11B0.2166990.7106310.9958440.101*
C130.6140 (5)0.71590 (13)1.1259 (5)0.1011 (10)
H13A0.5596800.7486131.1028420.121*
H13B0.6152680.7032791.0125950.121*
C140.8259 (6)0.71780 (18)1.2675 (6)0.1483 (17)
H14A0.9042720.7391891.2266080.222*
H14B0.8829690.6857601.2854210.222*
H14C0.8250220.7296441.3806500.222*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0841 (5)0.0659 (4)0.0764 (5)0.0032 (4)0.0254 (4)0.0078 (4)
O40.1288 (17)0.0698 (12)0.0784 (14)0.0099 (11)0.0470 (13)0.0031 (11)
N20.0716 (14)0.0561 (13)0.0759 (16)0.0010 (10)0.0219 (12)0.0029 (11)
O30.1218 (19)0.0604 (12)0.1050 (17)0.0011 (12)0.0217 (14)0.0097 (11)
N10.0743 (16)0.097 (2)0.079 (2)0.0081 (14)0.0262 (14)0.0152 (16)
O10.153 (2)0.0897 (17)0.108 (2)0.0012 (15)0.0479 (17)0.0265 (14)
C40.0503 (13)0.0654 (15)0.0647 (17)0.0007 (11)0.0197 (12)0.0018 (13)
C90.0637 (16)0.0611 (16)0.074 (2)0.0042 (12)0.0232 (14)0.0008 (14)
C50.0719 (17)0.0616 (15)0.0631 (17)0.0063 (12)0.0234 (14)0.0069 (13)
C80.0521 (14)0.0637 (15)0.0671 (17)0.0018 (11)0.0199 (12)0.0027 (13)
C10.0543 (14)0.0772 (18)0.0669 (18)0.0048 (13)0.0225 (13)0.0105 (14)
C20.0685 (17)0.0858 (19)0.0609 (17)0.0074 (15)0.0234 (14)0.0074 (15)
O20.165 (2)0.133 (2)0.0874 (18)0.0173 (17)0.0648 (17)0.0174 (16)
C70.0620 (15)0.0600 (15)0.0683 (17)0.0011 (12)0.0228 (13)0.0056 (13)
C30.0721 (17)0.0674 (15)0.0660 (17)0.0020 (13)0.0263 (14)0.0053 (14)
C60.0688 (17)0.0653 (15)0.0713 (18)0.0054 (13)0.0225 (14)0.0017 (14)
C100.0645 (18)0.0643 (18)0.087 (2)0.0018 (13)0.0157 (15)0.0029 (15)
C120.107 (3)0.0734 (19)0.083 (2)0.0020 (18)0.023 (2)0.0097 (16)
C110.091 (2)0.0665 (17)0.094 (2)0.0030 (15)0.0355 (18)0.0133 (16)
C130.083 (2)0.107 (2)0.103 (3)0.0017 (19)0.025 (2)0.015 (2)
C140.088 (3)0.196 (4)0.128 (4)0.009 (3)0.006 (2)0.038 (3)
Geometric parameters (Å, º) top
S1—C81.744 (3)C1—C21.374 (4)
S1—C101.774 (3)C2—C31.371 (4)
O4—C91.208 (3)C2—H20.9300
N2—C91.378 (3)C7—H70.9300
N2—C101.384 (4)C3—H30.9300
N2—C111.463 (3)C6—H60.9300
O3—C101.202 (3)C12—C131.506 (4)
N1—O11.207 (3)C12—C111.516 (4)
N1—O21.223 (3)C12—H12A0.9700
N1—C11.466 (4)C12—H12B0.9700
C4—C51.394 (3)C11—H11A0.9700
C4—C31.402 (4)C11—H11B0.9700
C4—C71.461 (3)C13—C141.511 (5)
C9—C81.490 (4)C13—H13A0.9700
C5—C61.373 (4)C13—H13B0.9700
C5—H50.9300C14—H14A0.9600
C8—C71.337 (3)C14—H14B0.9600
C1—C61.371 (4)C14—H14C0.9600
C8—S1—C1091.56 (14)C1—C6—C5119.0 (3)
C9—N2—C10115.3 (2)C1—C6—H6120.5
C9—N2—C11121.9 (3)C5—C6—H6120.5
C10—N2—C11122.7 (2)O3—C10—N2125.0 (3)
O1—N1—O2122.6 (3)O3—C10—S1123.5 (3)
O1—N1—C1118.8 (3)N2—C10—S1111.5 (2)
O2—N1—C1118.6 (3)C13—C12—C11113.4 (3)
C5—C4—C3117.8 (2)C13—C12—H12A108.9
C5—C4—C7117.8 (2)C11—C12—H12A108.9
C3—C4—C7124.4 (2)C13—C12—H12B108.9
O4—C9—N2122.7 (3)C11—C12—H12B108.9
O4—C9—C8125.7 (2)H12A—C12—H12B107.7
N2—C9—C8111.6 (2)N2—C11—C12112.4 (2)
C6—C5—C4121.3 (3)N2—C11—H11A109.1
C6—C5—H5119.4C12—C11—H11A109.1
C4—C5—H5119.4N2—C11—H11B109.1
C7—C8—C9119.8 (2)C12—C11—H11B109.1
C7—C8—S1130.2 (2)H11A—C11—H11B107.9
C9—C8—S1110.06 (18)C12—C13—C14112.1 (3)
C6—C1—C2121.9 (3)C12—C13—H13A109.2
C6—C1—N1119.0 (3)C14—C13—H13A109.2
C2—C1—N1119.1 (3)C12—C13—H13B109.2
C3—C2—C1118.9 (3)C14—C13—H13B109.2
C3—C2—H2120.5H13A—C13—H13B107.9
C1—C2—H2120.5C13—C14—H14A109.5
C8—C7—C4130.7 (2)C13—C14—H14B109.5
C8—C7—H7114.7H14A—C14—H14B109.5
C4—C7—H7114.7C13—C14—H14C109.5
C2—C3—C4121.1 (2)H14A—C14—H14C109.5
C2—C3—H3119.4H14B—C14—H14C109.5
C4—C3—H3119.4
C10—N2—C9—O4178.4 (3)S1—C8—C7—C41.2 (4)
C11—N2—C9—O40.0 (4)C5—C4—C7—C8178.7 (2)
C10—N2—C9—C80.6 (3)C3—C4—C7—C81.8 (4)
C11—N2—C9—C8179.0 (2)C1—C2—C3—C40.5 (4)
C3—C4—C5—C60.2 (4)C5—C4—C3—C20.4 (4)
C7—C4—C5—C6179.3 (2)C7—C4—C3—C2179.9 (2)
O4—C9—C8—C70.5 (4)C2—C1—C6—C50.6 (4)
N2—C9—C8—C7179.6 (2)N1—C1—C6—C5179.3 (2)
O4—C9—C8—S1178.5 (2)C4—C5—C6—C10.7 (4)
N2—C9—C8—S10.5 (3)C9—N2—C10—O3179.0 (3)
C10—S1—C8—C7179.1 (3)C11—N2—C10—O30.6 (4)
C10—S1—C8—C90.19 (18)C9—N2—C10—S10.5 (3)
O1—N1—C1—C67.1 (4)C11—N2—C10—S1178.87 (19)
O2—N1—C1—C6173.9 (3)C8—S1—C10—O3179.3 (3)
O1—N1—C1—C2173.0 (3)C8—S1—C10—N20.1 (2)
O2—N1—C1—C26.0 (4)C9—N2—C11—C1279.0 (3)
C6—C1—C2—C30.1 (4)C10—N2—C11—C12102.8 (3)
N1—C1—C2—C3179.8 (2)C13—C12—C11—N270.2 (3)
C9—C8—C7—C4177.6 (2)C11—C12—C13—C14175.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···S10.932.553.256 (3)133
C2—H2···O4i0.932.453.139 (4)131
C5—H5···O2ii0.932.603.468 (4)156
C11—H11B···O3iii0.972.603.281 (3)128
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar, India for the research labs and National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kyiv, Ukraine, for financial support.

References

First citationBarreca, M. L., Balzarini, J., Chimirri, A., De Clercq, E., De Luca, L., Höltje, H. D., Höltje, M., Monforte, A. M., Monforte, P., Pannecouque, C., Rao, A. & Zappalà, M. (2002). J. Med. Chem. 45, 5410–5413.  CrossRef CAS Google Scholar
First citationBotti, P., Pallin, T. D. & Tam, J. P. (1996). J. Am. Chem. Soc. 118, 10018–10024.  CrossRef CAS Web of Science Google Scholar
First citationČačić, M., Molnar, M., Šarkanj, B., Has-Schön, E. & Rajković, V. (2010). Molecules, 15, 6795–6809.  PubMed Google Scholar
First citationFun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhalid, K., Tachallait, H., Khalid, B., Mague, J. T. & Ramli, Y. (2016). IUCrData, 1, x160851.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMajed, A. A. & Abid, D. S. (2015). J. Sci. 33, 101–117.  Google Scholar
First citationPandey, Y., Sharma, P. K., Kumar, N. & Singh, A. (2011). Int. J. Pharm. Tech. Res, 3, 980–985.  CAS Google Scholar
First citationSamadhiya, P., Sharma, R., Srivastava, S. K. & Srivastava, S. D. (2012). J. Sci. 20, 37–58.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2017). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTachallait, H., Karrouchi, K., Bougrin, K., Mague, J. T. & Ramli, Y. (2016). IUCrData, 1, x161041.  Google Scholar
First citationVennila, J. P., Thiruvadigal, D. J., Kavitha, H. P., Chakkaravarthi, G. & Manivannan, V. (2011). Acta Cryst. E67, o1902.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds