organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

14-(4-Chloro­phen­yl)-14H-dibenzo[a,j]xanthene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Assam University, Silchar 788011, India, and bCentre for Soft Matter, Department of Chemistry, Assam University, Silchar 788011, India
*Correspondence e-mail: sudip.choudhury@aus.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 December 2018; accepted 30 December 2018; online 22 January 2019)

In the title compound, C27H17ClO, the xanthene fused-ring system adopts a shallow butterfly conformation [dihedral angle between the two halves of the ring system = 22.9 (1)°. The dihedral angle between the central heteroyclic ring and the pendant chloro­phenyl group is 87.60 (8)°. In the crystal, mol­ecules are linked by weak C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The xanthene fused-ring building unit occurs in many natural alkaloids (Boente et al., 1986[Boente, J. M., Castedo, L., Domínguez, D. & Ferro, M. C. (1986). Tetrahedron Lett. 27, 4077-4078.]; de la Fuente & Domínguez, 2007[Fuente, M. C. de la & Domínguez, D. (2007). J. Org. Chem. 72, 8804-8810.]) and other biologically active compounds (Niu et al., 2012[Niu, S.-L., Li, Z.-L., Ji, F., Liu, G.-Y., Zhao, N., Liu, X.-Q., Jing, Y.-K. & Hua, H.-M. (2012). Phytochemistry, 77, 280-286.]). In the arena of materials, dibenzo[a,j]xanthene derivatives have been reported to be promising hole-transporting materials for organic optoelectronic devices (Martins et al., 2017[Martins, J. S., Bartolomeu, A. A., dos Santos, W. H., da Silva Filho, L. C., de Oliveira, E. F., Lavarda, F. C., Cuin, A., Legnani, C., Maciel, I. O., Fragneaud, B. & Quirino, W. G. (2017). J. Phys. Chem. C, 121, 12999-13007.]). Many reports on the synthesis of this class of compounds have been reported (Bartolomeu et al., 2014[Bartolomeu, A. A., Menezes, M. & Silva Filho, L. (2014). Chem. Pap. 68, 1593-1600.]; Mirjalili et al., 2011[Mirjalili, B. F., Bamoniri, A., Akbari, A. & Taghavinia, N. (2011). J. Iran. Chem. Soc. 8, S129-S134.]). The present study of the title compound is a part of our work on the rapid synthesis of substituted dibenzo[a,j]xanthene derivatives as potential optical materials.

Fig. 1[link] shows the structure of the compound. The xanthene core has a shallow butterfly conformation with the angle between the planes of the naphthyl units (across the C6—O17 line) being 22.9 (1)°. The packing and the role of the different crystal symmetry operators in building it up are shown in Fig. 2[link]ac. The mol­ecules are linked by weak C—H⋯π interaction and C—H⋯Cl hydrogen bonds (Table 1[link] and Fig. 2[link]d).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C2–C5/C28/C29 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H31⋯Cl1i 0.98 3.00 3.547 (2) 116
C12—H121⋯Cg2ii 0.93 2.90 3.649 (3) 138
C23—H231⋯Cg4iii 0.98 3.00 3.740 (3) 134
C25—H251⋯Cg2iv 1.02 2.97 3.942 (3) 160
Symmetry codes: (i) [-x+1, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, -y+1, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids at the 50% probability level.
[Figure 2]
Figure 2
(a) A view of the crystal packing along [001]; (b) locations of the screw axis (green marker) and glide plane (blue planes) within the unit cell; (c) view of the mol­ecular stacking (approximately along [100]); (d) packing diagram highlighting the C—H⋯π inter­actions (green dotted lines from the ring centroid to hydrogen) and Cl⋯H hydrogen bond (blue dotted line). All hanging inter­actions were removed for a clearer view.

Synthesis and crystallization

The title compound was synthesized by microwave irradiation of a mixture of 4-chloro­benzaldehyde (0.5 mmol) and 2-naphthol (1.0 mmol) in the presence of iodine (8 mol%) as cyclizing agent. After completion of the reaction, water and a few crystals of potassium iodide were added and the product was extracted with ethyl acetate. The crude product was purified by column chromatography and was dissolved in ethyl acetate. The solution was kept undisturbed for few days in an NMR tube to obtain colourless needles of the title compound, yield 85%, m.p. 265°C; 1H NMR (CDCl3, 400 MHz) δH p.p.m.: 8.3 (d, J = 8.4 Hz, 2H, ArH), 7.83 (d,J = 8.0 Hz, 2H, ArH), 7.81 (t, J = 4.8 Hz, 2H, ArH), 7.80 (d, J = 8.8 Hz, 2H, ArH), 7.74 (m, 6H, ArH), 7.11 (d, J = 8.4 Hz, 2H, ArH), 6.458 (s,1H,CH). 13C NMR (CDCl3, 100 MHz) δ p.p.m.: 148.7, 143.4, 132.0, 131.2, 131.0, 129.4, 129.0, 128.9, 128.6, 126.9, 124.3, 122.4,118.0, 116.7, 37.3.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C27H17ClO
Mr 392.88
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 296
a, b, c (Å) 14.0201 (7), 17.4488 (8), 7.8775 (3)
V3) 1927.10 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.40 × 0.21 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.853, 1
No. of measured, independent and observed [I > 2.0σ(I)] reflections 34384, 4980, 4052
Rint 0.034
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.053, 0.61
No. of reflections 4970
No. of parameters 264
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.41
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2260 Friedel-pairs
Absolute structure parameter 0.15 (5)
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CAMERON (Watkin et al., 2003[Watkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. & Cooper, R. I. (2003). CRYSTALS. Chemical Crystallography Laboratory, Oxford, England.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008), CAMERON (Watkin et al., 2003) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

14-(4-Chlorophenyl)-14H-dibenzo[a,j]xanthene top
Crystal data top
C27H17ClOF(000) = 815.997
Mr = 392.88Dx = 1.354 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 9942 reflections
a = 14.0201 (7) Åθ = 2.8–24.1°
b = 17.4488 (8) ŵ = 0.21 mm1
c = 7.8775 (3) ÅT = 296 K
V = 1927.10 (15) Å3Needle, colourless
Z = 40.40 × 0.21 × 0.10 mm
Data collection top
BRUKER SMART APEXII
diffractometer
4052 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.034
ω/2θ scansθmax = 29.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 1918
Tmin = 0.853, Tmax = 1k = 2323
34384 measured reflectionsl = 1010
4980 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full Method = Quasi-Unit weights W = 1.0 or 1./4Fsq
R[F2 > 2σ(F2)] = 0.046(Δ/σ)max = 0.0002
wR(F2) = 0.053Δρmax = 0.42 e Å3
S = 0.61Δρmin = 0.41 e Å3
4970 reflectionsExtinction correction: Larson (1970), Equation 22
264 parametersExtinction coefficient: 140 (3)
1 restraintAbsolute structure: Flack (1983), 2260 Friedel-pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.15 (5)
Hydrogen site location: difference Fourier map
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Refinement. The H atoms attached to carbon atoms were located in difference maps and refined as riding atoms in their as-found relative locations.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42137 (5)0.44109 (4)0.49033 (11)0.0905
C20.35101 (15)0.45059 (11)0.3081 (3)0.0525
C30.39356 (14)0.44159 (12)0.1537 (3)0.0574
C40.33832 (12)0.44586 (10)0.0064 (3)0.0498
C50.24104 (11)0.45958 (9)0.0168 (2)0.0386
C60.17853 (13)0.46716 (10)0.1418 (2)0.0421
C70.13553 (13)0.54701 (11)0.1471 (2)0.0450
C80.19136 (16)0.61195 (11)0.1980 (3)0.0500
C90.28621 (16)0.60620 (11)0.2561 (2)0.0560
C100.3369 (2)0.66973 (14)0.3063 (3)0.0747
C110.2959 (3)0.74292 (15)0.2984 (3)0.0821
C120.2059 (3)0.75021 (14)0.2438 (3)0.0776
C130.15026 (18)0.68635 (12)0.1914 (3)0.0626
C140.0552 (2)0.69352 (14)0.1342 (3)0.0734
C150.00195 (19)0.63196 (14)0.0875 (3)0.0676
C160.04440 (15)0.55834 (13)0.0970 (2)0.0531
O170.01588 (9)0.49912 (9)0.04831 (19)0.0608
C180.01068 (14)0.42485 (12)0.0923 (2)0.0512
C190.10051 (13)0.40635 (10)0.1441 (2)0.0415
C200.11915 (14)0.32913 (10)0.1936 (2)0.0446
C210.04471 (16)0.27372 (11)0.1814 (3)0.0533
C220.04492 (17)0.29705 (15)0.1219 (3)0.0675
C230.06320 (15)0.37023 (14)0.0807 (3)0.0640
H2310.12410.38560.03000.0765*
H2210.09360.25770.09940.0807*
C240.0624 (2)0.19770 (13)0.2329 (3)0.0734
C250.1482 (2)0.17598 (14)0.2956 (3)0.0773
C260.22213 (19)0.22971 (12)0.3076 (3)0.0651
C270.20808 (16)0.30473 (11)0.2575 (2)0.0520
H2710.25830.33930.26050.0622*
H2610.28490.21880.36690.0779*
H2510.15670.12110.33860.0907*
H2410.01280.16080.23090.0876*
H1510.06220.63730.04940.0807*
H1410.03010.74350.12360.0901*
H1210.17660.79740.22870.0959*
H1110.33190.78830.34720.0967*
H1010.40310.66290.35240.0904*
H910.31540.55760.25990.0665*
H610.21750.46240.24490.0468*
C280.20141 (14)0.46887 (11)0.1766 (2)0.0480
C290.25589 (15)0.46442 (12)0.3222 (3)0.0562
H2910.22940.47130.43030.0667*
H2810.13590.48060.18230.0578*
H410.36640.43800.09750.0603*
H310.46310.43390.15100.0692*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0832 (4)0.0975 (5)0.0909 (4)0.0033 (4)0.0486 (4)0.0036 (4)
C20.0583 (14)0.0418 (11)0.0575 (12)0.0032 (10)0.0252 (11)0.0022 (11)
C30.0360 (11)0.0498 (13)0.0865 (17)0.0012 (10)0.0105 (11)0.0150 (12)
C40.0424 (11)0.0476 (11)0.0594 (12)0.0034 (9)0.0046 (10)0.0093 (11)
C50.0357 (10)0.0311 (9)0.0491 (11)0.0013 (8)0.0018 (8)0.0044 (9)
C60.0449 (11)0.0408 (10)0.0405 (11)0.0050 (9)0.0021 (8)0.0026 (9)
C70.0536 (12)0.0419 (12)0.0394 (11)0.0128 (9)0.0049 (9)0.0008 (9)
C80.0719 (14)0.0398 (11)0.0384 (10)0.0114 (11)0.0111 (10)0.0008 (9)
C90.0712 (15)0.0424 (12)0.0545 (12)0.0005 (11)0.0016 (11)0.0066 (10)
C100.095 (2)0.0604 (16)0.0690 (16)0.0117 (15)0.0041 (15)0.0122 (13)
C110.123 (3)0.0550 (16)0.0678 (17)0.0101 (17)0.0063 (17)0.0167 (14)
C120.128 (3)0.0348 (12)0.0703 (16)0.0099 (16)0.0237 (18)0.0007 (12)
C130.0924 (19)0.0497 (13)0.0456 (12)0.0178 (13)0.0176 (13)0.0033 (11)
C140.107 (2)0.0504 (14)0.0633 (16)0.0345 (15)0.0264 (15)0.0132 (12)
C150.0720 (16)0.0778 (17)0.0530 (13)0.0381 (14)0.0086 (11)0.0146 (12)
C160.0582 (13)0.0574 (13)0.0437 (11)0.0146 (12)0.0062 (9)0.0008 (11)
O170.0489 (8)0.0754 (9)0.0579 (9)0.0158 (8)0.0042 (8)0.0039 (8)
C180.0491 (12)0.0642 (15)0.0402 (11)0.0059 (11)0.0013 (9)0.0003 (10)
C190.0414 (10)0.0498 (11)0.0333 (10)0.0023 (9)0.0024 (8)0.0004 (9)
C200.0503 (12)0.0500 (11)0.0336 (10)0.0023 (10)0.0067 (9)0.0037 (9)
C210.0579 (14)0.0571 (13)0.0449 (12)0.0095 (11)0.0116 (11)0.0032 (11)
C220.0643 (16)0.0761 (17)0.0620 (16)0.0216 (14)0.0075 (12)0.0140 (13)
C230.0445 (12)0.0964 (19)0.0510 (13)0.0026 (13)0.0015 (10)0.0089 (13)
C240.090 (2)0.0611 (16)0.0694 (18)0.0232 (15)0.0155 (14)0.0003 (13)
C250.115 (2)0.0465 (14)0.0704 (17)0.0047 (16)0.0155 (16)0.0081 (13)
C260.0816 (18)0.0576 (15)0.0561 (14)0.0121 (13)0.0042 (13)0.0099 (12)
C270.0613 (14)0.0463 (12)0.0484 (12)0.0019 (11)0.0060 (11)0.0026 (10)
C280.0405 (10)0.0547 (12)0.0488 (11)0.0079 (10)0.0018 (10)0.0024 (10)
C290.0563 (13)0.0629 (13)0.0494 (12)0.0067 (11)0.0070 (10)0.0038 (12)
Geometric parameters (Å, º) top
Cl1—C21.7496 (19)C14—H1410.944
C2—C31.364 (3)C15—C161.418 (3)
C2—C291.360 (3)C15—H1510.953
C3—C41.397 (3)C16—O171.389 (2)
C3—H310.985O17—C181.392 (2)
C4—C51.387 (2)C18—C191.363 (2)
C4—H410.919C18—C231.411 (3)
C5—C61.532 (2)C19—C201.427 (2)
C5—C281.386 (3)C20—C211.426 (2)
C6—C71.519 (3)C20—C271.410 (3)
C6—C191.524 (3)C21—C221.402 (3)
C6—H610.983C21—C241.409 (3)
C7—C81.435 (3)C22—C231.342 (3)
C7—C161.352 (3)C22—H2210.985
C8—C91.410 (3)C23—H2310.981
C8—C131.421 (3)C24—C251.355 (3)
C9—C101.375 (3)C24—H2410.947
C9—H910.943C25—C261.401 (3)
C10—C111.401 (3)C25—H2511.022
C10—H1011.005C26—C271.381 (3)
C11—C121.339 (4)C26—H2611.014
C11—H1111.014C27—H2710.928
C12—C131.422 (3)C28—C291.380 (3)
C12—H1210.927C28—H2810.942
C13—C141.412 (3)C29—H2910.937
C14—C151.359 (3)
Cl1—C2—C3118.32 (16)C14—C15—H151121.8
Cl1—C2—C29120.18 (18)C16—C15—H151120.1
C3—C2—C29121.47 (19)C15—C16—C7123.0 (2)
C2—C3—C4119.48 (18)C15—C16—O17113.84 (19)
C2—C3—H31117.9C7—C16—O17123.15 (19)
C4—C3—H31122.6C16—O17—C18117.46 (14)
C3—C4—C5120.4 (2)O17—C18—C19122.84 (18)
C3—C4—H41119.7O17—C18—C23114.62 (18)
C5—C4—H41120.0C19—C18—C23122.54 (19)
C4—C5—C6121.96 (18)C6—C19—C18119.65 (17)
C4—C5—C28117.91 (19)C6—C19—C20121.97 (16)
C6—C5—C28120.10 (15)C18—C19—C20118.35 (17)
C5—C6—C7109.18 (15)C19—C20—C21119.20 (17)
C5—C6—C19111.12 (14)C19—C20—C27122.99 (17)
C7—C6—C19110.71 (15)C21—C20—C27117.80 (17)
C5—C6—H61110.4C20—C21—C22118.80 (19)
C7—C6—H61106.1C20—C21—C24119.4 (2)
C19—C6—H61109.3C22—C21—C24121.8 (2)
C6—C7—C8121.05 (16)C21—C22—C23121.9 (2)
C6—C7—C16120.09 (18)C21—C22—H221118.6
C8—C7—C16118.81 (19)C23—C22—H221119.2
C7—C8—C9123.31 (18)C18—C23—C22119.1 (2)
C7—C8—C13119.34 (19)C18—C23—H231118.8
C9—C8—C13117.3 (2)C22—C23—H231121.7
C8—C9—C10121.5 (2)C21—C24—C25121.6 (2)
C8—C9—H91119.0C21—C24—H241120.4
C10—C9—H91119.5C25—C24—H241117.9
C9—C10—C11120.7 (3)C24—C25—C26119.6 (2)
C9—C10—H101119.1C24—C25—H251119.1
C11—C10—H101120.1C26—C25—H251121.2
C10—C11—C12119.1 (3)C25—C26—C27120.6 (2)
C10—C11—H111119.4C25—C26—H261123.2
C12—C11—H111121.1C27—C26—H261115.6
C11—C12—C13122.4 (3)C20—C27—C26120.9 (2)
C11—C12—H121122.9C20—C27—H271119.0
C13—C12—H121114.5C26—C27—H271120.0
C12—C13—C8118.9 (2)C5—C28—C29121.77 (18)
C12—C13—C14122.8 (2)C5—C28—H281117.3
C8—C13—C14118.4 (2)C29—C28—H281120.8
C13—C14—C15122.3 (2)C28—C29—C2119.0 (2)
C13—C14—H141117.5C28—C29—H291121.9
C15—C14—H141120.1C2—C29—H291119.0
C14—C15—C16118.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C2–C5/C28/C29 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H31···Cl1i0.983.003.547 (2)116
C12—H121···Cg2ii0.932.903.649 (3)138
C23—H231···Cg4iii0.983.003.740 (3)134
C25—H251···Cg2iv1.022.973.942 (3)160
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z1/2; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the SAIF, Cochin University, for the NMR analysis and the SAIF, Gauhati University, for the single-crystal XRD facility.

Funding information

ARC thanks the University Grants Commission, India for a fellowship. Partial support from the NRB, India is acknowledged.

References

First citationBartolomeu, A. A., Menezes, M. & Silva Filho, L. (2014). Chem. Pap. 68, 1593–1600.  CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBoente, J. M., Castedo, L., Domínguez, D. & Ferro, M. C. (1986). Tetrahedron Lett. 27, 4077–4078.  CrossRef CAS Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFuente, M. C. de la & Domínguez, D. (2007). J. Org. Chem. 72, 8804–8810.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartins, J. S., Bartolomeu, A. A., dos Santos, W. H., da Silva Filho, L. C., de Oliveira, E. F., Lavarda, F. C., Cuin, A., Legnani, C., Maciel, I. O., Fragneaud, B. & Quirino, W. G. (2017). J. Phys. Chem. C, 121, 12999–13007.  CrossRef CAS Google Scholar
First citationMirjalili, B. F., Bamoniri, A., Akbari, A. & Taghavinia, N. (2011). J. Iran. Chem. Soc. 8, S129–S134.  CrossRef CAS Google Scholar
First citationNiu, S.-L., Li, Z.-L., Ji, F., Liu, G.-Y., Zhao, N., Liu, X.-Q., Jing, Y.-K. & Hua, H.-M. (2012). Phytochemistry, 77, 280–286.  CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. & Cooper, R. I. (2003). CRYSTALS. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds