organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-((E)-{[3-(1H-Imidazol-1-yl)prop­yl]imino}­meth­yl)-4-[(E)-(4-methyl­phen­yl)diazen­yl]phenol

CROSSMARK_Color_square_no_text.svg

aLCBAE, Equipe Chimie Moléculaire et Molécules Bioactives, Université Moulay Ismail, Faculté des Sciences, Meknès, Morocco, bUniversité d Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 Angers Cedex, France, and cLaboratoire de Chimie des Matériaux et Biotechnologie des Produits Naturels, E.Ma.Me.P.S., Université Moulay Ismail, Faculté des Sciences, Meknès, Morocco
*Correspondence e-mail: kyamni@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 January 2019; accepted 7 January 2019; online 11 January 2019)

In the title compound, C20H21N5O, the dihedral angles between the central phenol ring and pendant toluyl and imidazole rings are 3.20 (16) and 81.44 (14)°, respectively; the dihedral angle between the pendant rings is 84.39 (16)°. An intra­molecular O—H⋯N hydrogen bond occurs. A Hirshfeld fingerprint analysis indicates that H⋯H contacts account for 48.6% of the surface.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a continuation of our studies of compounds based on azo Schiff base derivatives (Slassi et al., 2017[Slassi, S., Aarjane, M., Amine, A., Zouihri, H. & Yamni, K. (2017). IUCrData, 2, x171477.]), we report herein the synthesis and structure of the title compound.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The bond lengths and angles of the imidazol moiety are comparable with those reported for similar compounds (Slassi et al., 2017[Slassi, S., Aarjane, M., Amine, A., Zouihri, H. & Yamni, K. (2017). IUCrData, 2, x171477.]). The dihedral angles between the phenol ring and pendant toluyl and imidazole rings are 3.20 (16) and 81.44 (14)°, respectively; the dihedral angle between the pendant rings is 84.39 (16)°. The N1—N2 and N3—C14 bond lengths [1.174 (4) and 1.272 (4) Å, respectively] confirm their double-bond character, whereas the N4—C18 and N4—C19 values [1.347 (3) and 1.370 (3) Å, respectively] are shorter than (nominal) isolated C—N bonds (1.46 Å) due to conjugation. An intra­molecular O—H⋯N hydrogen bond occurs (Table 1[link]) but no directional inter­actions beyond van der Waals' contacts could be identified in the packing (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3 0.82 1.86 2.588 (3) 148
[Figure 1]
Figure 1
The mol­ecular structure with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
The packing viewed down [010].

Two-dimensional Hirshfeld fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) indicate that 48.6% of the surface is due to H⋯H contacts, followed by C⋯H, N⋯H and O⋯H inter­actions, which contribute 28.5, 15.2 and 6.1%, respectively.

Synthesis and crystallization

A diazo­nium-salt solution was prepared by dissolving p-toluidine amine (1.23 g, 0.01 mol) in a mixture of water and concentrated hydro­chloric acid (8 and 3 ml, respectively). The resulting solution was cooled to 273 K, treated with aqueous (1.0 M) sodium nitrate (15 ml) dropwise and stirred for 15 min. Salicyl­aldehyde (2.2 g, 0.010 mol) was dissolved in 10% sodium hydroxide (50 ml). The diazo­nium solution was then added dropwise to initiate the coupling reaction. After the mixture had been stirred for 1 h at 273–278 K, the precip­itate was filtered off. Crystals were obtained by recrystallization from ethanol solution. N-(3-Amino­prop­yl)imidazole (4.0 mmol) was added into a methanol solution (30 ml) of 2-hy­droxy-5-(p-tolyl­diazen­yl)benzaldehyde (4.0 mmol) prepared in the first step of the reaction. The mixture was refluxed for 2 h and cooled to room temperature. The solvent was removed on a rotatory evaporator and the orange product was rinsed and recrystallized from mixed solvents of methanol and ether to give orange crystals after one week.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H21N5O
Mr 347.42
Crystal system, space group Monoclinic, P2/n
Temperature (K) 293
a, b, c (Å) 12.2410 (4), 5.9386 (2), 25.2112 (9)
β (°) 90.317 (3)
V3) 1832.69 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.65
Crystal size (mm) 0.35 × 0.22 × 0.13
 
Data collection
Diffractometer Agilent SuperNova CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 5548, 3487, 3037
Rint 0.016
(sin θ/λ)max−1) 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.245, 1.08
No. of reflections 3487
No. of parameters 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.02, −0.68
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) top
Crystal data top
C20H21N5OF(000) = 736
Mr = 347.42Dx = 1.259 Mg m3
Monoclinic, P2/nCu Kα radiation, λ = 1.54184 Å
a = 12.2410 (4) ÅCell parameters from 235 reflections
b = 5.9386 (2) Åθ = 0.7–32.0°
c = 25.2112 (9) ŵ = 0.65 mm1
β = 90.317 (3)°T = 293 K
V = 1832.69 (11) Å3Prism, orange
Z = 40.35 × 0.22 × 0.13 mm
Data collection top
Agilent SuperNova CCD
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 73.5°, θmin = 4.0°
ω and φ scansh = 1414
5548 measured reflectionsk = 47
3487 independent reflectionsl = 3025
3037 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.084 w = 1/[σ2(Fo2) + (0.1176P)2 + 1.9097P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.245(Δ/σ)max < 0.001
S = 1.08Δρmax = 1.02 e Å3
3487 reflectionsΔρmin = 0.67 e Å3
236 parametersExtinction correction: SHELXL2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0012 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were placed in calculated positions and treated as riding: (O—H = 0.82 Å, N—H = and C—H = 0.93 to 0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C130.8079 (4)0.4904 (8)0.15663 (17)0.0903 (14)
H13A0.74260.57530.14990.135*
H13B0.84250.45470.12360.135*
H13C0.78970.35370.17490.135*
C141.4876 (2)1.0267 (5)0.40967 (12)0.0478 (7)
H141.50590.88540.39650.057*
C151.6512 (2)1.0082 (5)0.45962 (14)0.0530 (8)
H15A1.67680.91010.43150.064*
H15B1.63570.91600.49040.064*
C161.7384 (2)1.1766 (5)0.47322 (12)0.0463 (7)
H16A1.70861.28660.49760.056*
H16B1.75951.25560.44120.056*
C171.8392 (2)1.0701 (5)0.49814 (12)0.0495 (7)
H17A1.89151.18700.50700.059*
H17B1.81890.99430.53070.059*
C181.8979 (2)0.6838 (4)0.46977 (10)0.0405 (6)
H181.87380.61120.50020.049*
C191.9335 (2)0.9502 (5)0.41319 (11)0.0476 (7)
H191.94001.08920.39650.057*
C201.9650 (2)0.7472 (5)0.39414 (11)0.0501 (7)
H201.99720.72520.36120.060*
N31.55155 (17)1.1238 (4)0.44235 (11)0.0484 (6)
N41.89023 (16)0.9079 (4)0.46217 (8)0.0380 (5)
N61.9431 (2)0.5788 (4)0.42948 (9)0.0468 (6)
O11.42088 (16)1.4663 (3)0.44393 (9)0.0535 (6)
H11.47611.39290.45050.080*
C10.9844 (3)0.5444 (6)0.20574 (12)0.0658 (9)
H21.00710.40260.19470.079*
C20.8845 (3)0.6273 (6)0.19032 (12)0.0644 (9)
C30.8533 (4)0.8425 (7)0.20665 (14)0.0763 (11)
H30.78580.89700.19540.092*
C40.9149 (4)0.9741 (8)0.23747 (15)0.0763 (11)
H40.89131.11680.24740.092*
C51.0114 (4)0.8946 (6)0.25356 (12)0.0703 (11)
C61.0528 (3)0.6788 (8)0.23901 (13)0.0785 (12)
H61.12080.62850.25060.094*
C71.3171 (2)1.0200 (5)0.35781 (11)0.0489 (7)
H71.33700.87790.34570.059*
C81.2196 (2)1.1128 (6)0.34087 (11)0.0520 (7)
C91.1896 (2)1.3256 (6)0.35955 (12)0.0556 (8)
H91.12371.38900.34860.067*
C101.2569 (2)1.4428 (5)0.39417 (12)0.0511 (7)
H101.23581.58390.40650.061*
C111.3862 (2)1.1332 (5)0.39245 (11)0.0433 (6)
C121.3566 (2)1.3504 (5)0.41079 (11)0.0450 (6)
N11.0795 (3)1.0496 (5)0.28969 (13)0.0807 (11)
N21.1576 (2)0.9503 (6)0.30336 (11)0.0681 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C130.116 (4)0.081 (3)0.074 (2)0.007 (3)0.042 (2)0.015 (2)
C140.0355 (13)0.0398 (14)0.0683 (18)0.0006 (11)0.0102 (12)0.0050 (13)
C150.0353 (14)0.0440 (15)0.080 (2)0.0054 (12)0.0043 (13)0.0064 (14)
C160.0420 (14)0.0410 (14)0.0557 (16)0.0095 (11)0.0084 (12)0.0055 (12)
C170.0467 (15)0.0449 (15)0.0568 (16)0.0099 (12)0.0092 (12)0.0075 (13)
C180.0407 (13)0.0396 (13)0.0411 (13)0.0024 (10)0.0025 (10)0.0091 (10)
C190.0426 (14)0.0500 (16)0.0503 (15)0.0007 (12)0.0023 (11)0.0206 (13)
C200.0462 (15)0.0629 (18)0.0412 (14)0.0048 (13)0.0065 (11)0.0100 (13)
N30.0309 (11)0.0414 (12)0.0728 (15)0.0034 (9)0.0024 (10)0.0025 (11)
N40.0321 (10)0.0372 (11)0.0447 (11)0.0030 (8)0.0030 (8)0.0064 (9)
N60.0483 (13)0.0435 (13)0.0486 (13)0.0037 (10)0.0030 (10)0.0032 (10)
O10.0425 (10)0.0406 (11)0.0772 (14)0.0046 (8)0.0049 (9)0.0094 (10)
C10.091 (3)0.067 (2)0.0394 (15)0.0114 (19)0.0074 (15)0.0012 (14)
C20.089 (2)0.065 (2)0.0395 (15)0.0021 (18)0.0112 (15)0.0008 (14)
C30.109 (3)0.068 (2)0.0517 (19)0.005 (2)0.0041 (19)0.0053 (17)
C40.095 (3)0.074 (2)0.060 (2)0.004 (2)0.005 (2)0.0018 (19)
C50.118 (3)0.058 (2)0.0353 (15)0.033 (2)0.0192 (17)0.0083 (14)
C60.074 (2)0.121 (3)0.0412 (16)0.019 (2)0.0011 (15)0.032 (2)
C70.0419 (14)0.0543 (16)0.0507 (15)0.0049 (12)0.0113 (12)0.0046 (13)
C80.0432 (15)0.0693 (19)0.0436 (14)0.0089 (14)0.0083 (11)0.0039 (14)
C90.0393 (14)0.077 (2)0.0506 (16)0.0053 (14)0.0014 (12)0.0181 (15)
C100.0449 (15)0.0520 (16)0.0566 (17)0.0102 (13)0.0075 (12)0.0098 (13)
C110.0327 (12)0.0440 (14)0.0532 (15)0.0010 (10)0.0075 (11)0.0006 (12)
C120.0370 (13)0.0450 (15)0.0531 (15)0.0013 (11)0.0055 (11)0.0044 (12)
N10.106 (3)0.0599 (18)0.076 (2)0.0242 (18)0.0444 (19)0.0206 (16)
N20.0388 (13)0.099 (2)0.0666 (17)0.0065 (14)0.0089 (12)0.0411 (16)
Geometric parameters (Å, º) top
C13—C21.501 (5)O1—C121.336 (3)
C13—H13A0.9600O1—H10.8200
C13—H13B0.9600C1—C21.372 (5)
C13—H13C0.9600C1—C61.427 (5)
C14—N31.272 (4)C1—H20.9300
C14—C111.457 (4)C2—C31.397 (5)
C14—H140.9300C3—C41.333 (6)
C15—N31.464 (3)C3—H30.9300
C15—C161.500 (4)C4—C51.333 (6)
C15—H15A0.9700C4—H40.9300
C15—H15B0.9700C5—C61.426 (6)
C16—C171.520 (4)C5—N11.537 (5)
C16—H16A0.9700C6—H60.9300
C16—H16B0.9700C7—C81.381 (4)
C17—N41.465 (3)C7—C111.386 (4)
C17—H17A0.9700C7—H70.9300
C17—H17B0.9700C8—C91.399 (5)
C18—N61.317 (3)C8—N21.547 (5)
C18—N41.347 (3)C9—C101.385 (5)
C18—H180.9300C9—H90.9300
C19—C201.354 (4)C10—C121.401 (4)
C19—N41.370 (3)C10—H100.9300
C19—H190.9300C11—C121.417 (4)
C20—N61.367 (4)N1—N21.174 (4)
C20—H200.9300
C2—C13—H13A109.5C18—N6—C20103.9 (2)
C2—C13—H13B109.5C12—O1—H1109.5
H13A—C13—H13B109.5C2—C1—C6119.0 (4)
C2—C13—H13C109.5C2—C1—H2120.5
H13A—C13—H13C109.5C6—C1—H2120.5
H13B—C13—H13C109.5C1—C2—C3119.3 (4)
N3—C14—C11121.1 (3)C1—C2—C13121.2 (4)
N3—C14—H14119.5C3—C2—C13119.4 (4)
C11—C14—H14119.5C4—C3—C2123.6 (4)
N3—C15—C16110.2 (2)C4—C3—H3118.2
N3—C15—H15A109.6C2—C3—H3118.2
C16—C15—H15A109.6C3—C4—C5117.8 (4)
N3—C15—H15B109.6C3—C4—H4121.1
C16—C15—H15B109.6C5—C4—H4121.1
H15A—C15—H15B108.1C4—C5—C6123.7 (4)
C15—C16—C17113.1 (2)C4—C5—N1116.4 (4)
C15—C16—H16A109.0C6—C5—N1119.9 (4)
C17—C16—H16A109.0C5—C6—C1116.5 (4)
C15—C16—H16B109.0C5—C6—H6121.8
C17—C16—H16B109.0C1—C6—H6121.8
H16A—C16—H16B107.8C8—C7—C11121.6 (3)
N4—C17—C16111.5 (2)C8—C7—H7119.2
N4—C17—H17A109.3C11—C7—H7119.2
C16—C17—H17A109.3C7—C8—C9119.0 (3)
N4—C17—H17B109.3C7—C8—N2111.1 (3)
C16—C17—H17B109.3C9—C8—N2129.8 (3)
H17A—C17—H17B108.0C10—C9—C8120.7 (3)
N6—C18—N4112.8 (2)C10—C9—H9119.7
N6—C18—H18123.6C8—C9—H9119.7
N4—C18—H18123.6C9—C10—C12120.4 (3)
C20—C19—N4105.6 (2)C9—C10—H10119.8
C20—C19—H19127.2C12—C10—H10119.8
N4—C19—H19127.2C7—C11—C12119.4 (3)
C19—C20—N6111.3 (2)C7—C11—C14119.5 (3)
C19—C20—H20124.4C12—C11—C14121.1 (3)
N6—C20—H20124.4O1—C12—C10119.6 (3)
C14—N3—C15119.3 (3)O1—C12—C11121.5 (2)
C18—N4—C19106.4 (2)C10—C12—C11118.9 (3)
C18—N4—C17126.2 (2)N2—N1—C5108.1 (3)
C19—N4—C17127.3 (2)N1—N2—C8105.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.821.862.588 (3)148
 

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlassi, S., Aarjane, M., Amine, A., Zouihri, H. & Yamni, K. (2017). IUCrData, 2, x171477.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds