organic compounds
(Z)-3-Butyl-5-(4-nitrobenzylidene)thiazolidine-2,4-dione
aDepartment of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar, University, Muzaffarpur, Bihar, India, bDepartment of Chemistry, Govt. College For Women, Udhampur, Jammu and Kashmir, 182 101, India, cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, Atakum 55139 Samsun, Turkey, and dDepartment of Chemistry, National Taras Shevchenko University of Kiev, 64/13 Volodymyrska Street, City of Kyiv, 01601, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com, malinachem88@gmail.com
In the title compound, C14H14N2O4S, the benzene and thiazolidine rings are almost coplanar with a dihedral angle of 2.98 (14)°. The butyl chain is directed almost perpendicular to the plane of the rest of the molecule. In the crystal, a combination of C—H⋯O hydrogen bonds and offset π–π interactions leads to the formation of a three-dimensional structure.
CCDC reference: 1890998
Structure description
Thiazolidines are an important class of heteroaromatic compounds and have widespread applications from pharmaceuticals (Barreca et al., 2002) to materials (Botti et al., 1996). Substituted thiazolidine derivatives represent important key intermediates for the synthesis of pharmacologically active drugs. The group has a wide range of biological activities such as antifungal, antiproliferative, anti-inflammatory, antimalarial, herbicidal, antiviral (Samadhiya et al., 2012), anti-convulsant (Pandey et al., 2011), anticancer and anti-oxidant, and also has interesting antimicrobial activity (influenza). In addition, antidiabetic properties (Majed & Abid, 2015) have been reported. There are numerous biologically active molecules with five-membered rings containing two hetero atoms. Among them, thiazolidines are the most extensively investigated class of compounds (Fun et al., 2011). Thiazolidine derivatives exhibit anti-HIV, antituberculotic (Fun et al., 2011), herbicidal, antineoplastic, hypolipidemic and anti-inflammatory activities (Vennila et al., 2011). Thiazolidines have many interesting activity profiles, namely as COX-1 inhibitors, inhibitors of the bacterial enzyme MurB, which is a precursor, acting during the biosynthesis of non-nucleoside inhibitors of HIV–RT and anti-histaminic agents (Čačić et al., 2010). The presence of a thiazolidine ring in penicillin and related derivatives was the first recognition of its occurrence in nature (Čačić et al., 2010).
The molecular structure of the title compound is shown in Fig. 1. The benzene and thiazolidinedione rings are inclined to each other by 2.98 (14)° and there is an intramolecular C—H⋯S interaction present forming an S(6) ring motif (Fig. 1 and Table 1). The configuration about the C7=C8 bond is Z. The butyl chain is in a fully extended conformation and oriented normal to the thiazolidinedione ring plane (Fig. 1).
In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming rectangular panels lying parallel to the bc plane (Fig. 2 and Table 1). The bulky aliphatic substituents are oriented out of the plane of the molecule to occupy the space between the panels (Figs. 2 and 3). The panels are linked by offset π–π interactions involving inversion-related benzene rings, so forming a three-dimensional structure [Cg2⋯Cg2iv = 3.882 (2) Å, Cg2 is the centroid of the C1–C6 ring, α = 0.00 (14), β = 25.6°, interplanar distance = 3.503 (1) Å, offset = 1.675 Å, symmetry code (iv): −x + 1, −y + 1, −z + 1].
A search of the Cambridge Structural Database (CSD, version 5.39, update May 2018; Groom et al., 2016) for 5-(benzylidene)-thiazolidine-2,4-diones gave 12 hits. The compounds closest to the title compound are ethyl [(5Z)-5-(4-methylbenzylidene)-2,4-dioxo-1,3-thiazolidin-3-yl] acetate (CSD refcode APAJEI; Khalid et al., 2016) and ethyl [(5Z)-5-(4-methoxybenzylidene)-2,4-dioxo-1,3-thiazolidin-3-yl] acetate (IQUHIN; Tachallait et al., 2016). As in the title compound, there is an intramolecular C—H⋯S interaction present in both compounds, and the benzene and thiazolidine rings are inclined to each other by 5.33 (8) and 1.49 (6)°, respectively, compared to 2.98 (14)° in the title compound.
Synthesis and crystallization
An aqueous solution (15 ml) of chloroacetic acid (0.075 M) was placed in a 100 ml round-bottom flask and thiourea (0.075 M) was added with continuous stirring for 20 min. The reaction mixture was refluxed for 40 h at 373–383 K. On cooling, the contents of the flask solidified into a white needle-like product. This product was filtered and washed with a sufficient amount of water to remove untreated substrates. It was dried and recrystallized with methanol to get pure thiazolidine-2,4-dione. A stirred solution of thiazolidine-2,4-dione (9 mmol) in 20 ml glacial acetic acid was buffered with sodium acetate (18 mmol) followed by the addition of 4-nitrobenzaldehyde (9 mmol), then refluxed with stirring for 6 h for Knoevenagel's condensation. The final reaction mixture was poured into ice-cold water, resulting in the precipitation of 5-(4-nitrobenzylidene)thiazolidine-2,4-dione. The precipitate was filtered through a Buchner funnel and thoroughly washed with cold water. Finally, recrystallization was achieved with methanol, and the recrystallized product was dried in a vacuum desiccator over fused calcium chloride. In the last step, the product (4.5 mmol) was dissolved in 30 ml of anhydrous DMF and solid sodium hydride (20 mmol) was slowly added. The reaction mixture was stirred at ambient temperature until hydrogen gas bubbles had stopped. The transparent solution with suspended sodium hydride particles was filtered. The filtrate was added dropwise to a solution of 1-chlorobutane (11.25 mmol in 20 ml of anhydrous DMF). The resulting reaction mixture was stirred at ambient temperature under a nitrogen atmosphere for 1 h. The solvent was removed, and the residue washed with hexane several times to remove any excess of 1-chlorobutane. Finally, the product was dried overnight under vacuum in a vacuum desiccator over fused calcium chloride. The compound was then dissolved in methanol and fine needle-like crystals of the title compound were obtained after two days on slow evaporation of the solvent.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1890998
https://doi.org/10.1107/S2414314619000944/su4169sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619000944/su4169Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314619000944/su4169Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2017); cell
X-AREA (Stoe & Cie, 2017); data reduction: X-RED32 (Stoe & Cie, 2017); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C14H14N2O4S | F(000) = 640 |
Mr = 306.33 | Dx = 1.392 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2595 (8) Å | Cell parameters from 9040 reflections |
b = 27.492 (3) Å | θ = 1.5–27.5° |
c = 7.9630 (9) Å | µ = 0.24 mm−1 |
β = 113.072 (8)° | T = 296 K |
V = 1462.1 (3) Å3 | Prism, yellow |
Z = 4 | 0.74 × 0.54 × 0.28 mm |
Stoe IPDS 2 diffractometer | 2855 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1430 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.078 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 1.5° |
rotation method scans | h = −8→8 |
Absorption correction: integration (X-RED32 & X-SHAPE; Stoe & Cie, 2017) | k = −33→33 |
Tmin = 0.833, Tmax = 0.936 | l = −9→9 |
8120 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 0.83 | w = 1/[σ2(Fo2) + (0.0719P)2] where P = (Fo2 + 2Fc2)/3 |
2855 reflections | (Δ/σ)max = 0.001 |
191 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.24335 (11) | 0.62282 (3) | 0.56254 (11) | 0.0773 (3) | |
O4 | 0.2873 (3) | 0.57655 (7) | 1.0303 (3) | 0.0904 (6) | |
N2 | 0.2667 (3) | 0.64894 (8) | 0.8866 (3) | 0.0700 (6) | |
O3 | 0.2360 (3) | 0.71142 (7) | 0.6862 (3) | 0.1027 (7) | |
N1 | 0.2171 (4) | 0.40379 (12) | 0.1189 (4) | 0.0844 (7) | |
O1 | 0.2111 (4) | 0.36052 (9) | 0.1416 (4) | 0.1175 (9) | |
C4 | 0.2562 (3) | 0.49850 (9) | 0.5495 (3) | 0.0611 (6) | |
C9 | 0.2755 (4) | 0.59888 (10) | 0.8958 (4) | 0.0673 (7) | |
C5 | 0.2708 (4) | 0.44824 (9) | 0.5746 (4) | 0.0665 (7) | |
H5 | 0.290385 | 0.435385 | 0.688347 | 0.080* | |
C8 | 0.2653 (3) | 0.57709 (9) | 0.7210 (3) | 0.0621 (6) | |
C1 | 0.2298 (4) | 0.43668 (10) | 0.2678 (4) | 0.0665 (7) | |
C2 | 0.2147 (4) | 0.48596 (11) | 0.2365 (4) | 0.0723 (7) | |
H2 | 0.196410 | 0.498308 | 0.122312 | 0.087* | |
O2 | 0.2101 (4) | 0.42141 (11) | −0.0246 (4) | 0.1234 (9) | |
C7 | 0.2705 (3) | 0.52875 (9) | 0.7049 (4) | 0.0643 (7) | |
H7 | 0.285820 | 0.511529 | 0.810095 | 0.077* | |
C3 | 0.2272 (4) | 0.51661 (10) | 0.3763 (4) | 0.0687 (7) | |
H3 | 0.216151 | 0.549995 | 0.355939 | 0.082* | |
C6 | 0.2567 (4) | 0.41738 (10) | 0.4346 (4) | 0.0700 (7) | |
H6 | 0.265227 | 0.383898 | 0.452533 | 0.084* | |
C10 | 0.2485 (4) | 0.66871 (10) | 0.7210 (4) | 0.0763 (8) | |
C12 | 0.4807 (5) | 0.68443 (11) | 1.1853 (4) | 0.0922 (10) | |
H12A | 0.472121 | 0.698510 | 1.293761 | 0.111* | |
H12B | 0.541145 | 0.652509 | 1.217739 | 0.111* | |
C11 | 0.2710 (4) | 0.67873 (10) | 1.0404 (4) | 0.0838 (9) | |
H11A | 0.186205 | 0.663844 | 1.094628 | 0.101* | |
H11B | 0.216699 | 0.710631 | 0.995844 | 0.101* | |
C13 | 0.6140 (5) | 0.71590 (13) | 1.1259 (5) | 0.1011 (10) | |
H13A | 0.559680 | 0.748613 | 1.102842 | 0.121* | |
H13B | 0.615268 | 0.703279 | 1.012595 | 0.121* | |
C14 | 0.8259 (6) | 0.71780 (18) | 1.2675 (6) | 0.1483 (17) | |
H14A | 0.904272 | 0.739189 | 1.226608 | 0.222* | |
H14B | 0.882969 | 0.685760 | 1.285421 | 0.222* | |
H14C | 0.825022 | 0.729644 | 1.380650 | 0.222* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0841 (5) | 0.0659 (4) | 0.0764 (5) | −0.0032 (4) | 0.0254 (4) | 0.0078 (4) |
O4 | 0.1288 (17) | 0.0698 (12) | 0.0784 (14) | −0.0099 (11) | 0.0470 (13) | −0.0031 (11) |
N2 | 0.0716 (14) | 0.0561 (13) | 0.0759 (16) | −0.0010 (10) | 0.0219 (12) | −0.0029 (11) |
O3 | 0.1218 (19) | 0.0604 (12) | 0.1050 (17) | 0.0011 (12) | 0.0217 (14) | 0.0097 (11) |
N1 | 0.0743 (16) | 0.097 (2) | 0.079 (2) | −0.0081 (14) | 0.0262 (14) | −0.0152 (16) |
O1 | 0.153 (2) | 0.0897 (17) | 0.108 (2) | 0.0012 (15) | 0.0479 (17) | −0.0265 (14) |
C4 | 0.0503 (13) | 0.0654 (15) | 0.0647 (17) | −0.0007 (11) | 0.0197 (12) | −0.0018 (13) |
C9 | 0.0637 (16) | 0.0611 (16) | 0.074 (2) | −0.0042 (12) | 0.0232 (14) | 0.0008 (14) |
C5 | 0.0719 (17) | 0.0616 (15) | 0.0631 (17) | 0.0063 (12) | 0.0234 (14) | 0.0069 (13) |
C8 | 0.0521 (14) | 0.0637 (15) | 0.0671 (17) | −0.0018 (11) | 0.0199 (12) | 0.0027 (13) |
C1 | 0.0543 (14) | 0.0772 (18) | 0.0669 (18) | −0.0048 (13) | 0.0225 (13) | −0.0105 (14) |
C2 | 0.0685 (17) | 0.0858 (19) | 0.0609 (17) | −0.0074 (15) | 0.0234 (14) | 0.0074 (15) |
O2 | 0.165 (2) | 0.133 (2) | 0.0874 (18) | −0.0173 (17) | 0.0648 (17) | −0.0174 (16) |
C7 | 0.0620 (15) | 0.0600 (15) | 0.0683 (17) | 0.0011 (12) | 0.0228 (13) | 0.0056 (13) |
C3 | 0.0721 (17) | 0.0674 (15) | 0.0660 (17) | −0.0020 (13) | 0.0263 (14) | 0.0053 (14) |
C6 | 0.0688 (17) | 0.0653 (15) | 0.0713 (18) | 0.0054 (13) | 0.0225 (14) | 0.0017 (14) |
C10 | 0.0645 (18) | 0.0643 (18) | 0.087 (2) | −0.0018 (13) | 0.0157 (15) | 0.0029 (15) |
C12 | 0.107 (3) | 0.0734 (19) | 0.083 (2) | 0.0020 (18) | 0.023 (2) | −0.0097 (16) |
C11 | 0.091 (2) | 0.0665 (17) | 0.094 (2) | −0.0030 (15) | 0.0355 (18) | −0.0133 (16) |
C13 | 0.083 (2) | 0.107 (2) | 0.103 (3) | −0.0017 (19) | 0.025 (2) | −0.015 (2) |
C14 | 0.088 (3) | 0.196 (4) | 0.128 (4) | −0.009 (3) | 0.006 (2) | −0.038 (3) |
S1—C8 | 1.744 (3) | C1—C2 | 1.374 (4) |
S1—C10 | 1.774 (3) | C2—C3 | 1.371 (4) |
O4—C9 | 1.208 (3) | C2—H2 | 0.9300 |
N2—C9 | 1.378 (3) | C7—H7 | 0.9300 |
N2—C10 | 1.384 (4) | C3—H3 | 0.9300 |
N2—C11 | 1.463 (3) | C6—H6 | 0.9300 |
O3—C10 | 1.202 (3) | C12—C13 | 1.506 (4) |
N1—O1 | 1.207 (3) | C12—C11 | 1.516 (4) |
N1—O2 | 1.223 (3) | C12—H12A | 0.9700 |
N1—C1 | 1.466 (4) | C12—H12B | 0.9700 |
C4—C5 | 1.394 (3) | C11—H11A | 0.9700 |
C4—C3 | 1.402 (4) | C11—H11B | 0.9700 |
C4—C7 | 1.461 (3) | C13—C14 | 1.511 (5) |
C9—C8 | 1.490 (4) | C13—H13A | 0.9700 |
C5—C6 | 1.373 (4) | C13—H13B | 0.9700 |
C5—H5 | 0.9300 | C14—H14A | 0.9600 |
C8—C7 | 1.337 (3) | C14—H14B | 0.9600 |
C1—C6 | 1.371 (4) | C14—H14C | 0.9600 |
C8—S1—C10 | 91.56 (14) | C1—C6—C5 | 119.0 (3) |
C9—N2—C10 | 115.3 (2) | C1—C6—H6 | 120.5 |
C9—N2—C11 | 121.9 (3) | C5—C6—H6 | 120.5 |
C10—N2—C11 | 122.7 (2) | O3—C10—N2 | 125.0 (3) |
O1—N1—O2 | 122.6 (3) | O3—C10—S1 | 123.5 (3) |
O1—N1—C1 | 118.8 (3) | N2—C10—S1 | 111.5 (2) |
O2—N1—C1 | 118.6 (3) | C13—C12—C11 | 113.4 (3) |
C5—C4—C3 | 117.8 (2) | C13—C12—H12A | 108.9 |
C5—C4—C7 | 117.8 (2) | C11—C12—H12A | 108.9 |
C3—C4—C7 | 124.4 (2) | C13—C12—H12B | 108.9 |
O4—C9—N2 | 122.7 (3) | C11—C12—H12B | 108.9 |
O4—C9—C8 | 125.7 (2) | H12A—C12—H12B | 107.7 |
N2—C9—C8 | 111.6 (2) | N2—C11—C12 | 112.4 (2) |
C6—C5—C4 | 121.3 (3) | N2—C11—H11A | 109.1 |
C6—C5—H5 | 119.4 | C12—C11—H11A | 109.1 |
C4—C5—H5 | 119.4 | N2—C11—H11B | 109.1 |
C7—C8—C9 | 119.8 (2) | C12—C11—H11B | 109.1 |
C7—C8—S1 | 130.2 (2) | H11A—C11—H11B | 107.9 |
C9—C8—S1 | 110.06 (18) | C12—C13—C14 | 112.1 (3) |
C6—C1—C2 | 121.9 (3) | C12—C13—H13A | 109.2 |
C6—C1—N1 | 119.0 (3) | C14—C13—H13A | 109.2 |
C2—C1—N1 | 119.1 (3) | C12—C13—H13B | 109.2 |
C3—C2—C1 | 118.9 (3) | C14—C13—H13B | 109.2 |
C3—C2—H2 | 120.5 | H13A—C13—H13B | 107.9 |
C1—C2—H2 | 120.5 | C13—C14—H14A | 109.5 |
C8—C7—C4 | 130.7 (2) | C13—C14—H14B | 109.5 |
C8—C7—H7 | 114.7 | H14A—C14—H14B | 109.5 |
C4—C7—H7 | 114.7 | C13—C14—H14C | 109.5 |
C2—C3—C4 | 121.1 (2) | H14A—C14—H14C | 109.5 |
C2—C3—H3 | 119.4 | H14B—C14—H14C | 109.5 |
C4—C3—H3 | 119.4 | ||
C10—N2—C9—O4 | −178.4 (3) | S1—C8—C7—C4 | −1.2 (4) |
C11—N2—C9—O4 | 0.0 (4) | C5—C4—C7—C8 | 178.7 (2) |
C10—N2—C9—C8 | 0.6 (3) | C3—C4—C7—C8 | −1.8 (4) |
C11—N2—C9—C8 | 179.0 (2) | C1—C2—C3—C4 | 0.5 (4) |
C3—C4—C5—C6 | −0.2 (4) | C5—C4—C3—C2 | −0.4 (4) |
C7—C4—C5—C6 | 179.3 (2) | C7—C4—C3—C2 | −179.9 (2) |
O4—C9—C8—C7 | −0.5 (4) | C2—C1—C6—C5 | −0.6 (4) |
N2—C9—C8—C7 | −179.6 (2) | N1—C1—C6—C5 | 179.3 (2) |
O4—C9—C8—S1 | 178.5 (2) | C4—C5—C6—C1 | 0.7 (4) |
N2—C9—C8—S1 | −0.5 (3) | C9—N2—C10—O3 | 179.0 (3) |
C10—S1—C8—C7 | 179.1 (3) | C11—N2—C10—O3 | 0.6 (4) |
C10—S1—C8—C9 | 0.19 (18) | C9—N2—C10—S1 | −0.5 (3) |
O1—N1—C1—C6 | 7.1 (4) | C11—N2—C10—S1 | −178.87 (19) |
O2—N1—C1—C6 | −173.9 (3) | C8—S1—C10—O3 | −179.3 (3) |
O1—N1—C1—C2 | −173.0 (3) | C8—S1—C10—N2 | 0.1 (2) |
O2—N1—C1—C2 | 6.0 (4) | C9—N2—C11—C12 | 79.0 (3) |
C6—C1—C2—C3 | 0.1 (4) | C10—N2—C11—C12 | −102.8 (3) |
N1—C1—C2—C3 | −179.8 (2) | C13—C12—C11—N2 | 70.2 (3) |
C9—C8—C7—C4 | 177.6 (2) | C11—C12—C13—C14 | −175.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···S1 | 0.93 | 2.55 | 3.256 (3) | 133 |
C2—H2···O4i | 0.93 | 2.45 | 3.139 (4) | 131 |
C5—H5···O2ii | 0.93 | 2.60 | 3.468 (4) | 156 |
C11—H11B···O3iii | 0.97 | 2.60 | 3.281 (3) | 128 |
Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1; (iii) x, −y+3/2, z+1/2. |
Acknowledgements
The authors are grateful to the Department of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar, India for the research labs and National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kyiv, Ukraine, for financial support.
References
Barreca, M. L., Balzarini, J., Chimirri, A., De Clercq, E., De Luca, L., Höltje, H. D., Höltje, M., Monforte, A. M., Monforte, P., Pannecouque, C., Rao, A. & Zappalà, M. (2002). J. Med. Chem. 45, 5410–5413. CrossRef CAS Google Scholar
Botti, P., Pallin, T. D. & Tam, J. P. (1996). J. Am. Chem. Soc. 118, 10018–10024. CrossRef CAS Web of Science Google Scholar
Čačić, M., Molnar, M., Šarkanj, B., Has-Schön, E. & Rajković, V. (2010). Molecules, 15, 6795–6809. PubMed Google Scholar
Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706. Web of Science CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Khalid, K., Tachallait, H., Khalid, B., Mague, J. T. & Ramli, Y. (2016). IUCrData, 1, x160851. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Majed, A. A. & Abid, D. S. (2015). J. Sci. 33, 101–117. Google Scholar
Pandey, Y., Sharma, P. K., Kumar, N. & Singh, A. (2011). Int. J. Pharm. Tech. Res, 3, 980–985. CAS Google Scholar
Samadhiya, P., Sharma, R., Srivastava, S. K. & Srivastava, S. D. (2012). J. Sci. 20, 37–58. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2017). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tachallait, H., Karrouchi, K., Bougrin, K., Mague, J. T. & Ramli, Y. (2016). IUCrData, 1, x161041. Google Scholar
Vennila, J. P., Thiruvadigal, D. J., Kavitha, H. P., Chakkaravarthi, G. & Manivannan, V. (2011). Acta Cryst. E67, o1902. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.