organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N′-[5-Acetyl-3-(4-chloro­phen­yl)-2,3-di­hydro-1,3,4-thia­diazol-2-yl­­idene]-5-(1H-indol-3-yl)-1-phenyl-1H-pyrazole-3-carbohydrazide di­methyl­formamide monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Optometry, College of Applied Medical Sciences, King Saud, University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt, dDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq, eNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and fSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 January 2019; accepted 25 January 2019; online 31 January 2019)

In the title solvate, C28H20ClN7O2S·C3H7NO, the main mol­ecule consists of chloro­phenyl (A), thia­diazolyl (B), pyrazolyl (C), phenyl (D) and indolyl (E) rings, with twist angles between neighbouring rings A/B, B/C, C/D and D/E of 32.6 (1), 14.8 (1), 60.8 (1) and 20.1 (1)°, respectively. The di­methyl­formamide solvent mol­ecule accepts an N—H⋯O hydrogen bond from the indole group. In the extended structure, mol­ecules related by 21 screw axes are stacked in the [001] direction to form columns linked by weak C—H⋯O inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,3,4-Thia­diazo­les have various biological properties including anti­cancer, diuretic, anti­bacterial and anti­fungal activities (Dawood & Farghaly, 2017[Dawood, K. M. & Farghaly, T. A. (2017). Expert Opin. Ther. Pat. 27, 477-505.]; Li et al., 2013[Li, Y., Geng, J., Liu, Y., Yu, S. & Zhao, G. (2013). ChemMedChem, 8, 27-41.]; Lv et al., 2018[Lv, M., Liu, G., Jia, M. & Xu, H. (2018). Bioorg. Chem. 81, 88-92.]; Matysiak 2015[Matysiak, J. (2015). Mini Rev. Med. Chem. 15, 762-775.]; Serban et al., 2018[Serban, G., Stanasel, O., Serban, E. & Bota, S. (2018). Drug. Des. Dev. Ther. 12, 1545-1566.]). As part of our work in this area, we now describe the structure of the title compound.

The asymmetric unit consists of the one mol­ecule of C28H20ClN7O2S and a mol­ecule of di­methyl­formamide solvent (Fig. 1[link]). The main mol­ecule features chloro­phenyl (A), thia­diazolyl (B), pyrazolyl (C), phenyl (D) and indolyl (E) rings. The twist angles between the planes through the neighbouring ring pairs A/B, B/C, C/D and D/E are 32.6 (1), 14.8 (1), 60.8 (1) and 20.1 (1)°, respectively. The di­methyl­formamide solvent accepts an N—H⋯O hydrogen bond from the indole group. In the extended structure (Fig. 2[link]), mol­ecules related by a 21 screw axes are stacked in the [001] direction to form columns linked by weak C—H⋯O inter­actions (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7A⋯O3 0.86 1.96 2.784 (4) 159
C16—H16⋯O2i 0.93 2.34 3.258 (5) 168
Symmetry code: (i) [-x, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
The crystal structure viewed down the c-axis direction.
[Figure 3]
Figure 3
A segment of the crystal structure showing C—H⋯O contacts as dotted lines.

Synthesis and crystallization

The title compound was synthesized as previously reported (Abdel-Gawad et al., 2010[Abdel-Gawad, H., Mohamed, H. A., Dawood, K. M. & Badria, F. A. (2010). Chem. Pharm. Bull. 58, 1529-1531.]) from the reaction of potassium 2-(5-(1H-indol-3-yl)-1-phenyl-1H-pyrazole-3-carbon­yl)hydra­zine­carbodi­thio­ate and N′-(4-chloro­phen­yl)-2-oxo­propane­hydrazonoyl chloride in ethanol under reflux for 2 h. The solid produced was collected by filtration, washed with ethanol, dried and recrystallized from di­methyl­formamide solution to give pale-yellow needles (m.p. 257–258°C; Abdel-Gawad et al., 2010[Abdel-Gawad, H., Mohamed, H. A., Dawood, K. M. & Badria, F. A. (2010). Chem. Pharm. Bull. 58, 1529-1531.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C28H20ClN7O2S·C3H7NO
Mr 627.11
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 293
a, b, c (Å) 22.6215 (9), 18.1779 (7), 7.5064 (4)
V3) 3086.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.55 × 0.07 × 0.03
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.680, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28180, 7744, 4455
Rint 0.044
(sin θ/λ)max−1) 0.702
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 1.01
No. of reflections 7744
No. of parameters 400
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.22
Absolute structure Flack x determined using 1442 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows and WinGX (Farrugia, 2012); software used to prepare material for publication: CHEMDRAW Ultra (Cambridge Soft, 2001).

N'-[5-Acetyl-3-(4-chlorophenyl)-2,3-dihydro-1,3,4-thiadiazol-2-ylidene]-5-(1H-indol-3-yl)-1-phenyl-1H-pyrazole-3-carbohydrazide dimethylformamide monosolvate top
Crystal data top
C28H20ClN7O2S·C3H7NODx = 1.349 Mg m3
Mr = 627.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 6090 reflections
a = 22.6215 (9) Åθ = 3.2–23.1°
b = 18.1779 (7) ŵ = 0.24 mm1
c = 7.5064 (4) ÅT = 293 K
V = 3086.7 (2) Å3Needle, yellow
Z = 40.55 × 0.07 × 0.03 mm
F(000) = 1304
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
4455 reflections with I > 2σ(I)
ω scansRint = 0.044
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2015)
θmax = 29.9°, θmin = 2.9°
Tmin = 0.680, Tmax = 1.000h = 3130
28180 measured reflectionsk = 1825
7744 independent reflectionsl = 109
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0542P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.15 e Å3
7744 reflectionsΔρmin = 0.22 e Å3
400 parametersAbsolute structure: Flack x determined using 1442 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.00 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1098 (2)0.9233 (2)0.8123 (8)0.0857 (14)
H1A0.1451690.9408790.8687320.129*
H1B0.0761190.9365660.8830410.129*
H1C0.1062920.9449240.6961240.129*
C20.11270 (18)0.8422 (2)0.7952 (6)0.0675 (11)
C30.05800 (16)0.80099 (18)0.7611 (6)0.0567 (9)
C40.01539 (14)0.70568 (16)0.7047 (5)0.0488 (9)
C50.09404 (14)0.80336 (16)0.6647 (5)0.0506 (8)
C60.14215 (14)0.76154 (18)0.7133 (5)0.0555 (9)
H60.1367900.7170860.7725230.067*
C70.19860 (15)0.7862 (2)0.6735 (6)0.0619 (9)
H70.2313930.7587860.7080780.074*
C80.20590 (17)0.8511 (2)0.5830 (6)0.0679 (11)
C90.15788 (19)0.8933 (2)0.5380 (7)0.0776 (12)
H90.1632850.9380200.4798240.093*
C100.10161 (18)0.86951 (19)0.5790 (6)0.0673 (11)
H100.0689790.8980500.5489540.081*
C110.05112 (14)0.52085 (17)0.6746 (5)0.0539 (9)
C120.01367 (13)0.45389 (16)0.6807 (5)0.0516 (8)
C130.03199 (13)0.38113 (16)0.6942 (5)0.0506 (8)
H130.0706760.3642160.7032900.061*
C140.01868 (13)0.33909 (16)0.6913 (5)0.0474 (8)
C150.12696 (13)0.37600 (16)0.6697 (5)0.0483 (8)
C160.15622 (15)0.39812 (19)0.5195 (6)0.0589 (9)
H160.1365540.4238260.4302460.071*
C170.21581 (15)0.3814 (2)0.5029 (7)0.0690 (11)
H170.2361280.3957270.4008950.083*
C180.24476 (16)0.3447 (2)0.6329 (6)0.0676 (11)
H180.2846100.3334690.6194260.081*
C190.21521 (15)0.3240 (2)0.7853 (6)0.0692 (11)
H190.2352450.2991270.8751780.083*
C200.15557 (15)0.34016 (19)0.8050 (6)0.0604 (10)
H200.1354370.3268880.9081240.073*
C210.02495 (12)0.25928 (16)0.6900 (5)0.0463 (8)
C220.07209 (14)0.21870 (17)0.6302 (5)0.0525 (9)
H220.1074940.2385300.5894910.063*
C230.02010 (13)0.20643 (16)0.7389 (5)0.0484 (8)
C240.00442 (14)0.13629 (16)0.7063 (5)0.0522 (9)
C250.02642 (17)0.07159 (19)0.7409 (7)0.0699 (11)
H250.0094640.0259570.7179600.084*
C260.08222 (19)0.0768 (2)0.8095 (7)0.0757 (12)
H260.1035660.0343060.8348450.091*
C270.10718 (17)0.1456 (2)0.8414 (6)0.0709 (11)
H270.1454000.1482440.8865600.085*
C280.07684 (15)0.2098 (2)0.8079 (5)0.0583 (9)
H280.0943200.2550620.8313860.070*
C290.30679 (19)0.1233 (3)0.5200 (10)0.1075 (18)
H29A0.2943250.1711950.5583950.161*
H29B0.3248450.1269310.4045560.161*
H29C0.3348530.1037580.6034470.161*
C300.26488 (19)0.0004 (3)0.4550 (8)0.106 (2)
H30A0.2275030.0207960.4227180.158*
H30B0.2819050.0272610.5511410.158*
H30C0.2909800.0008710.3542040.158*
C310.20302 (18)0.0981 (2)0.5531 (6)0.0693 (11)
H310.1992600.1467970.5892740.083*
N10.00705 (12)0.83077 (14)0.7353 (5)0.0554 (7)
N20.03511 (11)0.77894 (13)0.7037 (4)0.0511 (7)
N30.04906 (11)0.65123 (14)0.6751 (5)0.0562 (8)
N40.02058 (12)0.58393 (13)0.6786 (5)0.0620 (8)
H40.0173900.5825580.6834650.074*
N50.04496 (11)0.45956 (13)0.6727 (5)0.0551 (7)
N60.06430 (10)0.38905 (13)0.6820 (4)0.0502 (7)
N70.06004 (12)0.14612 (14)0.6385 (4)0.0562 (8)
H7A0.0836030.1114520.6063010.067*
N80.25628 (13)0.07514 (17)0.5102 (5)0.0706 (10)
O10.15870 (13)0.80757 (17)0.8054 (6)0.0978 (11)
O20.10500 (10)0.51750 (12)0.6691 (4)0.0731 (8)
O30.15779 (12)0.06068 (14)0.5494 (5)0.0809 (9)
S10.06085 (4)0.70530 (5)0.75099 (16)0.0626 (3)
Cl10.27630 (6)0.88036 (9)0.5237 (2)0.1127 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.091 (3)0.069 (3)0.097 (4)0.017 (2)0.002 (3)0.007 (3)
C20.066 (2)0.066 (2)0.070 (3)0.008 (2)0.007 (2)0.003 (2)
C30.062 (2)0.0550 (18)0.054 (2)0.0037 (17)0.0004 (18)0.0022 (19)
C40.0536 (18)0.0422 (16)0.051 (2)0.0056 (14)0.0022 (17)0.0007 (15)
C50.0565 (19)0.0464 (17)0.049 (2)0.0062 (16)0.0009 (17)0.0025 (16)
C60.0573 (19)0.0480 (17)0.061 (3)0.0035 (16)0.0011 (18)0.0015 (17)
C70.0540 (18)0.066 (2)0.066 (3)0.0041 (17)0.0029 (19)0.009 (2)
C80.066 (2)0.070 (2)0.068 (3)0.019 (2)0.003 (2)0.002 (2)
C90.083 (3)0.069 (2)0.081 (3)0.019 (2)0.002 (3)0.023 (2)
C100.070 (2)0.055 (2)0.077 (3)0.0043 (18)0.005 (2)0.013 (2)
C110.0506 (19)0.0477 (18)0.064 (2)0.0057 (15)0.0025 (18)0.0093 (17)
C120.0461 (16)0.0459 (16)0.063 (2)0.0030 (14)0.0017 (17)0.0093 (17)
C130.0431 (16)0.0480 (17)0.061 (2)0.0013 (14)0.0033 (17)0.0078 (17)
C140.0445 (16)0.0442 (15)0.054 (2)0.0010 (13)0.0008 (16)0.0017 (16)
C150.0417 (15)0.0418 (15)0.061 (2)0.0003 (13)0.0001 (17)0.0044 (16)
C160.0539 (19)0.060 (2)0.063 (3)0.0006 (17)0.0038 (19)0.0059 (19)
C170.051 (2)0.089 (3)0.067 (3)0.001 (2)0.008 (2)0.005 (2)
C180.0440 (18)0.078 (2)0.081 (3)0.0052 (19)0.001 (2)0.007 (2)
C190.048 (2)0.081 (3)0.079 (3)0.0056 (18)0.008 (2)0.011 (2)
C200.0514 (19)0.066 (2)0.063 (3)0.0034 (17)0.0002 (18)0.010 (2)
C210.0416 (16)0.0460 (15)0.051 (2)0.0016 (13)0.0033 (15)0.0019 (16)
C220.0491 (18)0.0454 (17)0.063 (3)0.0002 (15)0.0010 (17)0.0017 (17)
C230.0470 (17)0.0493 (16)0.049 (2)0.0000 (14)0.0082 (16)0.0009 (16)
C240.0543 (18)0.0475 (17)0.055 (2)0.0001 (15)0.0093 (17)0.0039 (16)
C250.073 (2)0.0526 (19)0.084 (3)0.0070 (18)0.019 (2)0.008 (2)
C260.070 (3)0.073 (3)0.084 (3)0.028 (2)0.013 (2)0.016 (2)
C270.052 (2)0.089 (3)0.072 (3)0.017 (2)0.001 (2)0.009 (2)
C280.0503 (19)0.066 (2)0.059 (3)0.0007 (17)0.0022 (17)0.0027 (19)
C290.062 (2)0.110 (4)0.150 (5)0.022 (3)0.017 (3)0.012 (4)
C300.076 (3)0.087 (3)0.153 (6)0.021 (3)0.011 (3)0.030 (3)
C310.067 (2)0.056 (2)0.085 (3)0.007 (2)0.000 (2)0.006 (2)
N10.0591 (17)0.0492 (14)0.058 (2)0.0060 (14)0.0017 (16)0.0008 (15)
N20.0511 (15)0.0422 (13)0.060 (2)0.0003 (12)0.0016 (14)0.0018 (13)
N30.0516 (15)0.0432 (14)0.074 (2)0.0075 (13)0.0011 (15)0.0041 (15)
N40.0475 (15)0.0443 (15)0.094 (3)0.0061 (12)0.0014 (17)0.0041 (16)
N50.0467 (14)0.0418 (13)0.077 (2)0.0045 (12)0.0045 (15)0.0022 (15)
N60.0384 (13)0.0430 (14)0.069 (2)0.0023 (11)0.0006 (14)0.0020 (14)
N70.0544 (16)0.0423 (15)0.072 (2)0.0048 (12)0.0022 (15)0.0033 (14)
N80.0493 (17)0.067 (2)0.096 (3)0.0039 (15)0.0039 (18)0.0025 (19)
O10.0677 (17)0.092 (2)0.134 (3)0.0053 (16)0.0293 (19)0.000 (2)
O20.0492 (14)0.0555 (13)0.115 (2)0.0061 (11)0.0040 (15)0.0209 (15)
O30.0562 (14)0.0685 (16)0.118 (3)0.0029 (13)0.0097 (16)0.0074 (17)
S10.0539 (5)0.0542 (5)0.0796 (7)0.0026 (4)0.0076 (5)0.0075 (5)
Cl10.0803 (7)0.1358 (11)0.1221 (12)0.0411 (8)0.0190 (8)0.0142 (10)
Geometric parameters (Å, º) top
C1—C21.481 (5)C17—H170.9300
C1—H1A0.9600C18—C191.378 (6)
C1—H1B0.9600C18—H180.9300
C1—H1C0.9600C19—C201.389 (5)
C2—O11.218 (5)C19—H190.9300
C2—C31.469 (5)C20—H200.9300
C3—N11.288 (4)C21—C221.372 (4)
C3—S11.742 (3)C21—C231.448 (4)
C4—N31.268 (4)C22—N71.349 (4)
C4—N21.404 (4)C22—H220.9300
C4—S11.759 (3)C23—C281.385 (5)
C5—C101.374 (5)C23—C241.412 (4)
C5—C61.377 (5)C24—N71.369 (4)
C5—N21.435 (4)C24—C251.392 (5)
C6—C71.386 (5)C25—C261.366 (6)
C6—H60.9300C25—H250.9300
C7—C81.372 (6)C26—C271.393 (6)
C7—H70.9300C26—H260.9300
C8—C91.373 (6)C27—C281.377 (5)
C8—Cl11.737 (4)C27—H270.9300
C9—C101.380 (6)C28—H280.9300
C9—H90.9300C29—N81.441 (5)
C10—H100.9300C29—H29A0.9600
C11—O21.221 (4)C29—H29B0.9600
C11—N41.339 (4)C29—H29C0.9600
C11—C121.484 (4)C30—N81.434 (6)
C12—N51.331 (4)C30—H30A0.9600
C12—C131.390 (4)C30—H30B0.9600
C13—C141.378 (4)C30—H30C0.9600
C13—H130.9300C31—O31.229 (5)
C14—N61.376 (4)C31—N81.315 (5)
C14—C211.458 (4)C31—H310.9300
C15—C161.368 (5)N1—N21.361 (4)
C15—C201.369 (5)N3—N41.383 (4)
C15—N61.440 (4)N4—H40.8600
C16—C171.387 (5)N5—N61.356 (4)
C16—H160.9300N7—H7A0.8600
C17—C181.351 (6)
C2—C1—H1A109.5C15—C20—H20120.6
C2—C1—H1B109.5C19—C20—H20120.6
H1A—C1—H1B109.5C22—C21—C23105.9 (3)
C2—C1—H1C109.5C22—C21—C14127.8 (3)
H1A—C1—H1C109.5C23—C21—C14126.2 (3)
H1B—C1—H1C109.5N7—C22—C21110.7 (3)
O1—C2—C3117.9 (3)N7—C22—H22124.6
O1—C2—C1123.1 (4)C21—C22—H22124.6
C3—C2—C1119.0 (4)C28—C23—C24117.9 (3)
N1—C3—C2124.5 (3)C28—C23—C21135.9 (3)
N1—C3—S1116.5 (3)C24—C23—C21106.2 (3)
C2—C3—S1119.0 (3)N7—C24—C25129.8 (3)
N3—C4—N2123.3 (3)N7—C24—C23107.9 (3)
N3—C4—S1128.3 (2)C25—C24—C23122.3 (3)
N2—C4—S1108.4 (2)C26—C25—C24118.4 (4)
C10—C5—C6120.6 (3)C26—C25—H25120.8
C10—C5—N2118.8 (3)C24—C25—H25120.8
C6—C5—N2120.6 (3)C25—C26—C27120.1 (4)
C5—C6—C7119.5 (3)C25—C26—H26120.0
C5—C6—H6120.2C27—C26—H26120.0
C7—C6—H6120.2C28—C27—C26121.8 (4)
C8—C7—C6119.7 (4)C28—C27—H27119.1
C8—C7—H7120.1C26—C27—H27119.1
C6—C7—H7120.1C27—C28—C23119.5 (3)
C7—C8—C9120.5 (4)C27—C28—H28120.2
C7—C8—Cl1120.1 (3)C23—C28—H28120.2
C9—C8—Cl1119.4 (3)N8—C29—H29A109.5
C8—C9—C10119.9 (4)N8—C29—H29B109.5
C8—C9—H9120.0H29A—C29—H29B109.5
C10—C9—H9120.0N8—C29—H29C109.5
C5—C10—C9119.6 (4)H29A—C29—H29C109.5
C5—C10—H10120.2H29B—C29—H29C109.5
C9—C10—H10120.2N8—C30—H30A109.5
O2—C11—N4124.0 (3)N8—C30—H30B109.5
O2—C11—C12122.0 (3)H30A—C30—H30B109.5
N4—C11—C12114.0 (3)N8—C30—H30C109.5
N5—C12—C13112.0 (3)H30A—C30—H30C109.5
N5—C12—C11120.3 (3)H30B—C30—H30C109.5
C13—C12—C11127.8 (3)O3—C31—N8125.6 (4)
C14—C13—C12106.2 (3)O3—C31—H31117.2
C14—C13—H13126.9N8—C31—H31117.2
C12—C13—H13126.9C3—N1—N2111.2 (3)
N6—C14—C13105.0 (2)N1—N2—C4115.6 (3)
N6—C14—C21125.7 (3)N1—N2—C5118.2 (2)
C13—C14—C21129.3 (3)C4—N2—C5126.1 (3)
C16—C15—C20121.5 (3)C4—N3—N4114.0 (3)
C16—C15—N6118.7 (3)C11—N4—N3121.1 (3)
C20—C15—N6119.8 (3)C11—N4—H4119.4
C15—C16—C17118.7 (4)N3—N4—H4119.4
C15—C16—H16120.7C12—N5—N6104.2 (2)
C17—C16—H16120.7N5—N6—C14112.6 (2)
C18—C17—C16120.9 (4)N5—N6—C15118.0 (2)
C18—C17—H17119.5C14—N6—C15129.2 (2)
C16—C17—H17119.5C22—N7—C24109.3 (3)
C17—C18—C19120.0 (3)C22—N7—H7A125.3
C17—C18—H18120.0C24—N7—H7A125.3
C19—C18—H18120.0C31—N8—C30119.7 (3)
C18—C19—C20120.1 (4)C31—N8—C29121.4 (4)
C18—C19—H19119.9C30—N8—C29118.9 (3)
C20—C19—H19119.9C3—S1—C488.20 (16)
C15—C20—C19118.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···O30.861.962.784 (4)159
C16—H16···O2i0.932.343.258 (5)168
Symmetry code: (i) x, y+1, z1/2.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Acknowledgements

Mohammad Hayal Alotaibi thanks King Abdulaziz City for Science and Technology (KACST), Saudi Arabia for financial support (award No. 020–0180).

Funding information

MHA thanks King Abdulaziz City for Science and Technology (KACST), Saudi Arabia, for financial support (award No. 020–0180).

References

First citationAbdel-Gawad, H., Mohamed, H. A., Dawood, K. M. & Badria, F. A. (2010). Chem. Pharm. Bull. 58, 1529–1531.  Web of Science CAS PubMed Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationDawood, K. M. & Farghaly, T. A. (2017). Expert Opin. Ther. Pat. 27, 477–505.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y., Geng, J., Liu, Y., Yu, S. & Zhao, G. (2013). ChemMedChem, 8, 27–41.  CrossRef Google Scholar
First citationLv, M., Liu, G., Jia, M. & Xu, H. (2018). Bioorg. Chem. 81, 88–92.  CrossRef CAS Google Scholar
First citationMatysiak, J. (2015). Mini Rev. Med. Chem. 15, 762–775.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSerban, G., Stanasel, O., Serban, E. & Bota, S. (2018). Drug. Des. Dev. Ther. 12, 1545–1566.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds