organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-[5-(4-Chloro­phen­yl)isoxazol-3-yl]-N-phenyl-1,3,4-oxa­diazol-2-amine

CROSSMARK_Color_square_no_text.svg

aDepartment of Optometry, College of Applied Medical Sciences, King Saud, University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt, dDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq, eNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and fSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 January 2019; accepted 24 January 2019; online 31 January 2019)

The title compound, C17H11ClN4O2, consists of chloro­phenyl (A), isoxazolyl (B), oxa­diazolyl (C) and phenyl (D) rings with twist angles between the planes through neighbouring rings A/B, B/C and C/D of 14.9 (1), 1.8 (1) and 8.9 (1)° respectively. In the crystal, adjacent mol­ecules related by inversion symmetry form columns parallel to the [010] direction through ππ stacking [shortest centroid–centroid separation = 3.6203 (10) Å]; these are cross-linked by N—H⋯N inter­actions in the [001] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Substituted 1,3,4-oxa­diazol-2-amines can act as anti­cancer and anti­proliferative agents (Ahsan et al., 2014[Ahsan, M. J., Sharma, J., Singh, M., Jadav, S. S. & Yasmin, S. (2014). Biomed. Res. Int. 2014, 814984.]; Gonda et al., 2017[Gonda, T., Bérdi, P., Zupkó, I., Fülöp, F. & Szakonyi, Z. (2017). Int. J. Mol. Sci. 19, 81.]; Kumar et al., 2009[Kumar, D., Patel, G., Johnson, E. O. & Shah, K. (2009). Bioorg. Med. Chem. Lett. 19, 2739-2741.], 2011[Kumar, D., Patel, G., Chavers, A. K., Chang, K. H. & Shah, K. (2011). Eur. J. Med. Chem. 46, 3085-3092.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound.

The mol­ecule consists of chloro­phenyl (A), isoxazolyl (B), oxa­diazolyl (C) and phenyl (D) rings (Fig. 1[link]). The mol­ecule is close to planar, as indicated by the twist angles between the planes through neighbouring rings A/B, B/C and C/D, namely 14.9 (1), 1.8 (1) and 8.9 (1)° respectively. A short intra­molecular C—H⋯N contact is observed (Table 1[link]). In the crystal, adjacent mol­ecules related by inversion symmetry form columns parallel to the [010] direction through π-π stacking [shortest centroid–centroid separation = 3.6203 (10) Å]. The columns of mol­ecules are linked by N—H⋯N inter­actions in the [001] direction (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N3 0.93 2.33 2.955 (2) 125
N4—H4⋯N2i 0.86 2.42 3.176 (2) 146
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% probability ellipsoids.
[Figure 2]
Figure 2
A segment of the crystal structure showing N—H⋯N hydrogen bonds as dotted lines.

Synthesis and crystallization

2-(3-(4-Chloro­phen­yl)isoxazole-5-carbon­yl)-N-phenyl­hydra­zine­carbo­thio­amide was treated with anhydrous sodium acetate in ethanol under reflux for 5 h. The resulting solid was collected by filtration, washed with ethanol, dried and recrystallized from di­methyl­formamide solution to give colourless plates, m.p. 277–278°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H11ClN4O2
Mr 338.75
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 17.8925 (15), 7.4168 (6), 11.5006 (9)
β (°) 102.061 (8)
V3) 1492.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.32 × 0.17 × 0.04
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.768, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13114, 3720, 2622
Rint 0.027
(sin θ/λ)max−1) 0.699
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.112, 1.06
No. of reflections 3720
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.23
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows and WinGX (Farrugia, 2012); software used to prepare material for publication: CHEMDRAW Ultra (Cambridge Soft, 2001).

5-[5-(4-Chlorophenyl)isoxazol-3-yl]-N-phenyl-1,3,4-oxadiazol-2-amine top
Crystal data top
C17H11ClN4O2F(000) = 696
Mr = 338.75Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.8925 (15) ÅCell parameters from 3445 reflections
b = 7.4168 (6) Åθ = 3.3–26.7°
c = 11.5006 (9) ŵ = 0.27 mm1
β = 102.061 (8)°T = 296 K
V = 1492.5 (2) Å3Plate, colourless
Z = 40.32 × 0.17 × 0.04 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
2622 reflections with I > 2σ(I)
ω scansRint = 0.027
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)
θmax = 29.8°, θmin = 3.0°
Tmin = 0.768, Tmax = 1.000h = 2423
13114 measured reflectionsk = 1010
3720 independent reflectionsl = 1316
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.039P)2 + 0.4804P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.25 e Å3
3720 reflectionsΔρmin = 0.23 e Å3
218 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0044 (7)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27509 (9)0.6433 (2)0.57408 (14)0.0354 (4)
C20.27554 (10)0.5711 (2)0.68585 (14)0.0380 (4)
H20.3216960.5404610.7357500.046*
C30.20791 (11)0.5447 (2)0.72307 (15)0.0406 (4)
H30.2081750.4961460.7977180.049*
C40.13988 (10)0.5911 (2)0.64829 (16)0.0419 (4)
C50.13775 (10)0.6597 (3)0.53621 (16)0.0443 (4)
H50.0913450.6878900.4861410.053*
C60.20539 (10)0.6856 (2)0.49975 (15)0.0410 (4)
H60.2045870.7321400.4243980.049*
C70.34717 (10)0.6763 (2)0.53732 (14)0.0368 (4)
C80.42112 (10)0.6850 (2)0.59279 (15)0.0411 (4)
H80.4418610.6667660.6730500.049*
C90.45996 (10)0.7280 (2)0.50222 (15)0.0395 (4)
C100.54121 (10)0.7559 (2)0.50955 (14)0.0386 (4)
C110.64134 (9)0.8153 (2)0.44570 (14)0.0363 (4)
C120.76067 (9)0.8721 (2)0.37782 (14)0.0348 (4)
C130.78904 (10)0.9338 (2)0.28169 (15)0.0416 (4)
H130.7555720.9675070.2118700.050*
C140.86646 (11)0.9450 (3)0.28962 (17)0.0480 (5)
H140.8852490.9847680.2245600.058*
C150.91682 (11)0.8977 (3)0.39347 (17)0.0494 (5)
H150.9692680.9067810.3988400.059*
C160.88857 (10)0.8372 (3)0.48854 (17)0.0473 (5)
H160.9222660.8053710.5585650.057*
C170.81049 (10)0.8229 (2)0.48169 (15)0.0392 (4)
H170.7918560.7805920.5462870.047*
N10.41386 (9)0.7429 (3)0.39846 (14)0.0606 (5)
N20.59647 (9)0.7436 (2)0.59928 (13)0.0490 (4)
N30.66384 (8)0.7833 (2)0.55885 (13)0.0487 (4)
N40.68044 (8)0.8585 (2)0.36244 (12)0.0405 (4)
H40.6540430.8802490.2923630.049*
O10.34130 (7)0.7092 (2)0.42024 (11)0.0600 (4)
O20.56429 (6)0.80070 (17)0.40728 (10)0.0409 (3)
Cl10.05523 (3)0.56575 (9)0.69766 (5)0.0682 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0365 (9)0.0360 (9)0.0339 (8)0.0021 (7)0.0078 (7)0.0019 (7)
C20.0399 (9)0.0403 (9)0.0324 (8)0.0005 (7)0.0046 (7)0.0025 (7)
C30.0490 (11)0.0427 (10)0.0317 (8)0.0024 (8)0.0119 (7)0.0009 (8)
C40.0389 (10)0.0444 (10)0.0465 (10)0.0004 (8)0.0178 (8)0.0048 (8)
C50.0372 (10)0.0494 (11)0.0455 (10)0.0037 (8)0.0069 (8)0.0012 (9)
C60.0422 (10)0.0467 (10)0.0344 (9)0.0018 (8)0.0088 (7)0.0054 (8)
C70.0375 (9)0.0409 (9)0.0315 (8)0.0010 (7)0.0061 (7)0.0015 (7)
C80.0373 (9)0.0538 (11)0.0316 (8)0.0017 (8)0.0062 (7)0.0005 (8)
C90.0346 (9)0.0462 (10)0.0373 (9)0.0011 (8)0.0068 (7)0.0013 (8)
C100.0348 (9)0.0480 (10)0.0338 (8)0.0012 (8)0.0087 (7)0.0001 (8)
C110.0288 (8)0.0430 (9)0.0362 (9)0.0006 (7)0.0046 (7)0.0043 (7)
C120.0326 (9)0.0356 (9)0.0357 (8)0.0002 (7)0.0063 (7)0.0050 (7)
C130.0367 (9)0.0515 (11)0.0355 (9)0.0013 (8)0.0049 (7)0.0017 (8)
C140.0435 (11)0.0560 (12)0.0471 (11)0.0051 (9)0.0154 (8)0.0002 (9)
C150.0327 (9)0.0614 (12)0.0544 (11)0.0017 (9)0.0101 (8)0.0043 (10)
C160.0372 (10)0.0564 (12)0.0443 (10)0.0034 (9)0.0003 (8)0.0018 (9)
C170.0380 (9)0.0444 (10)0.0344 (9)0.0005 (8)0.0059 (7)0.0010 (8)
N10.0337 (9)0.1058 (15)0.0422 (9)0.0077 (9)0.0076 (7)0.0204 (9)
N20.0364 (8)0.0768 (12)0.0341 (8)0.0046 (8)0.0084 (6)0.0010 (8)
N30.0349 (8)0.0784 (12)0.0323 (8)0.0047 (8)0.0059 (6)0.0001 (8)
N40.0304 (7)0.0583 (9)0.0316 (7)0.0004 (7)0.0035 (6)0.0050 (7)
O10.0337 (7)0.1065 (12)0.0386 (7)0.0082 (7)0.0048 (5)0.0204 (7)
O20.0308 (6)0.0564 (8)0.0345 (6)0.0015 (5)0.0050 (5)0.0041 (6)
Cl10.0494 (3)0.0880 (4)0.0766 (4)0.0034 (3)0.0345 (3)0.0077 (3)
Geometric parameters (Å, º) top
C1—C21.391 (2)C10—O21.3665 (19)
C1—C61.393 (2)C11—N31.301 (2)
C1—C71.459 (2)C11—N41.338 (2)
C2—C31.379 (2)C11—O21.3611 (19)
C2—H20.9300C12—C171.382 (2)
C3—C41.379 (3)C12—C131.387 (2)
C3—H30.9300C12—N41.413 (2)
C4—C51.379 (3)C13—C141.372 (3)
C4—Cl11.7351 (18)C13—H130.9300
C5—C61.375 (2)C14—C151.383 (3)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—C161.372 (3)
C7—C81.345 (2)C15—H150.9300
C7—O11.351 (2)C16—C171.387 (2)
C8—C91.404 (2)C16—H160.9300
C8—H80.9300C17—H170.9300
C9—N11.306 (2)N1—O11.3952 (19)
C9—C101.453 (2)N2—N31.411 (2)
C10—N21.275 (2)N4—H40.8600
C2—C1—C6119.05 (16)N3—C11—N4131.36 (16)
C2—C1—C7119.83 (15)N3—C11—O2113.02 (15)
C6—C1—C7121.11 (15)N4—C11—O2115.62 (14)
C3—C2—C1120.36 (16)C17—C12—C13119.92 (16)
C3—C2—H2119.8C17—C12—N4122.98 (15)
C1—C2—H2119.8C13—C12—N4117.08 (15)
C4—C3—C2119.23 (16)C14—C13—C12119.99 (17)
C4—C3—H3120.4C14—C13—H13120.0
C2—C3—H3120.4C12—C13—H13120.0
C5—C4—C3121.56 (16)C13—C14—C15120.58 (18)
C5—C4—Cl1119.36 (14)C13—C14—H14119.7
C3—C4—Cl1119.07 (14)C15—C14—H14119.7
C6—C5—C4118.86 (17)C16—C15—C14119.29 (17)
C6—C5—H5120.6C16—C15—H15120.4
C4—C5—H5120.6C14—C15—H15120.4
C5—C6—C1120.92 (16)C15—C16—C17120.94 (17)
C5—C6—H6119.5C15—C16—H16119.5
C1—C6—H6119.5C17—C16—H16119.5
C8—C7—O1109.14 (15)C12—C17—C16119.28 (16)
C8—C7—C1135.40 (16)C12—C17—H17120.4
O1—C7—C1115.45 (14)C16—C17—H17120.4
C7—C8—C9104.44 (15)C9—N1—O1104.75 (14)
C7—C8—H8127.8C10—N2—N3106.85 (14)
C9—C8—H8127.8C11—N3—N2105.10 (13)
N1—C9—C8112.40 (16)C11—N4—C12126.68 (14)
N1—C9—C10118.31 (15)C11—N4—H4116.7
C8—C9—C10129.29 (16)C12—N4—H4116.7
N2—C10—O2113.04 (15)C7—O1—N1109.26 (13)
N2—C10—C9129.36 (16)C11—O2—C10101.99 (13)
O2—C10—C9117.60 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N30.932.332.955 (2)125
N4—H4···N2i0.862.423.176 (2)146
Symmetry code: (i) x, y+3/2, z1/2.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Funding information

MHA thanks King Abdulaziz City for Science and Technology (KACST), Saudi Arabia for financial support (award No. 020–0180).

References

First citationAhsan, M. J., Sharma, J., Singh, M., Jadav, S. S. & Yasmin, S. (2014). Biomed. Res. Int. 2014, 814984.  CrossRef Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGonda, T., Bérdi, P., Zupkó, I., Fülöp, F. & Szakonyi, Z. (2017). Int. J. Mol. Sci. 19, 81.  CrossRef Google Scholar
First citationKumar, D., Patel, G., Chavers, A. K., Chang, K. H. & Shah, K. (2011). Eur. J. Med. Chem. 46, 3085–3092.  CrossRef CAS Google Scholar
First citationKumar, D., Patel, G., Johnson, E. O. & Shah, K. (2009). Bioorg. Med. Chem. Lett. 19, 2739–2741.  CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds