organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,5-Di­phenyl-cis-penta-2,4-dienoic acid

CROSSMARK_Color_square_no_text.svg

aEscuela de Química, Universidad de Costa Rica, 11501, San José, Costa Rica, and bCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 11501, San José, Costa Rica
*Correspondence e-mail: jorge.cabezas@ucr.ac.cr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 December 2018; accepted 19 December 2018; online 4 January 2018)

In the title compound, C17H14O2, the dihedral angle between the phenyl rings is 76.52 (7)°. In the crystal, pairwise O—H⋯O hydrogen bonds link the mol­ecules into carb­oxy­lic acid inversion dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Many 2,4-dienoic acids are widely found in nature and have shown important biological activity (Masi et al., 2014[Masi, M., Meyer, S., Cimmino, A., Andolfi, A. & Evidente, A. (2014). J. Nat. Prod. 77, 925-930.]). For example, abscisic acid {systematic name: (2Z,4E)-5-[(1S)-1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoic acid}, the most common 2,4-penta­dienoic acid, isolated from cotton fruit (Ohkuma et al., 1963[Ohkuma, K., Lyon, J. L., Addicott, F. T. & Smith, O. E. (1963). Science, 142, 1592-1593.]), is a plant hormone that plays important developmental processes (Finkelstein 2013[Finkelstein, R. (2013). Abscisic Acid Synthesis and Response inThe Arabidopsis Book, vol. 11, pp. 1-36. American Society of Plant Biologists.]). It also plays an important role in plant responses to environmental stress and plant pathogens (Zhu, 2002[Zhu, J. K. (2002). Annu. Rev. Plant Biol. 53, 247-273.]; Seo & Koshiba 2002[Seo, M. & Koshiba, T. (2002). Trends Plant Sci. 7, 41-48.]). Many methods for the synthesis of this diene system in pent-2,4-dienoic acids have been developed (Huh et al., 1993[Huh, K. T., Orita, A. & Alper, H. (1993). J. Org. Chem. 58, 6956-6957.]; Bellassoued & Ennigrou 1991[Bellassoued, M. & Ennigrou, R. (1991). Bull. Soc. Chim. Belg. 100, 767-768.]). In this paper we report a new methodology for the synthesis of the title compound, 1, and its crystal structure.

The crystal structure of 1 has monoclinic symmetry with one mol­ecule in the asymmetric unit: the mol­ecular structure contains two conjugated carbon double bonds (C1=C14) and (C15=C16) in which the former diene fragment at C1 bound to two phenyl-ring substituents and the latter diene moiety further binds at C16 to a carb­oxy­lic acid functional group leading to a cis configuration (Fig. 1[link]). The bond lengths of the diene arrangements C1=C14 and C15=C16 are 1.349 (2) Å and 1.346 (2) Å, respectively. The carboxyl group has the following bond lengths: C17—O1 [1.228 (2) Å] and C17—O2 [1.324 (2) Å]. In the crystal, pairwise O2—H2⋯O1 hydrogen-bonding inter­actions form dimeric arrangements between mol­ecules, forming a loop with an R22(8) graph-set motif (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.93 1.74 2.6628 (14) 177
Symmetry code: (i) -x, -y+1, -z.
[Figure 1]
Figure 1
The title mol­ecule with 50% probability ellipsoids.
[Figure 2]
Figure 2
Packing of the mol­ecules with O—H⋯O hydrogen bonds shown as green dashed lines.

Synthesis and crystallization

The reaction of propargyl bromide, 2, with n-BuLi in the presence of tetra­methyl­ethylenedi­amine (TMEDA), at −78°C, generated the synthetic equivalent of the dianion 1,3-dili­thio­propyne, 3, Fig. 3[link] (Cabezas et al., 2001[Cabezas, J. A., Pereira, A. R. & Amey, A. (2001). Tetrahedron Lett. 42, 6819-6822.]). Sequential treatment of this dianion, 3, with benzo­phenone followed by addition of ethyl chloro­formate, and warming to room temperature overnight, produced carbonate, 4, in 70% yield. Alkaline hydrolysis of 4, using KOH in methanol, at room temperature for 3 h yielded 5,5-diphenylpent-4-ene-2-ynoic acid, 5, in 87% yield. Hydrogenation of 5, using Lindlar's catalyst yielded 5,5-diphenyl-cis-penta-2,4-dienoic acid, 1, in 97% isolated yield. The overall yield for this synthesis was 59%. Light-yellow blocks were recrystallized from ethyl acetate solution at ambient temperature.

[Figure 3]
Figure 3
A synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H14O2
Mr 250.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.0801 (4), 15.4598 (7), 10.0920 (4)
β (°) 109.453 (1)
V3) 1335.81 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.25 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.713, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 19268, 3081, 2479
Rint 0.037
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.101, 1.05
No. of reflections 3081
No. of parameters 174
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.33
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006).

5,5-Diphenyl-cis-penta-2,4-dienoic acid top
Crystal data top
C17H14O2F(000) = 528
Mr = 250.29Dx = 1.244 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.0801 (4) ÅCell parameters from 7723 reflections
b = 15.4598 (7) Åθ = 2.5–27.5°
c = 10.0920 (4) ŵ = 0.08 mm1
β = 109.453 (1)°T = 100 K
V = 1335.81 (10) Å3Block, light yellow
Z = 40.25 × 0.15 × 0.10 mm
Data collection top
Bruker D8 Venture
diffractometer
3081 independent reflections
Radiation source: Incoatec Microsource2479 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.037
Detector resolution: 10.4167 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 2020
Tmin = 0.713, Tmax = 0.746l = 1313
19268 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.6455P]
where P = (Fo2 + 2Fc2)/3
3081 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05901 (11)0.54513 (7)0.15632 (10)0.0237 (2)
O20.18489 (12)0.50474 (7)0.03482 (10)0.0228 (2)
H20.1377 (11)0.4886 (11)0.0300 (16)0.034*
C10.18364 (15)0.64377 (9)0.56368 (13)0.0154 (3)
C20.10925 (15)0.70128 (9)0.64163 (14)0.0158 (3)
C30.14619 (16)0.68961 (9)0.78666 (14)0.0187 (3)
H30.21510.64440.83270.022*
C40.08313 (17)0.74347 (10)0.86354 (15)0.0230 (3)
H40.10680.73410.96150.028*
C50.01446 (17)0.81101 (10)0.79803 (16)0.0241 (3)
H50.05640.84840.85120.029*
C60.05063 (17)0.82382 (10)0.65483 (16)0.0241 (3)
H60.11720.87020.60990.029*
C70.01017 (16)0.76900 (10)0.57661 (15)0.0207 (3)
H70.0160.77780.47830.025*
C80.35685 (16)0.63744 (9)0.62313 (13)0.0156 (3)
C90.44543 (16)0.71162 (9)0.67401 (14)0.0191 (3)
H90.39410.76530.67240.023*
C100.60701 (17)0.70804 (10)0.72673 (15)0.0224 (3)
H100.66580.75920.75940.027*
C110.68287 (17)0.62948 (10)0.73173 (15)0.0227 (3)
H110.79370.62670.76760.027*
C120.59618 (17)0.55526 (10)0.68411 (15)0.0219 (3)
H120.64790.50130.68910.026*
C130.43436 (16)0.55893 (9)0.62916 (14)0.0184 (3)
H130.37610.50770.59550.022*
C140.10456 (16)0.60064 (9)0.44511 (14)0.0168 (3)
H140.16450.57010.39910.02*
C150.06333 (16)0.59693 (9)0.38208 (14)0.0180 (3)
H150.12220.61770.43760.022*
C160.14545 (16)0.56720 (9)0.25332 (14)0.0180 (3)
H160.25580.56460.22940.022*
C170.07883 (16)0.53848 (9)0.14689 (14)0.0170 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0181 (5)0.0348 (6)0.0173 (5)0.0027 (4)0.0048 (4)0.0075 (4)
O20.0200 (5)0.0319 (6)0.0148 (5)0.0042 (4)0.0035 (4)0.0056 (4)
C10.0170 (7)0.0164 (7)0.0133 (6)0.0015 (5)0.0058 (5)0.0031 (5)
C20.0138 (7)0.0185 (7)0.0151 (6)0.0015 (5)0.0046 (5)0.0031 (5)
C30.0170 (7)0.0218 (7)0.0162 (7)0.0013 (6)0.0042 (5)0.0002 (5)
C40.0223 (8)0.0321 (8)0.0163 (7)0.0047 (6)0.0086 (6)0.0062 (6)
C50.0181 (7)0.0290 (8)0.0283 (8)0.0036 (6)0.0121 (6)0.0139 (6)
C60.0172 (7)0.0251 (8)0.0277 (8)0.0047 (6)0.0045 (6)0.0047 (6)
C70.0189 (7)0.0254 (8)0.0158 (7)0.0019 (6)0.0030 (6)0.0024 (6)
C80.0167 (7)0.0211 (7)0.0102 (6)0.0010 (5)0.0061 (5)0.0001 (5)
C90.0221 (7)0.0190 (7)0.0188 (7)0.0009 (6)0.0103 (6)0.0015 (5)
C100.0226 (8)0.0264 (8)0.0206 (7)0.0063 (6)0.0102 (6)0.0046 (6)
C110.0156 (7)0.0342 (9)0.0181 (7)0.0003 (6)0.0053 (6)0.0005 (6)
C120.0198 (7)0.0243 (8)0.0210 (7)0.0060 (6)0.0061 (6)0.0003 (6)
C130.0197 (7)0.0191 (7)0.0165 (7)0.0003 (6)0.0061 (5)0.0024 (5)
C140.0188 (7)0.0174 (7)0.0151 (6)0.0032 (5)0.0070 (5)0.0002 (5)
C150.0203 (7)0.0171 (7)0.0178 (7)0.0023 (5)0.0081 (6)0.0009 (5)
C160.0147 (7)0.0188 (7)0.0192 (7)0.0006 (5)0.0041 (5)0.0013 (5)
C170.0182 (7)0.0147 (6)0.0150 (7)0.0001 (5)0.0015 (5)0.0011 (5)
Geometric parameters (Å, º) top
O1—C171.2275 (17)C8—C131.3943 (19)
O2—C171.3241 (16)C8—C91.397 (2)
O2—H20.928 (19)C9—C101.385 (2)
C1—C141.3489 (19)C9—H90.95
C1—C81.4882 (19)C10—C111.389 (2)
C1—C21.4898 (18)C10—H100.95
C2—C71.394 (2)C11—C121.384 (2)
C2—C31.4000 (19)C11—H110.95
C3—C41.385 (2)C12—C131.388 (2)
C3—H30.95C12—H120.95
C4—C51.386 (2)C13—H130.95
C4—H40.95C14—C151.444 (2)
C5—C61.385 (2)C14—H140.95
C5—H50.95C15—C161.3455 (19)
C6—C71.392 (2)C15—H150.95
C6—H60.95C16—C171.466 (2)
C7—H70.95C16—H160.95
C17—O2—H2109.5C10—C9—H9119.5
C14—C1—C8120.27 (12)C8—C9—H9119.5
C14—C1—C2124.22 (12)C9—C10—C11119.86 (14)
C8—C1—C2115.50 (11)C9—C10—H10120.1
C7—C2—C3118.77 (13)C11—C10—H10120.1
C7—C2—C1122.32 (12)C12—C11—C10119.64 (13)
C3—C2—C1118.83 (12)C12—C11—H11120.2
C4—C3—C2120.55 (13)C10—C11—H11120.2
C4—C3—H3119.7C11—C12—C13120.59 (14)
C2—C3—H3119.7C11—C12—H12119.7
C3—C4—C5120.22 (13)C13—C12—H12119.7
C3—C4—H4119.9C12—C13—C8120.31 (13)
C5—C4—H4119.9C12—C13—H13119.8
C6—C5—C4119.80 (13)C8—C13—H13119.8
C6—C5—H5120.1C1—C14—C15125.61 (13)
C4—C5—H5120.1C1—C14—H14117.2
C5—C6—C7120.24 (14)C15—C14—H14117.2
C5—C6—H6119.9C16—C15—C14127.09 (13)
C7—C6—H6119.9C16—C15—H15116.5
C6—C7—C2120.41 (13)C14—C15—H15116.5
C6—C7—H7119.8C15—C16—C17125.44 (13)
C2—C7—H7119.8C15—C16—H16117.3
C13—C8—C9118.58 (12)C17—C16—H16117.3
C13—C8—C1121.67 (12)O1—C17—O2122.14 (13)
C9—C8—C1119.75 (12)O1—C17—C16125.22 (12)
C10—C9—C8121.01 (13)O2—C17—C16112.64 (12)
C14—C1—C2—C753.4 (2)C2—C1—C8—C941.06 (17)
C8—C1—C2—C7125.11 (14)C13—C8—C9—C101.3 (2)
C14—C1—C2—C3129.82 (15)C1—C8—C9—C10178.39 (12)
C8—C1—C2—C351.65 (17)C8—C9—C10—C111.2 (2)
C7—C2—C3—C41.1 (2)C9—C10—C11—C120.1 (2)
C1—C2—C3—C4178.03 (13)C10—C11—C12—C131.1 (2)
C2—C3—C4—C51.6 (2)C11—C12—C13—C80.9 (2)
C3—C4—C5—C60.9 (2)C9—C8—C13—C120.3 (2)
C4—C5—C6—C70.2 (2)C1—C8—C13—C12179.43 (12)
C5—C6—C7—C20.7 (2)C8—C1—C14—C15175.75 (13)
C3—C2—C7—C60.0 (2)C2—C1—C14—C155.8 (2)
C1—C2—C7—C6176.78 (13)C1—C14—C15—C16168.04 (14)
C14—C1—C8—C1342.21 (19)C14—C15—C16—C175.0 (2)
C2—C1—C8—C13139.20 (13)C15—C16—C17—O17.0 (2)
C14—C1—C8—C9137.53 (14)C15—C16—C17—O2173.96 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.931.742.6628 (14)177
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

CELEQ is thanked for supplying liquid nitro­gen for the X-ray measurements.

Funding information

Funding for this research was provided by: Vicerrectoría de Investigación, Universidad de Costa Rica (UCR).

References

First citationBellassoued, M. & Ennigrou, R. (1991). Bull. Soc. Chim. Belg. 100, 767–768.  CrossRef CAS Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabezas, J. A., Pereira, A. R. & Amey, A. (2001). Tetrahedron Lett. 42, 6819–6822.  CrossRef CAS Google Scholar
First citationFinkelstein, R. (2013). Abscisic Acid Synthesis and Response inThe Arabidopsis Book, vol. 11, pp. 1–36. American Society of Plant Biologists.  Google Scholar
First citationHuh, K. T., Orita, A. & Alper, H. (1993). J. Org. Chem. 58, 6956–6957.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMasi, M., Meyer, S., Cimmino, A., Andolfi, A. & Evidente, A. (2014). J. Nat. Prod. 77, 925–930.  CrossRef CAS Google Scholar
First citationOhkuma, K., Lyon, J. L., Addicott, F. T. & Smith, O. E. (1963). Science, 142, 1592–1593.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSeo, M. & Koshiba, T. (2002). Trends Plant Sci. 7, 41–48.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhu, J. K. (2002). Annu. Rev. Plant Biol. 53, 247–273.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds