organic compounds
Ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxylate
aTecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química. Apartado Postal 1166, Tijuana, B.C., Mexico
*Correspondence e-mail: dchavez@tectijuana.mx
In the title compound, C12H14ClNO3, the aliphatic ring of the hexahydroquinoline system adopts a half-chair conformation while the ethyl carboxylate substituent is inclined to the hexahydroquinoline ring system by 85.1 (2)°. In the crystal, a pair of N–H⋯O hydrogen bonds form an inversion dimer. The structure is further stabilized by C—H⋯O and C—H⋯Cl hydrogen bonds, forming a three-dimensional network.
CCDC reference: 1888738
Structure description
HIV or the human immunodeficiency virus is the virus that causes AIDS. HIV attacks the immune system by destroying CD4+ T lymphocytes, a cell type that is vital in fighting infections. The actual treatment consists of a group of several drugs known as anti-retroviral agents that inhibit proteins that are important for virus replication, including reverse transcriptase (Le Van et al., 2009). During work on the synthesis of promising compounds to be used as anti-retroviral agents, Medina-Franco and co-workers found that compounds maintaining a pyridinone core in the base structure showed activity in the inhibition of reverse transcriptase (Medina-Franco et al., 2007). As part of our ongoing research, we have synthesized another pyridin-2 (1H)-one analogue (Cabrera et al., 2015). In this work, we report the structure of the closely related title compound, again containing a hexahydroquinoline ring system.
The molecular structure of the title molecule is shown in Fig. 1. The hexahydroquinoline ring system is almost planar, r.m.s. deviation 0.1603 Å, with an angle of 4.86 (9)° between the best fit planes of the aromatic and half-chair aliphatic rings. The O1 and Cl1 substituents are very close to the mean plane of the aromatic ring. In contrast, the almost planar ester substituent, r.m.s. deviation 0.1108 Å, is almost orthogonal to the hexahydroquinoline ring system, at a dihedral angle of 89.45 (4)°.
The 2-pyridinone unit participates in intermolecular N1—H1⋯O1i hydrogen bonding, forming an inversion dimer with a classical R22(8) ring motif, see Fig. 2 and Table 1. These hydrogen-bonding interactions form dimers that are reminiscent of those frequently observed in carboxylic acids. The structure is further consolidated by C—H⋯O hydrogen bonds and inversion-related C7—H7B⋯Cl1 contacts that generate R22(14) rings These additional contacts form a three-dimensional network with molecules stacked along b, see Fig. 3.
Synthesis and crystallization
The synthesis of ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxylate used reagents and reagent-grade solvents, which were used without further purification. In a 100 mL round-bottom flask equipped with a magnetic stirrer was placed 1 g of ethyl 4-hydroxy-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxylate (4.22 mmol) and 3.84 g of benzyltriethylammonium chloride (4 eq) in 20 mL of acetonitrile. Under continuous stirring, 0.59 mL of the phosphoryl chloride (6.33 mmol, 1.5 eq) were added dropwise. The mixture was stirred at 40°C for 30 min and later at reflux for 8 h. Next the solvent was evaporated, 15 mL of cold water were added and the mixture stirred for 1 h. A precipitate was obtained, comprising a mixture of ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxylate (60%) and ethyl 2,4-dichloro-5,6,7,8-tetrahydroquinoline-3-carboxylate (40%). The product of interest was purified by 1H (CDCl3), 400 MHz): δ 4.41 (q, J = 7.2 Hz, COOCH2CH3), 2.66 (br s, 2H, H-8), 2.53 (br s, 2H, H-5), 1.78 (m, 4H, H-6 and H-7), 1.38 (t, J = 7.2 Hz, COOCH2CH3). NMR 13C (CDCl3, 100 MHz): δ 164.4, 160.6, 147.4, 146.1, 122.0, 113.8, 61.8, 27.1, 24.3, 22.2, 21.1, 14.1. EIME m/z (Rel. Ab): [M]+ 255 (42), [M]++2 257 (14), 212 (19), 210 (60), 185 (27), 183 (100), 181 (51) amu.
(dichloromethane/hexane, 2:1). NMRCrystals of the title compound suitable for X-ray diffraction were obtained by dissolving 15 mg of ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxylate in 0.5 mL of chloroform and placing the solution in a glass vial. The solution was allowed to stand at room temperature for two days and the crystals formed were filtered.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1888738
https://doi.org/10.1107/S2414314619000166/sj4197sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619000166/sj4197Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314619000166/sj4197Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF(Westrip, 2010).C12H14ClNO3 | F(000) = 536 |
Mr = 255.69 | Dx = 1.476 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7323 (3) Å | Cell parameters from 5245 reflections |
b = 9.2537 (5) Å | θ = 2.4–28.8° |
c = 21.6899 (12) Å | µ = 0.33 mm−1 |
β = 91.168 (5)° | T = 100 K |
V = 1150.30 (11) Å3 | Block, translucent intense colourless |
Z = 4 | 0.32 × 0.23 × 0.09 mm |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2 diffractometer | 3017 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 2676 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.032 |
Detector resolution: 5.1980 pixels mm-1 | θmax = 29.4°, θmin = 1.9° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | k = −12→11 |
Tmin = 0.773, Tmax = 1.000 | l = −29→29 |
13970 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0349P)2 + 1.0951P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
3017 reflections | Δρmax = 0.86 e Å−3 |
155 parameters | Δρmin = −0.30 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.75996 (7) | 0.62470 (5) | 0.40163 (2) | 0.01866 (12) | |
O1 | 0.0556 (2) | 0.94748 (14) | 0.42371 (5) | 0.0162 (3) | |
O2 | 0.4402 (2) | 0.87426 (15) | 0.31021 (6) | 0.0240 (3) | |
O3 | 0.2426 (2) | 0.66734 (14) | 0.32599 (5) | 0.0162 (3) | |
N1 | 0.2608 (2) | 0.87959 (15) | 0.51040 (6) | 0.0124 (3) | |
H1 | 0.169504 | 0.931850 | 0.532114 | 0.015* | |
C1 | 0.2208 (3) | 0.87798 (18) | 0.44748 (7) | 0.0129 (3) | |
C2 | 0.3831 (3) | 0.79147 (18) | 0.41342 (7) | 0.0130 (3) | |
C3 | 0.5600 (3) | 0.72128 (18) | 0.44430 (7) | 0.0133 (3) | |
C4 | 0.5911 (3) | 0.72343 (18) | 0.50944 (7) | 0.0123 (3) | |
C5 | 0.4335 (3) | 0.80509 (18) | 0.54128 (7) | 0.0117 (3) | |
C6 | 0.4387 (3) | 0.81981 (19) | 0.61038 (7) | 0.0145 (3) | |
H6A | 0.281068 | 0.811392 | 0.625398 | 0.017* | |
H6B | 0.496584 | 0.915069 | 0.621399 | 0.017* | |
C7 | 0.5925 (3) | 0.7056 (2) | 0.64185 (8) | 0.0235 (4) | |
H7A | 0.623150 | 0.732936 | 0.684420 | 0.028* | |
H7B | 0.512014 | 0.613363 | 0.641614 | 0.028* | |
C8 | 0.8206 (3) | 0.6912 (2) | 0.60853 (8) | 0.0226 (4) | |
H8A | 0.920094 | 0.622654 | 0.630360 | 0.027* | |
H8B | 0.899644 | 0.783933 | 0.608639 | 0.027* | |
C9 | 0.7836 (3) | 0.64067 (19) | 0.54209 (7) | 0.0152 (3) | |
H9A | 0.927464 | 0.652904 | 0.519912 | 0.018* | |
H9B | 0.745109 | 0.538585 | 0.541940 | 0.018* | |
C10 | 0.3596 (3) | 0.78524 (19) | 0.34424 (7) | 0.0141 (3) | |
C11 | 0.2272 (3) | 0.6444 (2) | 0.25915 (7) | 0.0189 (4) | |
H11A | 0.374809 | 0.608271 | 0.244386 | 0.023* | |
H11B | 0.192908 | 0.734998 | 0.238396 | 0.023* | |
C12 | 0.0378 (4) | 0.5373 (3) | 0.24549 (9) | 0.0325 (5) | |
H12A | 0.024954 | 0.522164 | 0.201769 | 0.049* | |
H12B | −0.107534 | 0.573636 | 0.260352 | 0.049* | |
H12C | 0.074284 | 0.447459 | 0.265581 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01586 (19) | 0.0218 (2) | 0.0184 (2) | 0.00599 (16) | 0.00289 (14) | −0.00607 (16) |
O1 | 0.0162 (5) | 0.0169 (6) | 0.0154 (5) | 0.0053 (5) | −0.0006 (4) | −0.0014 (5) |
O2 | 0.0338 (7) | 0.0209 (7) | 0.0173 (6) | −0.0080 (6) | 0.0019 (5) | 0.0014 (5) |
O3 | 0.0198 (6) | 0.0169 (6) | 0.0118 (5) | −0.0038 (5) | 0.0012 (4) | −0.0031 (5) |
N1 | 0.0122 (6) | 0.0118 (7) | 0.0132 (6) | 0.0027 (5) | 0.0022 (5) | −0.0027 (5) |
C1 | 0.0121 (7) | 0.0123 (8) | 0.0143 (7) | −0.0018 (6) | 0.0009 (5) | −0.0020 (6) |
C2 | 0.0138 (7) | 0.0123 (8) | 0.0131 (7) | −0.0008 (6) | 0.0018 (5) | −0.0019 (6) |
C3 | 0.0117 (7) | 0.0105 (8) | 0.0178 (7) | −0.0011 (6) | 0.0041 (6) | −0.0038 (6) |
C4 | 0.0106 (7) | 0.0101 (8) | 0.0161 (7) | −0.0012 (6) | 0.0007 (5) | −0.0004 (6) |
C5 | 0.0109 (7) | 0.0095 (8) | 0.0147 (7) | −0.0017 (6) | 0.0005 (5) | 0.0000 (6) |
C6 | 0.0138 (7) | 0.0168 (9) | 0.0131 (7) | 0.0011 (6) | 0.0012 (5) | −0.0013 (6) |
C7 | 0.0257 (9) | 0.0263 (10) | 0.0185 (8) | 0.0054 (8) | 0.0005 (7) | 0.0019 (7) |
C8 | 0.0214 (8) | 0.0276 (11) | 0.0188 (8) | 0.0083 (8) | −0.0026 (6) | 0.0018 (7) |
C9 | 0.0135 (7) | 0.0130 (8) | 0.0190 (8) | 0.0020 (6) | 0.0007 (6) | 0.0001 (6) |
C10 | 0.0129 (7) | 0.0148 (8) | 0.0148 (7) | 0.0024 (6) | 0.0007 (5) | −0.0024 (6) |
C11 | 0.0247 (8) | 0.0211 (10) | 0.0108 (7) | −0.0028 (7) | 0.0009 (6) | −0.0031 (6) |
C12 | 0.0376 (11) | 0.0428 (14) | 0.0168 (8) | −0.0178 (10) | −0.0057 (8) | −0.0007 (9) |
Cl1—C3 | 1.7357 (16) | C6—H6B | 0.9700 |
O1—C1 | 1.248 (2) | C6—C7 | 1.528 (2) |
O2—C10 | 1.205 (2) | C7—H7A | 0.9700 |
O3—C10 | 1.336 (2) | C7—H7B | 0.9700 |
O3—C11 | 1.4660 (19) | C7—C8 | 1.513 (3) |
N1—H1 | 0.8600 | C8—H8A | 0.9700 |
N1—C1 | 1.379 (2) | C8—H8B | 0.9700 |
N1—C5 | 1.370 (2) | C8—C9 | 1.526 (2) |
C1—C2 | 1.442 (2) | C9—H9A | 0.9700 |
C2—C3 | 1.367 (2) | C9—H9B | 0.9700 |
C2—C10 | 1.505 (2) | C11—H11A | 0.9700 |
C3—C4 | 1.421 (2) | C11—H11B | 0.9700 |
C4—C5 | 1.375 (2) | C11—C12 | 1.495 (3) |
C4—C9 | 1.508 (2) | C12—H12A | 0.9600 |
C5—C6 | 1.505 (2) | C12—H12B | 0.9600 |
C6—H6A | 0.9700 | C12—H12C | 0.9600 |
C10—O3—C11 | 115.52 (13) | C8—C7—H7A | 109.6 |
C1—N1—H1 | 117.2 | C8—C7—H7B | 109.6 |
C5—N1—H1 | 117.2 | C7—C8—H8A | 109.2 |
C5—N1—C1 | 125.60 (13) | C7—C8—H8B | 109.2 |
O1—C1—N1 | 120.85 (14) | C7—C8—C9 | 111.90 (15) |
O1—C1—C2 | 124.52 (14) | H8A—C8—H8B | 107.9 |
N1—C1—C2 | 114.64 (14) | C9—C8—H8A | 109.2 |
C1—C2—C10 | 119.09 (14) | C9—C8—H8B | 109.2 |
C3—C2—C1 | 119.48 (14) | C4—C9—C8 | 111.98 (14) |
C3—C2—C10 | 121.38 (14) | C4—C9—H9A | 109.2 |
C2—C3—Cl1 | 118.33 (12) | C4—C9—H9B | 109.2 |
C2—C3—C4 | 123.88 (14) | C8—C9—H9A | 109.2 |
C4—C3—Cl1 | 117.80 (12) | C8—C9—H9B | 109.2 |
C3—C4—C9 | 122.42 (14) | H9A—C9—H9B | 107.9 |
C5—C4—C3 | 115.89 (14) | O2—C10—O3 | 124.98 (15) |
C5—C4—C9 | 121.69 (14) | O2—C10—C2 | 123.85 (16) |
N1—C5—C4 | 120.45 (14) | O3—C10—C2 | 111.15 (14) |
N1—C5—C6 | 116.16 (13) | O3—C11—H11A | 109.9 |
C4—C5—C6 | 123.39 (14) | O3—C11—H11B | 109.9 |
C5—C6—H6A | 109.1 | O3—C11—C12 | 108.71 (14) |
C5—C6—H6B | 109.1 | H11A—C11—H11B | 108.3 |
C5—C6—C7 | 112.44 (14) | C12—C11—H11A | 109.9 |
H6A—C6—H6B | 107.8 | C12—C11—H11B | 109.9 |
C7—C6—H6A | 109.1 | C11—C12—H12A | 109.5 |
C7—C6—H6B | 109.1 | C11—C12—H12B | 109.5 |
C6—C7—H7A | 109.6 | C11—C12—H12C | 109.5 |
C6—C7—H7B | 109.6 | H12A—C12—H12B | 109.5 |
H7A—C7—H7B | 108.2 | H12A—C12—H12C | 109.5 |
C8—C7—C6 | 110.10 (15) | H12B—C12—H12C | 109.5 |
Cl1—C3—C4—C5 | 177.91 (12) | C3—C4—C5—N1 | −0.7 (2) |
Cl1—C3—C4—C9 | −2.6 (2) | C3—C4—C5—C6 | 179.81 (15) |
O1—C1—C2—C3 | 179.14 (16) | C3—C4—C9—C8 | 164.73 (16) |
O1—C1—C2—C10 | 1.5 (2) | C4—C5—C6—C7 | −15.1 (2) |
N1—C1—C2—C3 | −0.8 (2) | C5—N1—C1—O1 | 178.55 (15) |
N1—C1—C2—C10 | −178.38 (14) | C5—N1—C1—C2 | −1.5 (2) |
N1—C5—C6—C7 | 165.33 (15) | C5—C4—C9—C8 | −15.8 (2) |
C1—N1—C5—C4 | 2.3 (2) | C5—C6—C7—C8 | 44.9 (2) |
C1—N1—C5—C6 | −178.14 (15) | C6—C7—C8—C9 | −62.2 (2) |
C1—C2—C3—Cl1 | −177.15 (12) | C7—C8—C9—C4 | 46.6 (2) |
C1—C2—C3—C4 | 2.4 (3) | C9—C4—C5—N1 | 179.79 (15) |
C1—C2—C10—O2 | 83.9 (2) | C9—C4—C5—C6 | 0.3 (2) |
C1—C2—C10—O3 | −97.36 (17) | C10—O3—C11—C12 | −163.49 (16) |
C2—C3—C4—C5 | −1.6 (2) | C10—C2—C3—Cl1 | 0.4 (2) |
C2—C3—C4—C9 | 177.91 (16) | C10—C2—C3—C4 | 179.91 (15) |
C3—C2—C10—O2 | −93.6 (2) | C11—O3—C10—O2 | 3.7 (2) |
C3—C2—C10—O3 | 85.09 (19) | C11—O3—C10—C2 | −174.97 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.86 | 1.97 | 2.8280 (17) | 176 |
C6—H6B···O2ii | 0.97 | 2.47 | 3.379 (2) | 155 |
C8—H8B···O1ii | 0.97 | 2.60 | 3.492 (2) | 153 |
C11—H11A···O2iii | 0.97 | 2.70 | 3.502 (2) | 141 |
C7—H7B···Cl1iv | 0.97 | 2.85 | 3.7731 (19) | 160 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z+1. |
Funding information
GR-V acknowledge support from CONACyT in the form of graduate scholarships (grant Nos. 155029, INFRA-2011-3-173395, INFRA-2014-224405).
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cabrera, A., Miranda, L. D., Reyes, H., Aguirre, G. & Chávez, D. (2015). Acta Cryst. E71, o939. Web of Science CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Le Van, K., Cauvin, C., de Walque, S., Georges, B., Boland, S., Martinelli, V., Demonté, D., Durant, F., Hevesi, L. & Van Lint, C. (2009). J. Med. Chem. 52, 3636–3643. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Medina-Franco, J. L., Martínez-Mayorga, K., Juárez-Gordiano, C. & Castillo, R. (2007). ChemMedChem, 2, 1141–1147. CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.