organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aTecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química. Apartado Postal 1166, Tijuana, B.C., Mexico
*Correspondence e-mail: dchavez@tectijuana.mx

Edited by J. Simpson, University of Otago, New Zealand (Received 21 November 2018; accepted 4 January 2019; online 8 January 2019)

In the title compound, C12H14ClNO3, the aliphatic ring of the hexa­hydro­quinoline system adopts a half-chair conformation while the ethyl carboxyl­ate substituent is inclined to the hexa­hydro­quinoline ring system by 85.1 (2)°. In the crystal, a pair of N–H⋯O hydrogen bonds form an inversion dimer. The structure is further stabilized by C—H⋯O and C—H⋯Cl hydrogen bonds, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

HIV or the human immunodeficiency virus is the virus that causes AIDS. HIV attacks the immune system by destroying CD4+ T lymphocytes, a cell type that is vital in fighting infections. The actual treatment consists of a group of several drugs known as anti-retroviral agents that inhibit proteins that are important for virus replication, including reverse transcriptase (Le Van et al., 2009[Le Van, K., Cauvin, C., de Walque, S., Georges, B., Boland, S., Martinelli, V., Demonté, D., Durant, F., Hevesi, L. & Van Lint, C. (2009). J. Med. Chem. 52, 3636-3643.]). During work on the synthesis of promising compounds to be used as anti-retroviral agents, Medina-Franco and co-workers found that compounds maintaining a pyridinone core in the base structure showed activity in the inhibition of reverse transcriptase (Medina-Franco et al., 2007[Medina-Franco, J. L., Martínez-Mayorga, K., Juárez-Gordiano, C. & Castillo, R. (2007). ChemMedChem, 2, 1141-1147.]). As part of our ongoing research, we have synthesized another pyridin-2 (1H)-one analogue (Cabrera et al., 2015[Cabrera, A., Miranda, L. D., Reyes, H., Aguirre, G. & Chávez, D. (2015). Acta Cryst. E71, o939.]). In this work, we report the structure of the closely related title compound, again containing a hexa­hydro­quinoline ring system.

The mol­ecular structure of the title mol­ecule is shown in Fig. 1[link]. The hexa­hydro­quinoline ring system is almost planar, r.m.s. deviation 0.1603 Å, with an angle of 4.86 (9)° between the best fit planes of the aromatic and half-chair aliphatic rings. The O1 and Cl1 substituents are very close to the mean plane of the aromatic ring. In contrast, the almost planar ester substituent, r.m.s. deviation 0.1108 Å, is almost orthogonal to the hexa­hydro­quinoline ring system, at a dihedral angle of 89.45 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The 2-pyridinone unit participates in inter­molecular N1—H1⋯O1i hydrogen bonding, forming an inversion dimer with a classical R22(8) ring motif, see Fig. 2[link] and Table 1[link]. These hydrogen-bonding inter­actions form dimers that are reminiscent of those frequently observed in carb­oxy­lic acids. The structure is further consolidated by C—H⋯O hydrogen bonds and inversion-related C7—H7B⋯Cl1 contacts that generate R22(14) rings These additional contacts form a three-dimensional network with mol­ecules stacked along b, see Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.97 2.8280 (17) 176
C6—H6B⋯O2ii 0.97 2.47 3.379 (2) 155
C8—H8B⋯O1ii 0.97 2.60 3.492 (2) 153
C11—H11A⋯O2iii 0.97 2.70 3.502 (2) 141
C7—H7B⋯Cl1iv 0.97 2.85 3.7731 (19) 160
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Dimers formed by classical N—H⋯O hydrogen-bonding inter­actions, dashed lines.
[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the b-axis direction.

Synthesis and crystallization

The synthesis of ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate used reagents and reagent-grade solvents, which were used without further purification. In a 100 mL round-bottom flask equipped with a magnetic stirrer was placed 1 g of ethyl 4-hy­droxy-2-oxo-1,2,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate (4.22 mmol) and 3.84 g of benzyl­tri­ethyl­ammonium chloride (4 eq) in 20 mL of aceto­nitrile. Under continuous stirring, 0.59 mL of the phosphoryl chloride (6.33 mmol, 1.5 eq) were added dropwise. The mixture was stirred at 40°C for 30 min and later at reflux for 8 h. Next the solvent was evaporated, 15 mL of cold water were added and the mixture stirred for 1 h. A precipitate was obtained, comprising a mixture of ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate (60%) and ethyl 2,4-di­chloro-5,6,7,8-tetra­hydro­quinoline-3-carboxyl­ate (40%). The product of inter­est was purified by column chromatography (di­chloro­methane/hexane, 2:1). NMR 1H (CDCl3), 400 MHz): δ 4.41 (q, J = 7.2 Hz, COOCH2CH3), 2.66 (br s, 2H, H-8), 2.53 (br s, 2H, H-5), 1.78 (m, 4H, H-6 and H-7), 1.38 (t, J = 7.2 Hz, COOCH2CH3). NMR 13C (CDCl3, 100 MHz): δ 164.4, 160.6, 147.4, 146.1, 122.0, 113.8, 61.8, 27.1, 24.3, 22.2, 21.1, 14.1. EIME m/z (Rel. Ab): [M]+ 255 (42), [M]++2 257 (14), 212 (19), 210 (60), 185 (27), 183 (100), 181 (51) amu.

Crystals of the title compound suitable for X-ray diffraction were obtained by dissolving 15 mg of ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate in 0.5 mL of chloro­form and placing the solution in a glass vial. The solution was allowed to stand at room temperature for two days and the crystals formed were filtered.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H14ClNO3
Mr 255.69
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 5.7323 (3), 9.2537 (5), 21.6899 (12)
β (°) 91.168 (5)
V3) 1150.30 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.32 × 0.23 × 0.09
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.773, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13970, 3017, 2676
Rint 0.032
(sin θ/λ)max−1) 0.690
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.101, 1.09
No. of reflections 3017
No. of parameters 155
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.86, −0.30
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SIR2004 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF(Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF(Westrip, 2010).

Ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxylate top
Crystal data top
C12H14ClNO3F(000) = 536
Mr = 255.69Dx = 1.476 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.7323 (3) ÅCell parameters from 5245 reflections
b = 9.2537 (5) Åθ = 2.4–28.8°
c = 21.6899 (12) ŵ = 0.33 mm1
β = 91.168 (5)°T = 100 K
V = 1150.30 (11) Å3Block, translucent intense colourless
Z = 40.32 × 0.23 × 0.09 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
diffractometer
3017 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2676 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 5.1980 pixels mm-1θmax = 29.4°, θmin = 1.9°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1211
Tmin = 0.773, Tmax = 1.000l = 2929
13970 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0349P)2 + 1.0951P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3017 reflectionsΔρmax = 0.86 e Å3
155 parametersΔρmin = 0.30 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.75996 (7)0.62470 (5)0.40163 (2)0.01866 (12)
O10.0556 (2)0.94748 (14)0.42371 (5)0.0162 (3)
O20.4402 (2)0.87426 (15)0.31021 (6)0.0240 (3)
O30.2426 (2)0.66734 (14)0.32599 (5)0.0162 (3)
N10.2608 (2)0.87959 (15)0.51040 (6)0.0124 (3)
H10.1695040.9318500.5321140.015*
C10.2208 (3)0.87798 (18)0.44748 (7)0.0129 (3)
C20.3831 (3)0.79147 (18)0.41342 (7)0.0130 (3)
C30.5600 (3)0.72128 (18)0.44430 (7)0.0133 (3)
C40.5911 (3)0.72343 (18)0.50944 (7)0.0123 (3)
C50.4335 (3)0.80509 (18)0.54128 (7)0.0117 (3)
C60.4387 (3)0.81981 (19)0.61038 (7)0.0145 (3)
H6A0.2810680.8113920.6253980.017*
H6B0.4965840.9150690.6213990.017*
C70.5925 (3)0.7056 (2)0.64185 (8)0.0235 (4)
H7A0.6231500.7329360.6844200.028*
H7B0.5120140.6133630.6416140.028*
C80.8206 (3)0.6912 (2)0.60853 (8)0.0226 (4)
H8A0.9200940.6226540.6303600.027*
H8B0.8996440.7839330.6086390.027*
C90.7836 (3)0.64067 (19)0.54209 (7)0.0152 (3)
H9A0.9274640.6529040.5199120.018*
H9B0.7451090.5385850.5419400.018*
C100.3596 (3)0.78524 (19)0.34424 (7)0.0141 (3)
C110.2272 (3)0.6444 (2)0.25915 (7)0.0189 (4)
H11A0.3748090.6082710.2443860.023*
H11B0.1929080.7349980.2383960.023*
C120.0378 (4)0.5373 (3)0.24549 (9)0.0325 (5)
H12A0.0249540.5221640.2017690.049*
H12B0.1075340.5736360.2603520.049*
H12C0.0742840.4474590.2655810.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01586 (19)0.0218 (2)0.0184 (2)0.00599 (16)0.00289 (14)0.00607 (16)
O10.0162 (5)0.0169 (6)0.0154 (5)0.0053 (5)0.0006 (4)0.0014 (5)
O20.0338 (7)0.0209 (7)0.0173 (6)0.0080 (6)0.0019 (5)0.0014 (5)
O30.0198 (6)0.0169 (6)0.0118 (5)0.0038 (5)0.0012 (4)0.0031 (5)
N10.0122 (6)0.0118 (7)0.0132 (6)0.0027 (5)0.0022 (5)0.0027 (5)
C10.0121 (7)0.0123 (8)0.0143 (7)0.0018 (6)0.0009 (5)0.0020 (6)
C20.0138 (7)0.0123 (8)0.0131 (7)0.0008 (6)0.0018 (5)0.0019 (6)
C30.0117 (7)0.0105 (8)0.0178 (7)0.0011 (6)0.0041 (6)0.0038 (6)
C40.0106 (7)0.0101 (8)0.0161 (7)0.0012 (6)0.0007 (5)0.0004 (6)
C50.0109 (7)0.0095 (8)0.0147 (7)0.0017 (6)0.0005 (5)0.0000 (6)
C60.0138 (7)0.0168 (9)0.0131 (7)0.0011 (6)0.0012 (5)0.0013 (6)
C70.0257 (9)0.0263 (10)0.0185 (8)0.0054 (8)0.0005 (7)0.0019 (7)
C80.0214 (8)0.0276 (11)0.0188 (8)0.0083 (8)0.0026 (6)0.0018 (7)
C90.0135 (7)0.0130 (8)0.0190 (8)0.0020 (6)0.0007 (6)0.0001 (6)
C100.0129 (7)0.0148 (8)0.0148 (7)0.0024 (6)0.0007 (5)0.0024 (6)
C110.0247 (8)0.0211 (10)0.0108 (7)0.0028 (7)0.0009 (6)0.0031 (6)
C120.0376 (11)0.0428 (14)0.0168 (8)0.0178 (10)0.0057 (8)0.0007 (9)
Geometric parameters (Å, º) top
Cl1—C31.7357 (16)C6—H6B0.9700
O1—C11.248 (2)C6—C71.528 (2)
O2—C101.205 (2)C7—H7A0.9700
O3—C101.336 (2)C7—H7B0.9700
O3—C111.4660 (19)C7—C81.513 (3)
N1—H10.8600C8—H8A0.9700
N1—C11.379 (2)C8—H8B0.9700
N1—C51.370 (2)C8—C91.526 (2)
C1—C21.442 (2)C9—H9A0.9700
C2—C31.367 (2)C9—H9B0.9700
C2—C101.505 (2)C11—H11A0.9700
C3—C41.421 (2)C11—H11B0.9700
C4—C51.375 (2)C11—C121.495 (3)
C4—C91.508 (2)C12—H12A0.9600
C5—C61.505 (2)C12—H12B0.9600
C6—H6A0.9700C12—H12C0.9600
C10—O3—C11115.52 (13)C8—C7—H7A109.6
C1—N1—H1117.2C8—C7—H7B109.6
C5—N1—H1117.2C7—C8—H8A109.2
C5—N1—C1125.60 (13)C7—C8—H8B109.2
O1—C1—N1120.85 (14)C7—C8—C9111.90 (15)
O1—C1—C2124.52 (14)H8A—C8—H8B107.9
N1—C1—C2114.64 (14)C9—C8—H8A109.2
C1—C2—C10119.09 (14)C9—C8—H8B109.2
C3—C2—C1119.48 (14)C4—C9—C8111.98 (14)
C3—C2—C10121.38 (14)C4—C9—H9A109.2
C2—C3—Cl1118.33 (12)C4—C9—H9B109.2
C2—C3—C4123.88 (14)C8—C9—H9A109.2
C4—C3—Cl1117.80 (12)C8—C9—H9B109.2
C3—C4—C9122.42 (14)H9A—C9—H9B107.9
C5—C4—C3115.89 (14)O2—C10—O3124.98 (15)
C5—C4—C9121.69 (14)O2—C10—C2123.85 (16)
N1—C5—C4120.45 (14)O3—C10—C2111.15 (14)
N1—C5—C6116.16 (13)O3—C11—H11A109.9
C4—C5—C6123.39 (14)O3—C11—H11B109.9
C5—C6—H6A109.1O3—C11—C12108.71 (14)
C5—C6—H6B109.1H11A—C11—H11B108.3
C5—C6—C7112.44 (14)C12—C11—H11A109.9
H6A—C6—H6B107.8C12—C11—H11B109.9
C7—C6—H6A109.1C11—C12—H12A109.5
C7—C6—H6B109.1C11—C12—H12B109.5
C6—C7—H7A109.6C11—C12—H12C109.5
C6—C7—H7B109.6H12A—C12—H12B109.5
H7A—C7—H7B108.2H12A—C12—H12C109.5
C8—C7—C6110.10 (15)H12B—C12—H12C109.5
Cl1—C3—C4—C5177.91 (12)C3—C4—C5—N10.7 (2)
Cl1—C3—C4—C92.6 (2)C3—C4—C5—C6179.81 (15)
O1—C1—C2—C3179.14 (16)C3—C4—C9—C8164.73 (16)
O1—C1—C2—C101.5 (2)C4—C5—C6—C715.1 (2)
N1—C1—C2—C30.8 (2)C5—N1—C1—O1178.55 (15)
N1—C1—C2—C10178.38 (14)C5—N1—C1—C21.5 (2)
N1—C5—C6—C7165.33 (15)C5—C4—C9—C815.8 (2)
C1—N1—C5—C42.3 (2)C5—C6—C7—C844.9 (2)
C1—N1—C5—C6178.14 (15)C6—C7—C8—C962.2 (2)
C1—C2—C3—Cl1177.15 (12)C7—C8—C9—C446.6 (2)
C1—C2—C3—C42.4 (3)C9—C4—C5—N1179.79 (15)
C1—C2—C10—O283.9 (2)C9—C4—C5—C60.3 (2)
C1—C2—C10—O397.36 (17)C10—O3—C11—C12163.49 (16)
C2—C3—C4—C51.6 (2)C10—C2—C3—Cl10.4 (2)
C2—C3—C4—C9177.91 (16)C10—C2—C3—C4179.91 (15)
C3—C2—C10—O293.6 (2)C11—O3—C10—O23.7 (2)
C3—C2—C10—O385.09 (19)C11—O3—C10—C2174.97 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.972.8280 (17)176
C6—H6B···O2ii0.972.473.379 (2)155
C8—H8B···O1ii0.972.603.492 (2)153
C11—H11A···O2iii0.972.703.502 (2)141
C7—H7B···Cl1iv0.972.853.7731 (19)160
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z+1.
 

Funding information

GR-V acknowledge support from CONACyT in the form of graduate scholarships (grant Nos. 155029, INFRA-2011-3-173395, INFRA-2014-224405).

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCabrera, A., Miranda, L. D., Reyes, H., Aguirre, G. & Chávez, D. (2015). Acta Cryst. E71, o939.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLe Van, K., Cauvin, C., de Walque, S., Georges, B., Boland, S., Martinelli, V., Demonté, D., Durant, F., Hevesi, L. & Van Lint, C. (2009). J. Med. Chem. 52, 3636–3643.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMedina-Franco, J. L., Martínez-Mayorga, K., Juárez-Gordiano, C. & Castillo, R. (2007). ChemMedChem, 2, 1141–1147.  CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds