organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Bromo-2-(4-chloro­phen­yl)-3-[(1-octyl-1H-1,2,3-triazol-4-yl)meth­yl]-3H-imidazo[4,5-b]pyridine

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202, Fez, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, cLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route dímmouzzer, BP 2202, Fez, Morocco, and dUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France
*Correspondence e-mail: said.chakroune20@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 January 2019; accepted 9 January 2019; online 15 January 2019)

In the title compound, C23H26BrClN6, the imidazo[4,5-b]pyridine ring system (r.m.s. deviation = 0.012 Å) is inclined at angles of 19.37 (12) and 89.27 (13)° to the phenyl and triazole rings, respectively, while the phenyl and triazole rings subtend a dihedral angle of 71.23 (15)°. In the crystal, the mol­ecules are linked by C—H⋯NI and bifurcated C—H⋯(NT,NT) (I = imidazo[4,5-b]pyridine and T = triazole) hydrogen bonds into a double-column structure propagating along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Some imidazo­pyridine derivatives have a significant inhibitory effect on target enzymes (Palmer et al., 2007[Palmer, A. M., Grobbel, B., Jecke, C., Brehm, C., Zimmermann, P. J., Buhr, W., Feth, M. P., Simon, W. A. & Kromer, W. (2007). J. Med. Chem. 50, 6240-6264.]; Katritzky et al., 2003[Katritzky, A. R., Xu, Y. J. & Tu, H. (2003). J. Org. Chem. 68, 4935-4937.]). The most popular synthetic approach to these compounds involves the cyclo-condensation of 2,3-pyridinedi­amine with carb­oxy­lic acid derivatives or with aldehydes (Dubey et al., 2004[Dubey, P. K., Kumar, R. V., Kulkarni, S. M., Sunder, H. G., Smith, G. & Kennard, C. H. L. (2004). Indian J. Chem. Sect. B, 43, 952-956.]). On the other hand, there is increasing inter­est in the design of new synthetic routes such as an eco-friendly synthesis by oxidation in aqueous medium (Kale et al., 2009[Kale, R. P., Shaikh, M. U., Jadhav, G. R. & Gill, C. H. (2009). Tetrahedron Lett. 50, 1780-1782.]). As a continuation of our studies in this area (Bourichi et al., 2016[Bourichi, S., Kandri Rodi, Y., Ouzidan, Y., Mague, T. J., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160763.]), we now report the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]

interactive figure
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

The imidazo[4,5-b]pyridine unit is planar to within 0.026 (5) Å (for atom C7), and the r.m.s. deviation of the fitted atoms is 0.012 Å. It is inclined by 19.37 (12) and 89.27 (13)° to the phenyl and triazole rings, respectively, while phenyl and triazole rings are oriented at a dihedral angle of 71.23 (15)°. Atoms Br1, Cl1 and C13 and C16 are displaced by −0.037 (1), 0.024 (2), −0.017 (4) and 0.031 (5) Å, respectively, away from their attached rings.

In the crystal, the mol­ecules are linked via C—H⋯N hydrogen bonds (Table 1[link]), enclosing R33(20), R33(21) and R33(22) ring motifs (Figs. 2[link] and 3[link]) as part of a double-column structure (Fig. 2[link]) running along the b-axis direction (Fig. 3[link]). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are H⋯H (57.2%), H⋯N/N⋯H (17.6%), H⋯C/C⋯H (9.6%), H⋯Cl/Cl⋯H (7.9%) and H⋯Br/Br⋯H (7.0%) inter­actions. No significant ππ or C—H⋯π inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N4i 0.93 2.60 3.452 (6) 153
C15—H15⋯N5i 0.93 2.38 3.293 (6) 168
C16—H16B⋯N3ii 0.97 2.53 3.444 (6) 157
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Detail of the crystal structure showing C—H⋯NI and bifurcated C—H⋯(NT,NT) (I = imidazo[4,5-b]pyridine and T = triazole) hydrogen bonds, enclosing R33(20), R33(21) and R33(22) ring motifs, are shown as dashed lines. Non-bonding hydrogen atoms have been omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction. C—H⋯NI hydrogen bonds are shown by dashed lines.

Synthesis and crystallization

1-Azido-octane (0.18 mg, 1.16 mmol) was added to a solution of 6-bromo-2-(4-chloro­phen­yl)-3-(prop-2-yn-1-yl)-3H-imid­azo[4,5-b] pyridine (0.2 g, 0.58 mmol) in ethanol (20 ml). The mixture was stirred under reflux for 48 h. After completion of reaction (monitored by TLC), the solution was concentrated and the residue was purified by column chromatography on silica gel by using a hexa­ne/ethyl acetate (3/1) mixture. Colourless needles of the title compound were obtained when the solvent was allowed to evaporate.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C23H26BrClN6
Mr 501.86
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 16.252 (3), 5.3787 (9), 27.109 (4)
β (°) 90.551 (12)
V3) 2369.6 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.87
Crystal size (mm) 0.26 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.662, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 26673, 4359, 2265
Rint 0.074
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.124, 1.01
No. of reflections 4359
No. of parameters 281
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2015).

6-Bromo-2-(4-chlorophenyl)-3-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-3H-imidazo[4,5-b]pyridine top
Crystal data top
C23H26BrClN6F(000) = 1032
Mr = 501.86Dx = 1.407 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.252 (3) ÅCell parameters from 2998 reflections
b = 5.3787 (9) Åθ = 2.5–17.9°
c = 27.109 (4) ŵ = 1.87 mm1
β = 90.551 (12)°T = 296 K
V = 2369.6 (7) Å3Needle, colourless
Z = 40.26 × 0.06 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
2265 reflections with I > 2σ(I)
φ and ω scansRint = 0.074
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.4°, θmin = 1.5°
Tmin = 0.662, Tmax = 0.745h = 1919
26673 measured reflectionsk = 66
4359 independent reflectionsl = 3231
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0335P)2 + 3.1135P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4359 reflectionsΔρmax = 0.26 e Å3
281 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The C-bound H-atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methine and methyl hydrogen atoms and refined as riding with Uiso(H) = k × Ueq(C), where k = 1.2 for aromatic and methine H atoms and k = 1.5 for methyl H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.91417 (3)1.26424 (11)0.49714 (2)0.0850 (2)
Cl10.37541 (9)0.1921 (3)0.58798 (6)0.1026 (5)
N10.6829 (2)0.5770 (8)0.53176 (13)0.0591 (10)
N20.7471 (2)0.4450 (7)0.60069 (12)0.0515 (9)
N30.8640 (2)0.7240 (8)0.59990 (14)0.0648 (11)
N40.6885 (2)0.6629 (6)0.69399 (14)0.0567 (10)
N50.6355 (3)0.6816 (7)0.73019 (15)0.0600 (11)
N60.6209 (2)0.4516 (7)0.74655 (13)0.0529 (10)
C10.6048 (3)0.0529 (9)0.60623 (17)0.0641 (14)
H10.65130.00470.62400.077*
C20.5331 (3)0.0841 (10)0.61021 (18)0.0729 (15)
H20.53160.22180.63090.087*
C30.4649 (3)0.0182 (10)0.58390 (19)0.0642 (14)
C40.4666 (3)0.1848 (11)0.5548 (2)0.0860 (18)
H40.42000.23050.53680.103*
C50.5372 (3)0.3244 (10)0.55179 (19)0.0777 (17)
H50.53710.46750.53250.093*
C60.6082 (3)0.2576 (9)0.57660 (15)0.0511 (11)
C70.6790 (3)0.4233 (8)0.56938 (16)0.0503 (11)
C80.7946 (3)0.6337 (9)0.58096 (16)0.0518 (12)
C90.7545 (3)0.7123 (9)0.53840 (16)0.0535 (12)
C100.7887 (3)0.9040 (9)0.51141 (17)0.0608 (13)
H100.76450.96380.48250.073*
C110.8606 (3)0.9999 (9)0.53016 (18)0.0582 (13)
C120.8965 (3)0.9066 (11)0.57280 (19)0.0682 (14)
H120.94630.97500.58330.082*
C130.7649 (3)0.3372 (9)0.64894 (16)0.0588 (13)
H13A0.82020.38420.65910.071*
H13B0.76320.15740.64640.071*
C140.7059 (3)0.4188 (8)0.68720 (15)0.0447 (11)
C150.6636 (3)0.2859 (9)0.72059 (17)0.0580 (12)
H150.66410.11430.72470.070*
C160.5635 (3)0.4089 (10)0.78608 (18)0.0769 (16)
H16A0.54620.56810.79920.092*
H16B0.59150.31940.81240.092*
C170.4894 (4)0.2660 (13)0.7708 (2)0.105 (2)
H17A0.50680.10100.76090.126*
H17B0.45440.24690.79930.126*
C180.4402 (3)0.3708 (12)0.7310 (2)0.0955 (19)
H18A0.47320.37340.70140.115*
H18B0.42730.54180.73930.115*
C190.3599 (4)0.2355 (13)0.7193 (2)0.112 (2)
H19A0.37260.06670.70930.134*
H19B0.32760.22610.74910.134*
C200.3094 (4)0.3534 (13)0.6802 (2)0.103 (2)
H20A0.34080.35050.64990.124*
H20B0.30170.52650.68900.124*
C210.2271 (4)0.2445 (13)0.6694 (2)0.105 (2)
H21A0.23400.07060.66090.126*
H21B0.19440.25180.69910.126*
C220.1813 (4)0.3678 (15)0.6293 (3)0.123 (2)
H22A0.21360.35740.59940.148*
H22B0.17560.54250.63740.148*
C230.0973 (4)0.2647 (16)0.6184 (3)0.152 (3)
H23A0.07530.34140.58920.227*
H23B0.06170.29840.64570.227*
H23C0.10110.08830.61350.227*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0782 (4)0.0744 (4)0.1029 (4)0.0149 (3)0.0270 (3)0.0023 (4)
Cl10.0844 (11)0.0859 (12)0.1374 (14)0.0342 (9)0.0044 (9)0.0181 (10)
N10.054 (3)0.069 (3)0.054 (2)0.006 (2)0.0109 (19)0.008 (2)
N20.046 (2)0.062 (3)0.047 (2)0.001 (2)0.0078 (19)0.002 (2)
N30.049 (2)0.084 (3)0.062 (3)0.010 (2)0.003 (2)0.012 (2)
N40.073 (3)0.033 (2)0.064 (3)0.0015 (19)0.002 (2)0.0066 (19)
N50.082 (3)0.031 (2)0.067 (3)0.006 (2)0.003 (2)0.0022 (19)
N60.072 (3)0.040 (2)0.047 (2)0.001 (2)0.003 (2)0.004 (2)
C10.072 (4)0.054 (3)0.066 (3)0.002 (3)0.019 (3)0.002 (3)
C20.086 (4)0.056 (3)0.076 (4)0.015 (3)0.010 (3)0.016 (3)
C30.060 (3)0.060 (3)0.073 (3)0.015 (3)0.005 (3)0.001 (3)
C40.066 (4)0.087 (5)0.105 (4)0.018 (3)0.029 (3)0.037 (4)
C50.058 (3)0.076 (4)0.099 (4)0.018 (3)0.029 (3)0.040 (3)
C60.054 (3)0.052 (3)0.047 (3)0.003 (3)0.002 (2)0.004 (3)
C70.048 (3)0.049 (3)0.053 (3)0.000 (2)0.004 (2)0.003 (3)
C80.049 (3)0.062 (3)0.045 (3)0.004 (3)0.001 (2)0.012 (2)
C90.046 (3)0.060 (3)0.054 (3)0.006 (3)0.004 (2)0.003 (3)
C100.057 (3)0.072 (4)0.053 (3)0.003 (3)0.007 (2)0.005 (3)
C110.052 (3)0.061 (3)0.062 (3)0.008 (3)0.019 (3)0.009 (3)
C120.052 (3)0.086 (4)0.067 (4)0.014 (3)0.007 (3)0.015 (3)
C130.058 (3)0.057 (3)0.062 (3)0.005 (2)0.017 (2)0.003 (3)
C140.048 (3)0.039 (3)0.047 (3)0.004 (2)0.018 (2)0.002 (2)
C150.086 (4)0.032 (3)0.055 (3)0.002 (3)0.007 (3)0.004 (3)
C160.097 (4)0.074 (4)0.060 (3)0.001 (3)0.011 (3)0.006 (3)
C170.106 (5)0.117 (6)0.091 (4)0.025 (5)0.019 (4)0.021 (4)
C180.075 (4)0.097 (5)0.115 (5)0.000 (4)0.010 (4)0.023 (4)
C190.100 (5)0.126 (6)0.110 (5)0.035 (5)0.008 (4)0.008 (5)
C200.097 (5)0.110 (5)0.103 (5)0.021 (4)0.004 (4)0.003 (4)
C210.096 (5)0.120 (6)0.100 (5)0.027 (5)0.001 (4)0.004 (4)
C220.115 (6)0.135 (6)0.120 (6)0.029 (5)0.005 (5)0.008 (5)
C230.121 (6)0.190 (9)0.143 (6)0.060 (6)0.017 (5)0.012 (6)
Geometric parameters (Å, º) top
Br1—C111.896 (5)C12—H120.9300
Cl1—C31.733 (5)C13—H13A0.9700
N1—C71.315 (5)C13—H13B0.9700
N1—C91.382 (5)C14—C151.347 (6)
N2—C71.394 (5)C14—C131.486 (6)
N2—C81.385 (5)C15—H150.9300
N2—C131.457 (5)C16—H16A0.9700
N3—C81.327 (5)C16—H16B0.9700
N3—C121.338 (6)C16—C171.485 (7)
N4—N51.317 (5)C17—H17A0.9700
N4—C141.356 (5)C17—H17B0.9700
N6—N51.336 (5)C18—H18A0.9700
N6—C151.334 (5)C18—H18B0.9700
N6—C161.446 (6)C18—C171.450 (7)
C1—H10.9300C18—C191.525 (8)
C1—C21.383 (6)C19—H19A0.9700
C2—H20.9300C19—H19B0.9700
C3—C21.361 (6)C20—H20A0.9700
C3—C41.347 (6)C20—H20B0.9700
C4—H40.9300C20—C211.488 (8)
C5—H50.9300C20—C191.477 (8)
C5—C41.375 (6)C21—H21A0.9700
C6—C11.365 (6)C21—H21B0.9700
C6—C51.378 (6)C21—C221.471 (8)
C7—C61.469 (6)C22—H22A0.9700
C8—C91.386 (6)C22—H22B0.9700
C9—C101.384 (6)C22—C231.499 (8)
C10—H100.9300C23—H23A0.9600
C11—C101.371 (6)C23—H23B0.9600
C11—C121.384 (6)C23—H23C0.9600
C7—N1—C9106.0 (4)C15—C14—N4108.3 (4)
C7—N2—C13131.5 (4)C15—C14—C13130.5 (4)
C8—N2—C7105.6 (4)N6—C15—C14105.8 (4)
C8—N2—C13122.1 (4)N6—C15—H15127.1
C8—N3—C12113.2 (4)C14—C15—H15127.1
N5—N4—C14108.3 (4)N6—C16—H16A108.8
N4—N5—N6107.2 (3)N6—C16—H16B108.8
N5—N6—C16120.7 (4)N6—C16—C17113.7 (4)
C15—N6—N5110.4 (4)H16A—C16—H16B107.7
C15—N6—C16128.9 (4)C17—C16—H16A108.8
C6—C1—H1119.5C17—C16—H16B108.8
C6—C1—C2121.0 (5)C16—C17—H17A108.2
C2—C1—H1119.5C16—C17—H17B108.2
C1—C2—H2119.9C18—C17—C16116.6 (5)
C3—C2—C1120.2 (5)C18—C17—H17A108.2
C3—C2—H2119.9C18—C17—H17B108.2
C2—C3—Cl1120.4 (4)H17A—C17—H17B107.3
C4—C3—Cl1119.8 (4)H18A—C18—H18B107.4
C4—C3—C2119.8 (5)C17—C18—H18A108.4
C3—C4—C5120.0 (5)C17—C18—H18B108.4
C3—C4—H4120.0C17—C18—C19115.7 (6)
C5—C4—H4120.0C19—C18—H18A108.4
C6—C5—H5119.2C19—C18—H18B108.4
C4—C5—C6121.6 (5)C18—C19—H19A108.7
C4—C5—H5119.2C18—C19—H19B108.7
C1—C6—C7127.2 (4)C20—C19—C18114.4 (6)
C1—C6—C5117.3 (4)C20—C19—H19A108.7
C5—C6—C7115.5 (4)C20—C19—H19B108.7
N2—C7—C6126.0 (4)H19A—C19—H19B107.6
N1—C7—N2112.1 (4)H20A—C20—H20B107.2
N1—C7—C6121.9 (4)C21—C20—H20A107.9
N2—C8—C9106.6 (4)C21—C20—H20B107.9
N3—C8—N2126.4 (4)C19—C20—H20A107.9
N3—C8—C9127.0 (5)C19—C20—H20B107.9
N1—C9—C8109.7 (4)C19—C20—C21117.7 (6)
N1—C9—C10131.7 (4)C20—C21—H21A108.6
C10—C9—C8118.6 (4)C20—C21—H21B108.6
C9—C10—H10122.3H21A—C21—H21B107.6
C11—C10—C9115.4 (4)C22—C21—C20114.6 (6)
C11—C10—H10122.3C22—C21—H21A108.6
C10—C11—Br1120.0 (4)C22—C21—H21B108.6
C10—C11—C12121.6 (5)C21—C22—H22A108.4
C12—C11—Br1118.3 (4)C21—C22—H22B108.4
N3—C12—C11124.0 (5)C21—C22—C23115.5 (6)
N3—C12—H12118.0H22A—C22—H22B107.5
C11—C12—H12118.0C23—C22—H22A108.4
N2—C13—C14112.6 (4)C23—C22—H22B108.4
N2—C13—H13A109.1C22—C23—H23A109.5
N2—C13—H13B109.1C22—C23—H23B109.5
C14—C13—H13A109.1C22—C23—H23C109.5
C14—C13—H13B109.1H23A—C23—H23B109.5
H13A—C13—H13B107.8H23A—C23—H23C109.5
N4—C14—C13121.2 (4)H23B—C23—H23C109.5
C14—N4—N5—N61.1 (5)C7—N1—C9—C80.8 (5)
N4—N5—N6—C150.7 (5)N3—C8—C9—N1178.3 (4)
N4—N5—N6—C16178.9 (4)N2—C8—C9—N10.5 (5)
C6—C1—C2—C30.9 (8)N3—C8—C9—C100.5 (7)
C1—C2—C3—C41.6 (8)N2—C8—C9—C10179.2 (4)
C1—C2—C3—Cl1179.0 (4)N1—C9—C10—C11178.2 (5)
C2—C3—C4—C50.0 (9)C8—C9—C10—C110.2 (6)
Cl1—C3—C4—C5179.5 (4)C9—C10—C11—C121.0 (7)
C3—C4—C5—C62.3 (9)C9—C10—C11—Br1179.8 (3)
C2—C1—C6—C51.3 (7)C8—N3—C12—C112.1 (7)
C2—C1—C6—C7178.8 (4)C10—C11—C12—N32.1 (8)
C4—C5—C6—C12.9 (8)Br1—C11—C12—N3178.7 (4)
C4—C5—C6—C7179.3 (5)C8—N2—C13—C14105.9 (5)
C9—N1—C7—N21.8 (5)C7—N2—C13—C1462.4 (6)
C9—N1—C7—C6176.4 (4)N5—N4—C14—C151.1 (5)
C8—N2—C7—N12.1 (5)N5—N4—C14—C13179.4 (4)
C13—N2—C7—N1171.8 (4)N2—C13—C14—C15131.6 (5)
C8—N2—C7—C6176.0 (4)N2—C13—C14—N450.5 (5)
C13—N2—C7—C66.3 (7)N5—N6—C15—C140.1 (5)
C1—C6—C7—N1163.1 (5)C16—N6—C15—C14178.0 (4)
C5—C6—C7—N119.4 (6)N4—C14—C15—N60.6 (5)
C1—C6—C7—N219.0 (7)C13—C14—C15—N6178.7 (4)
C5—C6—C7—N2158.5 (4)C15—N6—C16—C1763.3 (7)
C12—N3—C8—N2179.9 (4)N5—N6—C16—C17114.5 (5)
C12—N3—C8—C91.4 (7)N6—C16—C17—C1857.7 (7)
C7—N2—C8—N3177.3 (4)C16—C17—C18—C19174.1 (5)
C13—N2—C8—N36.4 (7)C17—C18—C19—C20177.3 (6)
C7—N2—C8—C91.5 (5)C18—C19—C20—C21175.2 (6)
C13—N2—C8—C9172.4 (4)C19—C20—C21—C22178.6 (6)
C7—N1—C9—C10177.8 (5)C20—C21—C22—C23178.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N4i0.932.603.452 (6)153
C15—H15···N5i0.932.383.293 (6)168
C16—H16B···N3ii0.972.533.444 (6)157
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y1/2, z+3/2.
 

Funding information

TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationBourichi, S., Kandri Rodi, Y., Ouzidan, Y., Mague, T. J., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160763.  Google Scholar
First citationBruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDubey, P. K., Kumar, R. V., Kulkarni, S. M., Sunder, H. G., Smith, G. & Kennard, C. H. L. (2004). Indian J. Chem. Sect. B, 43, 952–956.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKale, R. P., Shaikh, M. U., Jadhav, G. R. & Gill, C. H. (2009). Tetrahedron Lett. 50, 1780–1782.  Web of Science CrossRef CAS Google Scholar
First citationKatritzky, A. R., Xu, Y. J. & Tu, H. (2003). J. Org. Chem. 68, 4935–4937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalmer, A. M., Grobbel, B., Jecke, C., Brehm, C., Zimmermann, P. J., Buhr, W., Feth, M. P., Simon, W. A. & Kromer, W. (2007). J. Med. Chem. 50, 6240–6264.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds