metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­chlorido­(2,2′-methyl­enedi­pyridine)­zinc(II)

CROSSMARK_Color_square_no_text.svg

aDivision of Science, Math, Health, and Computer Science, Spartanburg Methodist College, 1000 Powell Mill Rd., Spartanburg, SC 29301, 864-587-4214, USA, bDepartment of Chemistry, Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA, and cDepartment of Chemistry, Hunter Laboratories, Clemson University, Clemson, SC 29634, USA
*Correspondence e-mail: siegfrieda@smcsc.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 26 December 2018; accepted 24 January 2019; online 29 January 2019)

The title complex, [ZnCl2(C11H10N2)], crystallizes in the P21/c space group with di-2-pyridyl­methane acting as a bidentate ligand coordinating the zinc atom in a distorted tetra­hedral geometry. The asymmetric unit consists of a single mol­ecule of the title complex. The title complex folds with an angle of 53.82 (5)° between the planes of the two pyridine rings. The crystal packing is stabilized by hydrogen bonds and ππ inter­actions involving both pyridine rings.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Polynuclear d10 metal complexes are known to possess luminescence properties and have been studied extensively (Yam & Lo, 1999[Yam, V. W. W. & Lo, K. K. W. (1999). Chem. Soc. Rev. 28, 323-334.]). Mononuclear d10 metal complexes such as the title compound were first synthesized by Friedrich et al. (1962[Friedrich, H., Gückel, W. & Scheibe, G. (1962). Chem. Ber. 95, 1378-1387.]) in a search for new methods of producing known dyes. A few years later, Black et al. (1967[Black, D. (1967). Aust. J. Chem. 20, 2101-.]) produced a series of bidentate chelate complexes including the title complex. Di-2-pyridyl­methane can be coupled to form tetra-2-pyridyl­ethane, which in turn can be oxidized further to form tetra-2-pyridyl­ethyl­ene. Both tetra-2-pyridyl­ethane and the ethyl­ene derivative have been used as a ligands in metal coordination chemistry (D'Alessandro et al., 2003[D'Alessandro, D. M., Keene, F. R., Steel, P. J. & Sumby, C. J. (2003). Aust. J. Chem. 56, 657-664.]). Herein we report the crystal structure of the title compound, Fig. 1[link], which we produced serendipitously in an attempt to prepare a tetra-2-pyridyl derivative, Fig. 2[link].

[Figure 1]
Figure 1
The structure of the title complex with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Expected and actual reaction schemes leading to the synthesis of the title complex.

The asymmetric unit of the title compound consists of one mol­ecule on a general position. The two pyridine rings are planar to within 0.0076 (13)Å and 0.0071 (11) Å and are inclined to one another at a dihedral angle of 53.82 (5)°, Fig. 3[link]. The ZnII atom coordinates in a distorted tetra­hedral geometry with the 2,2′-methyl­enedipyridine unit acting as a bidentate chelating ligand through the N atoms of the two pyridine rings.

[Figure 3]
Figure 3
A plot showing the dihedral angle between the two pyridine rings in the title complex.

C—H⋯π and ππ inter­actions are observed between mol­ecules of the title compound. Two ππ inter­actions involve both pyridine rings, Fig. 4[link], with distances of 3.8843 (5) and 3.5828 (11) Å, respectively, between the centroids of the N2/C7–C11 pyridine rings running along the b-axis direction and between the centroids of the N1/C1–C5 pyridine rings running along the [[\overline{13}]70] direction. The H10⋯π (N1/C1–C5) inter­action distance is 2.99 Å, which is just outside the H⋯Cp distance of 2.9 Å suggested for such contacts (Takahashi et al., 2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). C—H⋯Cl inter­actions are also observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cl1i 0.95 2.89 3.7719 (19) 154
C11—H11⋯Cl2ii 0.95 2.86 3.591 (2) 134
C10—H10⋯Cg1iii 0.95 2.99 3.718 (2) 135
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 4]
Figure 4
ππ inter­actions between adjacent mol­ecules of the title complex.

A search of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found five complexes that utilize bis­(2-pyrid­yl)methane as a ligand and nine complexes with related di-2-pyridyl­ketone ligands. Metals reported in these structures are ZnII, PtII, and PtIV for the di-2-pyridyl­ketone structures [refcodes ERAPUI (Crowder et al., 2004[Crowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. D. & Granger, R. M. (2004). Inorg. Chem. 43, 72-78.]), LUCBOA (Katsoulakou et al., 2002[Katsoulakou, E., Lalioti, N., Raptopoulou, C. P., Terzis, A., Manessi-Zoupa, E. & Perlepes, S. P. (2002). Inorg. Chem. Commun. 5, 719-723.]), SIQZEX (Lo et al., 2015[Lo, W. K. C., Huff, G. S., Preston, D., McMorran, D. A., Giles, G. I., Gordon, K. C. & Crowley, J. D. (2015). Inorg. Chem. 54, 6671-6673.]), XARDOK, XARDUQ, XARFAY, XARFAC, XARFIG, XAVRIW (Zhang et al., 2005[Zhang, F., Kirby, C., Hairsine, D., Jennings, M. & Puddephatt, R. (2005). J. Am. Chem. Soc. 127, 14196-14197.])] with the majority being Pt complexes. Bis(2-pyrid­yl)methane complexes are found for PtII, CuI, ReI, HgI, and Li cations. [refcodes CASXUQ (Elie et al., 2017[Elie, M., Weber, M. D., Di Meo, F., Sguerra, F., Lohier, J. F., Pansu, R. B., Renaud, J. L., Hamel, M., Linares, M., Costa, R. D. & Gaillard, S. (2017). Chem. Eur. J. 23, 16328-16337.]), HEWPIL (Gornitzka & Stalke, 1994[Gornitzka, H. & Stalke, D. (1994). Organometallics, 13, 4398-4405.]), MPYHGA (Marti et al., 2005[Marti, N., Spingler, B., Breher, F. & Schibli, R. (2005). Inorg. Chem. 44, 6082-6091.]), SAXVOD (Zhang et al., 2005[Zhang, F., Kirby, C., Hairsine, D., Jennings, M. & Puddephatt, R. (2005). J. Am. Chem. Soc. 127, 14196-14197.]), YIFJEC (Canty et al., 1980[Canty, A., Hayhurst, G., Chaichit, N. & Gatehouse, B. (1980). J. Chem. Soc. Chem. Commun. pp. 316-318.])]. Of the previously mentioned organometallic complexes, only the ZnII chloride complexed with di-2-pyridyl­ketone structure (LUCBOA; Katsoulakou et al., 2002[Katsoulakou, E., Lalioti, N., Raptopoulou, C. P., Terzis, A., Manessi-Zoupa, E. & Perlepes, S. P. (2002). Inorg. Chem. Commun. 5, 719-723.]) has a tetra­hedral coordination about the metal. The tetra­hedron has close to ideal bond angles due to the conformation of the di-2-pyridyl­ketone ligand.

Synthesis and crystallization

The synthesis of the title compound was performed using previously reported methods for McMurry coupling (McMurry et al., 1974[McMurry, J. E., Melton, J. & Padgett, H. (1974). J. Org. Chem. 39, 259-260.]; McMurry, 1989[McMurry, J. E. (1989). Chem. Rev. 89, 1513-1524.]) but the reaction resulted in the formation of the title compound rather than a coupled product similar to that previously published·(Qi et al., 2016[Qi, Y. P., Wang, Y. T., Yu, Y. J., Liu, Z. Y., Zhang, Y., Qi, Y. & Zhou, C. T. (2016). J. Mater. Chem. C. 4, 11291-11297.]), Fig. 2[link]. The synthesis of the title complex was carried out under a nitro­gen atmosphere with a 250 mL three-necked round-bottomed flask charged with Zn metal (0.17g, 1.74mmol) and cooled to −78°C. Then TiCl4 (0.11mL, 1.74mmol) and pyridine (0.14mL, 1.7mmol) were added slowly, resulting in a green solution. The catalyst mixture was allowed to warm to room temperature then refluxed for an hour then cooled to −78°C, at which point di-2-pyridyl­ketone (0.32g, 1.74mmol) in 50mL of THF was added, producing a dark-blue solution. The reaction mixture was allowed to return to room temperature then refluxed for four h. The reaction mixture was then allowed to return to room temperature and the THF was removed under vacuum. The mixture left in the reaction flask was extracted three times with di­chloro­methane (DCM). The solvent was removed under vacuum to produce the title compound as an off-white powder. The title compound was recrystallized from DCM.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [ZnCl2(C11H10N2)]
Mr 306.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.1865 (8), 7.6666 (5), 14.1087 (9)
β (°) 111.467 (2)
V3) 1226.72 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.41
Crystal size (mm) 0.30 × 0.28 × 0.18
 
Data collection
Diffractometer Bruker D8 Venture Photon 100
Absorption correction Multi-scan (SADABS; Bruker et al., 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.935, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36532, 2535, 2403
Rint 0.037
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.058, 1.06
No. of reflections 2535
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.39
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick 2015b); molecular graphics: SHELXL2016/6 (Sheldrick 2015b), Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

Dichlorido(2,2'-methylenedipyridine)zinc(II) top
Crystal data top
[ZnCl2(C11H10N2)]F(000) = 616
Mr = 306.48Dx = 1.659 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1865 (8) ÅCell parameters from 9749 reflections
b = 7.6666 (5) Åθ = 3.1–30.5°
c = 14.1087 (9) ŵ = 2.41 mm1
β = 111.467 (2)°T = 100 K
V = 1226.72 (14) Å3Block, colourless
Z = 40.30 × 0.28 × 0.18 mm
Data collection top
Bruker D8 Venture Photon 100
diffractometer
2403 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.037
φ and ω scansθmax = 26.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker et al., 2015)
h = 1515
Tmin = 0.935, Tmax = 1.000k = 99
36532 measured reflectionsl = 1717
2535 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.033P)2 + 0.6222P]
where P = (Fo2 + 2Fc2)/3
2535 reflections(Δ/σ)max = 0.002
145 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.25054 (2)0.61335 (2)0.78613 (2)0.02155 (8)
Cl10.15845 (4)0.86959 (5)0.76835 (3)0.02930 (11)
Cl20.28554 (4)0.47187 (6)0.93074 (3)0.03149 (11)
N10.16497 (11)0.45954 (17)0.66353 (10)0.0204 (3)
N20.39694 (12)0.62986 (17)0.74807 (11)0.0232 (3)
C10.09591 (14)0.3254 (2)0.66831 (13)0.0244 (3)
H10.0858160.3023700.7307770.029*
C20.03931 (15)0.2204 (2)0.58533 (14)0.0296 (4)
H20.0108380.1285100.5897950.036*
C30.05713 (16)0.2519 (2)0.49547 (14)0.0315 (4)
H30.0199040.1805100.4374880.038*
C40.12949 (16)0.3878 (2)0.49059 (13)0.0274 (4)
H40.1433540.4097860.4296570.033*
C50.18135 (14)0.4911 (2)0.57555 (12)0.0221 (3)
C60.25566 (16)0.6490 (2)0.57328 (13)0.0274 (4)
H6A0.2569310.6610950.5038250.033*
H6B0.2177200.7546780.5876170.033*
C70.38120 (15)0.6402 (2)0.64853 (14)0.0254 (4)
C80.47631 (18)0.6456 (3)0.61739 (16)0.0339 (4)
H80.4640840.6542960.5470790.041*
C90.58986 (18)0.6380 (3)0.68982 (18)0.0390 (5)
H90.6561230.6433840.6696750.047*
C100.60542 (17)0.6227 (2)0.79139 (17)0.0359 (4)
H100.6823040.6147340.8420750.043*
C110.50713 (16)0.6192 (2)0.81785 (15)0.0295 (4)
H110.5175570.6090150.8877230.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02095 (11)0.02503 (12)0.02011 (11)0.00055 (7)0.00920 (8)0.00067 (7)
Cl10.0301 (2)0.0269 (2)0.0332 (2)0.00416 (16)0.01431 (18)0.00072 (16)
Cl20.0407 (2)0.0332 (2)0.0219 (2)0.00119 (18)0.01292 (18)0.00326 (16)
N10.0189 (6)0.0213 (7)0.0206 (6)0.0017 (5)0.0068 (5)0.0028 (5)
N20.0215 (7)0.0233 (7)0.0261 (7)0.0007 (5)0.0101 (6)0.0005 (5)
C10.0201 (8)0.0236 (8)0.0283 (9)0.0024 (6)0.0076 (6)0.0067 (7)
C20.0250 (8)0.0191 (8)0.0387 (10)0.0006 (6)0.0046 (7)0.0028 (7)
C30.0309 (9)0.0245 (9)0.0313 (9)0.0050 (7)0.0021 (7)0.0064 (7)
C40.0305 (9)0.0299 (9)0.0209 (8)0.0076 (7)0.0083 (7)0.0008 (7)
C50.0214 (7)0.0238 (8)0.0207 (8)0.0037 (6)0.0072 (6)0.0037 (6)
C60.0299 (9)0.0299 (9)0.0231 (8)0.0026 (7)0.0106 (7)0.0061 (7)
C70.0280 (9)0.0216 (8)0.0299 (9)0.0013 (6)0.0143 (7)0.0029 (7)
C80.0369 (10)0.0336 (10)0.0402 (11)0.0010 (8)0.0249 (9)0.0048 (8)
C90.0311 (10)0.0353 (10)0.0608 (14)0.0021 (8)0.0287 (10)0.0098 (9)
C100.0211 (9)0.0334 (10)0.0509 (12)0.0002 (7)0.0105 (8)0.0069 (8)
C110.0238 (9)0.0300 (9)0.0324 (9)0.0018 (7)0.0075 (7)0.0012 (7)
Geometric parameters (Å, º) top
Zn1—N12.0372 (14)C4—C51.382 (2)
Zn1—N22.0466 (14)C4—H40.9500
Zn1—Cl22.2101 (5)C5—C61.519 (2)
Zn1—Cl12.2306 (5)C6—C71.511 (2)
N1—C11.346 (2)C6—H6A0.9900
N1—C51.349 (2)C6—H6B0.9900
N2—C111.346 (2)C7—C81.382 (2)
N2—C71.348 (2)C8—C91.388 (3)
C1—C21.380 (3)C8—H80.9500
C1—H10.9500C9—C101.380 (3)
C2—C31.383 (3)C9—H90.9500
C2—H20.9500C10—C111.379 (3)
C3—C41.383 (3)C10—H100.9500
C3—H30.9500C11—H110.9500
N1—Zn1—N292.15 (6)N1—C5—C4121.35 (16)
N1—Zn1—Cl2111.45 (4)N1—C5—C6116.91 (14)
N2—Zn1—Cl2112.35 (4)C4—C5—C6121.70 (15)
N1—Zn1—Cl1109.52 (4)C7—C6—C5114.08 (14)
N2—Zn1—Cl1111.53 (4)C7—C6—H6A108.7
Cl2—Zn1—Cl1117.084 (18)C5—C6—H6A108.7
C1—N1—C5119.28 (14)C7—C6—H6B108.7
C1—N1—Zn1122.33 (11)C5—C6—H6B108.7
C5—N1—Zn1118.37 (11)H6A—C6—H6B107.6
C11—N2—C7119.28 (15)N2—C7—C8121.10 (17)
C11—N2—Zn1122.44 (12)N2—C7—C6117.13 (15)
C7—N2—Zn1118.13 (11)C8—C7—C6121.76 (17)
N1—C1—C2122.05 (16)C7—C8—C9119.38 (19)
N1—C1—H1119.0C7—C8—H8120.3
C2—C1—H1119.0C9—C8—H8120.3
C1—C2—C3118.60 (16)C10—C9—C8119.28 (18)
C1—C2—H2120.7C10—C9—H9120.4
C3—C2—H2120.7C8—C9—H9120.4
C4—C3—C2119.57 (16)C11—C10—C9118.67 (18)
C4—C3—H3120.2C11—C10—H10120.7
C2—C3—H3120.2C9—C10—H10120.7
C5—C4—C3119.11 (17)N2—C11—C10122.26 (19)
C5—C4—H4120.4N2—C11—H11118.9
C3—C4—H4120.4C10—C11—H11118.9
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl1i0.952.893.7719 (19)154
C11—H11···Cl2ii0.952.863.591 (2)134
C10—H10···Cg1iii0.952.993.718 (2)135
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

We would like to thank Furman University for hosting the NSF–REU program which allowed us to perform this work.

Funding information

Funding for this research was provided by: National Science Foundation, Division of Chemistry (grant No. CHE-1460806 to Department of Chemistry at Furman University).

References

First citationBlack, D. (1967). Aust. J. Chem. 20, 2101–.  CrossRef CAS Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanty, A., Hayhurst, G., Chaichit, N. & Gatehouse, B. (1980). J. Chem. Soc. Chem. Commun. pp. 316–318.  CrossRef Google Scholar
First citationCrowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. D. & Granger, R. M. (2004). Inorg. Chem. 43, 72–78.  Web of Science CrossRef PubMed CAS Google Scholar
First citationD'Alessandro, D. M., Keene, F. R., Steel, P. J. & Sumby, C. J. (2003). Aust. J. Chem. 56, 657–664.  CAS Google Scholar
First citationElie, M., Weber, M. D., Di Meo, F., Sguerra, F., Lohier, J. F., Pansu, R. B., Renaud, J. L., Hamel, M., Linares, M., Costa, R. D. & Gaillard, S. (2017). Chem. Eur. J. 23, 16328–16337.  CrossRef CAS Google Scholar
First citationFriedrich, H., Gückel, W. & Scheibe, G. (1962). Chem. Ber. 95, 1378–1387.  CrossRef CAS Google Scholar
First citationGornitzka, H. & Stalke, D. (1994). Organometallics, 13, 4398–4405.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKatsoulakou, E., Lalioti, N., Raptopoulou, C. P., Terzis, A., Manessi-Zoupa, E. & Perlepes, S. P. (2002). Inorg. Chem. Commun. 5, 719–723.  Web of Science CrossRef CAS Google Scholar
First citationLo, W. K. C., Huff, G. S., Preston, D., McMorran, D. A., Giles, G. I., Gordon, K. C. & Crowley, J. D. (2015). Inorg. Chem. 54, 6671–6673.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarti, N., Spingler, B., Breher, F. & Schibli, R. (2005). Inorg. Chem. 44, 6082–6091.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcMurry, J. E. (1989). Chem. Rev. 89, 1513–1524.  CrossRef CAS Web of Science Google Scholar
First citationMcMurry, J. E., Melton, J. & Padgett, H. (1974). J. Org. Chem. 39, 259–260.  CrossRef Google Scholar
First citationQi, Y. P., Wang, Y. T., Yu, Y. J., Liu, Z. Y., Zhang, Y., Qi, Y. & Zhou, C. T. (2016). J. Mater. Chem. C. 4, 11291–11297.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationYam, V. W. W. & Lo, K. K. W. (1999). Chem. Soc. Rev. 28, 323–334.  Web of Science CrossRef CAS Google Scholar
First citationZhang, F., Kirby, C., Hairsine, D., Jennings, M. & Puddephatt, R. (2005). J. Am. Chem. Soc. 127, 14196–14197.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds