metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Bis{2-[bis­(1H-pyrazol-1-yl)methyl]-1-methyl-1H-benzimidazole}­iron(II) bis­(perchlorate) aceto­nitrile disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Kanpur 208016, UP, India, bDepartment of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar 842001, India, cDepartment of Chemistry, IHS, Khandari, Dr. Bhimrao Ambedkar University, Agra 208016, India, and dNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com, tiskenderov@ukr.net

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 26 December 2018; accepted 9 January 2019; online 15 January 2019)

In the structure of the title complex, [Fe(C15H14N6)2](ClO4)2·2C2H3N, the asymmetric unit contains one complete ligand mol­ecule, one perchlorate and one aceto­nitrile solvent mol­ecule. The iron(II) atom, situated on an inversion centre, is surrounded by six nitro­gen atoms from two ligands in an octa­hedral coordination sphere in which the two benzimidazole units adopt a trans-configuration. The crystal structure is stablized by extensive weak C—H⋯O and C—H⋯N inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Spin-crossover (SCO) complexes are an important class of compounds with respect to new mol­ecular materials and nanoscience research. Moreover, SCO complexes exhibit electronic transitions that involve a change of the spin state at the metal ion in a material, causing changes in a number of its physical properties including its colour, magnetism and conductivity (Guionneau, 2014[Guionneau, P. (2014). Dalton Trans. 43, 382-393.]; Kahn & Martinez, 1998[Kahn, O. & Martinez, C. J. (1998). Science, 279, 44-48.]; Matsuda & Tajima, 2007[Matsuda, M. & Tajima, H. (2007). Chem. Lett. 36, 700-701.]). The present work is part of an ongoing structural study of heterocyclic compounds (Faizi et al., 2016[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15-20.]) and their utilization in the synthesis of metal complexes (Faizi & Prisyazhnaya, 2015[Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175-m176.]), excited-state proton-transfer compounds and fluorescent chemosensors (Faizi et al., 2018[Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457-464.]; Kumar et al., 2018[Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888-899.]; Mukherjee et al., 2018[Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). ChemistrySelect, 3, 3787-3796.]). Herein we report the synthesis and crystal structure of a new FeII complex with 2-(di-pyrazol-1-yl-meth­yl)-1-methyl-1H-benzo[d]imidazole ligands.

The title compound (Fig. 1[link]) crystallizes in the monoclinic space group P21/c. The asymmetric unit contains one complete ligand mol­ecule, one perchlorate and one aceto­nitrile solvent mol­ecule. As the iron(II) atom is situated on a crystallographic centre of inversion, another ligand, the second perchlorate and another solvent mol­ecule are observed as symmetry equivalents. The iron(II) atom is surrounded by six nitro­gen atoms from two ligands in an octa­hedral coordination sphere in which the two benzimidazole units adopt a trans-configuration. The non-coordinating perchlorate counter-ions and solvent mol­ecules connect the complex mol­ecules through weak C—H⋯O and C—H⋯N hydrogen-bonding inter­actions (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N7i 0.95 2.57 3.494 (3) 164
C4—H4⋯O1ii 0.95 2.42 3.308 (3) 155
C5—H5⋯O3iii 0.95 2.60 3.449 (3) 149
C7—H7⋯O4ii 1.00 2.32 3.308 (3) 170
C16—H16A⋯O1iv 0.98 2.40 3.300 (3) 152
C16—H16B⋯O3 0.98 2.47 3.303 (3) 143
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 40% probability level for non-H atoms. H atoms are omitted for the sake of clarity. [Symmetry code: (′) −x + 1, −y + 1, −z + 1.].
[Figure 2]
Figure 2
A view along the a axis, emphasizing the weak C—H⋯O and C—H⋯N inter­actions which promote the crystal packing in the unit cell of the title compound. Only H atoms involved in these inter­actions are shown.

Synthesis and crystallization

To a stirred solution of 2-(di-pyrazol-1-yl-meth­yl)-1-methyl-1H-benzo[d]imidazole (100 mg, 0.36 mmol) in methanol (3 ml) solid [FeII(H2O)6](ClO4)2 (65 mg, 0.18 mmol) was added in small portions under nitro­gen. The colour of the solution turned from light yellow to dark yellow without any observed precipitation. After 15 min of stirring, 3 ml of diethyl ether was added, leading to a bright-yellow precipitate that was collected by filtration, washed with 2 ml of methanol/diethyl ether (1:5) and dried in vacuo (yield: 110 mg, 78%). The title compound was recrystallized from an aceto­nitrile/toluene/diethyl ether (4:1:1) mixture (yield: 75 mg, 53%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C15H14N6)2](ClO4)2·2C2H3N
Mr 893.50
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.3128 (5), 11.7818 (5), 14.1459 (6)
β (°) 99.965 (1)
V3) 1856.99 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.62
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 23607, 3638, 3137
Rint 0.042
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.076, 1.06
No. of reflections 3638
No. of parameters 270
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.43
Computer programs: APEX and SMART (Bruker, 2007[Bruker (2007). APEX, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT-Plus (Bruker, 2007[Bruker (2007). APEX, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

trans-Bis{2-[bis(1H-pyrazol-1-yl)methyl]-1-methyl-1H-benzimidazole}iron(II) bis(perchlorate) acetonitrile disolvate top
Crystal data top
[Fe(C30H28N12)](ClO4)2·2C2H3NF(000) = 920
Mr = 893.50Dx = 1.598 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3128 (5) ÅCell parameters from 819 reflections
b = 11.7818 (5) Åθ = 2.4–20.7°
c = 14.1459 (6) ŵ = 0.62 mm1
β = 99.965 (1)°T = 100 K
V = 1856.99 (14) Å3Prism, brown
Z = 20.3 × 0.25 × 0.2 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
3137 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 26.0°, θmin = 2.9°
phi and ω scansh = 1313
23607 measured reflectionsk = 1414
3638 independent reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0168P)2 + 2.7931P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3638 reflectionsΔρmax = 0.41 e Å3
270 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All non-hydrogen atoms were refined anisotropically. All H atoms were placed in calculated positions with d(C—H) = 0.95 Å for aromatic, 0.99 for CH and 0.98 Å for CH3 hydrogen atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.5000000.5000000.5000000.00973 (11)
Cl10.05039 (5)0.27781 (5)0.40185 (4)0.01701 (13)
O30.12532 (15)0.19176 (15)0.37156 (12)0.0279 (4)
O40.03438 (16)0.22572 (16)0.45362 (13)0.0321 (4)
N10.37147 (15)0.69590 (15)0.54879 (12)0.0125 (4)
N50.17075 (15)0.58282 (15)0.35199 (12)0.0132 (4)
N30.29224 (15)0.52189 (14)0.59044 (12)0.0119 (4)
N20.48187 (15)0.65942 (15)0.53656 (12)0.0119 (4)
N60.35795 (15)0.52172 (14)0.40051 (12)0.0115 (4)
N40.39132 (15)0.45709 (15)0.58812 (12)0.0120 (4)
O20.12218 (17)0.35829 (16)0.46189 (13)0.0358 (5)
C20.4930 (2)0.83730 (19)0.59389 (15)0.0172 (5)
H20.5249980.9088820.6162310.021*
C90.32286 (18)0.49076 (17)0.30497 (14)0.0131 (4)
C110.3218 (2)0.41027 (18)0.15131 (15)0.0186 (5)
H110.3608950.3704470.1070910.022*
C10.3762 (2)0.80282 (18)0.58468 (15)0.0160 (4)
H10.3110410.8454770.6003840.019*
C120.2026 (2)0.44547 (19)0.12219 (15)0.0195 (5)
H120.1623560.4270080.0594410.023*
N70.3653 (2)0.19358 (19)0.32491 (16)0.0336 (5)
C100.3839 (2)0.43188 (18)0.24239 (15)0.0160 (5)
H100.4646260.4077970.2617030.019*
C140.20482 (19)0.52798 (17)0.27436 (15)0.0135 (4)
C30.55583 (19)0.74560 (18)0.56368 (15)0.0150 (4)
H30.6395840.7450420.5627080.018*
C170.2894 (2)0.1444 (2)0.34915 (16)0.0214 (5)
C60.38856 (19)0.37666 (18)0.65344 (15)0.0148 (4)
H60.4470660.3185860.6683620.018*
C40.22846 (18)0.48295 (18)0.65559 (14)0.0138 (4)
H40.1562950.5145010.6698580.017*
C80.26536 (18)0.57538 (17)0.42446 (15)0.0117 (4)
C50.28718 (19)0.38935 (18)0.69738 (15)0.0156 (4)
H50.2642050.3427430.7459280.019*
C130.1422 (2)0.50623 (19)0.18237 (15)0.0173 (5)
H130.0622260.5318740.1621530.021*
C70.27116 (18)0.61768 (18)0.52547 (14)0.0124 (4)
H70.1943960.6564110.5321810.015*
C150.05201 (19)0.6289 (2)0.35561 (16)0.0196 (5)
H15A0.0010990.6212630.2924310.029*
H15B0.0591850.7093160.3734560.029*
H15C0.0159320.5871720.4033680.029*
C160.1912 (2)0.0816 (2)0.37885 (17)0.0266 (6)
H16A0.1186960.0901540.3302480.040*
H16B0.2126400.0010880.3859140.040*
H16C0.1761490.1113340.4403720.040*
O10.01354 (18)0.33506 (17)0.31901 (13)0.0409 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0089 (2)0.0101 (2)0.0108 (2)0.00113 (16)0.00303 (15)0.00068 (17)
Cl10.0179 (3)0.0173 (3)0.0160 (3)0.0022 (2)0.0032 (2)0.0024 (2)
O30.0238 (9)0.0270 (9)0.0349 (10)0.0101 (7)0.0110 (8)0.0015 (8)
O40.0296 (10)0.0327 (10)0.0387 (11)0.0091 (8)0.0191 (8)0.0085 (9)
N10.0120 (9)0.0127 (9)0.0134 (9)0.0026 (7)0.0038 (7)0.0003 (7)
N50.0110 (9)0.0147 (9)0.0140 (9)0.0001 (7)0.0026 (7)0.0017 (7)
N30.0108 (8)0.0124 (9)0.0132 (8)0.0011 (7)0.0040 (7)0.0005 (7)
N20.0098 (8)0.0138 (9)0.0127 (8)0.0019 (7)0.0035 (7)0.0016 (7)
N60.0122 (9)0.0111 (9)0.0119 (8)0.0005 (7)0.0037 (7)0.0004 (7)
N40.0092 (8)0.0132 (9)0.0137 (9)0.0019 (7)0.0025 (7)0.0001 (7)
O20.0447 (11)0.0334 (11)0.0293 (10)0.0195 (9)0.0058 (8)0.0111 (8)
C20.0213 (12)0.0139 (11)0.0157 (11)0.0021 (9)0.0011 (9)0.0026 (9)
C90.0157 (10)0.0106 (10)0.0131 (10)0.0031 (9)0.0023 (8)0.0017 (8)
C110.0309 (13)0.0124 (11)0.0134 (10)0.0001 (10)0.0068 (9)0.0006 (9)
C10.0214 (11)0.0134 (10)0.0133 (10)0.0040 (9)0.0033 (9)0.0000 (9)
C120.0298 (13)0.0156 (11)0.0120 (10)0.0055 (10)0.0004 (9)0.0001 (9)
N70.0341 (13)0.0322 (13)0.0373 (13)0.0105 (11)0.0144 (10)0.0127 (11)
C100.0208 (11)0.0115 (10)0.0168 (11)0.0002 (9)0.0060 (9)0.0019 (9)
C140.0159 (11)0.0106 (10)0.0150 (10)0.0017 (8)0.0055 (8)0.0015 (8)
C30.0156 (11)0.0161 (11)0.0128 (10)0.0017 (9)0.0010 (8)0.0022 (8)
C170.0261 (13)0.0195 (12)0.0186 (11)0.0007 (10)0.0037 (10)0.0073 (10)
C60.0164 (11)0.0127 (10)0.0149 (10)0.0001 (9)0.0014 (8)0.0010 (9)
C40.0120 (10)0.0174 (11)0.0136 (10)0.0020 (8)0.0062 (8)0.0022 (9)
C80.0111 (10)0.0104 (10)0.0139 (10)0.0005 (8)0.0028 (8)0.0024 (8)
C50.0169 (11)0.0156 (11)0.0152 (10)0.0028 (9)0.0056 (8)0.0009 (9)
C130.0175 (11)0.0155 (11)0.0177 (11)0.0042 (9)0.0006 (9)0.0040 (9)
C70.0102 (10)0.0131 (10)0.0140 (10)0.0011 (8)0.0025 (8)0.0012 (8)
C150.0120 (11)0.0216 (12)0.0241 (12)0.0021 (9)0.0003 (9)0.0010 (10)
C160.0309 (14)0.0284 (14)0.0217 (12)0.0078 (11)0.0076 (10)0.0022 (10)
O10.0475 (12)0.0425 (12)0.0287 (10)0.0233 (10)0.0045 (9)0.0034 (9)
Geometric parameters (Å, º) top
Fe1—N6i1.9610 (17)C9—C141.401 (3)
Fe1—N61.9610 (17)C11—C101.380 (3)
Fe1—N4i1.9626 (17)C11—C121.403 (3)
Fe1—N41.9626 (17)C11—H110.9500
Fe1—N21.9683 (17)C1—H10.9500
Fe1—N2i1.9683 (17)C12—C131.380 (3)
Cl1—O21.4287 (18)C12—H120.9500
Cl1—O31.4338 (17)N7—C171.136 (3)
Cl1—O11.4346 (18)C10—H100.9500
Cl1—O41.4407 (17)C14—C131.393 (3)
N1—C11.356 (3)C3—H30.9500
N1—N21.360 (2)C17—C161.456 (3)
N1—C71.455 (3)C6—C51.404 (3)
N5—C81.351 (3)C6—H60.9500
N5—C141.385 (3)C4—C51.368 (3)
N5—C151.458 (3)C4—H40.9500
N3—C41.346 (3)C8—C71.504 (3)
N3—N41.361 (2)C5—H50.9500
N3—C71.449 (3)C13—H130.9500
N2—C31.329 (3)C7—H71.0000
N6—C81.317 (3)C15—H15A0.9800
N6—C91.390 (3)C15—H15B0.9800
N4—C61.328 (3)C15—H15C0.9800
C2—C11.367 (3)C16—H16A0.9800
C2—C31.400 (3)C16—H16B0.9800
C2—H20.9500C16—H16C0.9800
C9—C101.398 (3)
N6i—Fe1—N6180.0N1—C1—H1126.7
N6i—Fe1—N4i87.92 (7)C2—C1—H1126.7
N6—Fe1—N4i92.08 (7)C13—C12—C11121.7 (2)
N6i—Fe1—N492.08 (7)C13—C12—H12119.2
N6—Fe1—N487.93 (7)C11—C12—H12119.2
N4i—Fe1—N4180.0C11—C10—C9117.1 (2)
N6i—Fe1—N292.62 (7)C11—C10—H10121.5
N6—Fe1—N287.38 (7)C9—C10—H10121.5
N4i—Fe1—N291.51 (7)N5—C14—C13131.3 (2)
N4—Fe1—N288.49 (7)N5—C14—C9106.38 (18)
N6i—Fe1—N2i87.38 (7)C13—C14—C9122.3 (2)
N6—Fe1—N2i92.62 (7)N2—C3—C2110.49 (19)
N4i—Fe1—N2i88.49 (7)N2—C3—H3124.8
N4—Fe1—N2i91.51 (7)C2—C3—H3124.8
N2—Fe1—N2i180.0N7—C17—C16179.2 (3)
O2—Cl1—O3110.02 (12)N4—C6—C5110.58 (19)
O2—Cl1—O1109.14 (12)N4—C6—H6124.7
O3—Cl1—O1109.20 (11)C5—C6—H6124.7
O2—Cl1—O4109.90 (11)N3—C4—C5107.04 (18)
O3—Cl1—O4109.31 (11)N3—C4—H4126.5
O1—Cl1—O4109.24 (12)C5—C4—H4126.5
C1—N1—N2111.32 (17)N6—C8—N5113.39 (18)
C1—N1—C7130.72 (18)N6—C8—C7119.84 (18)
N2—N1—C7117.93 (16)N5—C8—C7126.74 (18)
C8—N5—C14106.19 (17)C4—C5—C6105.50 (19)
C8—N5—C15127.69 (18)C4—C5—H5127.2
C14—N5—C15125.87 (18)C6—C5—H5127.2
C4—N3—N4111.51 (17)C12—C13—C14116.5 (2)
C4—N3—C7130.63 (17)C12—C13—H13121.8
N4—N3—C7117.87 (16)C14—C13—H13121.8
C3—N2—N1105.54 (17)N3—C7—N1108.26 (16)
C3—N2—Fe1135.70 (15)N3—C7—C8108.66 (17)
N1—N2—Fe1118.35 (13)N1—C7—C8109.23 (16)
C8—N6—C9105.67 (17)N3—C7—H7110.2
C8—N6—Fe1117.87 (14)N1—C7—H7110.2
C9—N6—Fe1136.41 (14)C8—C7—H7110.2
C6—N4—N3105.37 (16)N5—C15—H15A109.5
C6—N4—Fe1135.95 (15)N5—C15—H15B109.5
N3—N4—Fe1118.67 (13)H15A—C15—H15B109.5
C1—C2—C3105.95 (19)N5—C15—H15C109.5
C1—C2—H2127.0H15A—C15—H15C109.5
C3—C2—H2127.0H15B—C15—H15C109.5
N6—C9—C10131.1 (2)C17—C16—H16A109.5
N6—C9—C14108.36 (18)C17—C16—H16B109.5
C10—C9—C14120.58 (19)H16A—C16—H16B109.5
C10—C11—C12121.8 (2)C17—C16—H16C109.5
C10—C11—H11119.1H16A—C16—H16C109.5
C12—C11—H11119.1H16B—C16—H16C109.5
N1—C1—C2106.68 (19)
C1—N1—N2—C31.1 (2)N3—N4—C6—C50.4 (2)
C7—N1—N2—C3179.34 (17)Fe1—N4—C6—C5178.59 (16)
C1—N1—N2—Fe1172.72 (13)N4—N3—C4—C50.1 (2)
C7—N1—N2—Fe15.6 (2)C7—N3—C4—C5179.51 (19)
C4—N3—N4—C60.1 (2)C9—N6—C8—N50.1 (2)
C7—N3—N4—C6179.84 (17)Fe1—N6—C8—N5177.98 (13)
C4—N3—N4—Fe1178.73 (13)C9—N6—C8—C7177.93 (18)
C7—N3—N4—Fe11.6 (2)Fe1—N6—C8—C70.0 (2)
C8—N6—C9—C10179.7 (2)C14—N5—C8—N60.6 (2)
Fe1—N6—C9—C102.4 (4)C15—N5—C8—N6175.19 (19)
C8—N6—C9—C140.5 (2)C14—N5—C8—C7177.20 (19)
Fe1—N6—C9—C14176.79 (15)C15—N5—C8—C72.6 (3)
N2—N1—C1—C21.4 (2)N3—C4—C5—C60.4 (2)
C7—N1—C1—C2179.36 (19)N4—C6—C5—C40.5 (2)
C3—C2—C1—N11.1 (2)C11—C12—C13—C141.7 (3)
C10—C11—C12—C131.8 (3)N5—C14—C13—C12178.1 (2)
C12—C11—C10—C90.0 (3)C9—C14—C13—C120.1 (3)
N6—C9—C10—C11177.5 (2)C4—N3—C7—N1118.7 (2)
C14—C9—C10—C111.6 (3)N4—N3—C7—N161.6 (2)
C8—N5—C14—C13177.5 (2)C4—N3—C7—C8122.7 (2)
C15—N5—C14—C132.8 (4)N4—N3—C7—C856.9 (2)
C8—N5—C14—C90.9 (2)C1—N1—C7—N3113.8 (2)
C15—N5—C14—C9175.60 (19)N2—N1—C7—N364.1 (2)
N6—C9—C14—N50.9 (2)C1—N1—C7—C8128.1 (2)
C10—C9—C14—N5179.82 (18)N2—N1—C7—C854.0 (2)
N6—C9—C14—C13177.68 (19)N6—C8—C7—N359.2 (2)
C10—C9—C14—C131.6 (3)N5—C8—C7—N3118.5 (2)
N1—N2—C3—C20.3 (2)N6—C8—C7—N158.7 (2)
Fe1—N2—C3—C2171.80 (15)N5—C8—C7—N1123.6 (2)
C1—C2—C3—N20.5 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N7ii0.952.573.494 (3)164
C4—H4···O1iii0.952.423.308 (3)155
C5—H5···O3iv0.952.603.449 (3)149
C7—H7···O4iii1.002.323.308 (3)170
C16—H16A···O1v0.982.403.300 (3)152
C16—H16B···O30.982.473.303 (3)143
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, for financial support. Additional support by the Department of Chemistry, L. S. College, B. R. A. Bihar University, Muzaffarpur, India, and the Department of Chemistry, IHS, Khandari, Dr. Bhimrao Ambedkar University, Agra, India, for providing laboratory facilities is also gratefully acknowledged.

References

First citationBruker (2007). APEX, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.  CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuionneau, P. (2014). Dalton Trans. 43, 382–393.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKahn, O. & Martinez, C. J. (1998). Science, 279, 44–48.  Web of Science CrossRef CAS Google Scholar
First citationKumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.  CrossRef CAS Google Scholar
First citationMatsuda, M. & Tajima, H. (2007). Chem. Lett. 36, 700–701.  CrossRef CAS Google Scholar
First citationMukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). ChemistrySelect, 3, 3787–3796.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds