organic compounds
5,5-Diphenyl-cis-penta-2,4-dienoic acid
aEscuela de Química, Universidad de Costa Rica, 11501, San José, Costa Rica, and bCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 11501, San José, Costa Rica
*Correspondence e-mail: jorge.cabezas@ucr.ac.cr
In the title compound, C17H14O2, the dihedral angle between the phenyl rings is 76.52 (7)°. In the crystal, pairwise O—H⋯O hydrogen bonds link the molecules into carboxylic acid inversion dimers.
CCDC reference: 1883168
Structure description
Many 2,4-dienoic acids are widely found in nature and have shown important biological activity (Masi et al., 2014). For example, abscisic acid {systematic name: (2Z,4E)-5-[(1S)-1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoic acid}, the most common 2,4-pentadienoic acid, isolated from cotton fruit (Ohkuma et al., 1963), is a plant hormone that plays important developmental processes (Finkelstein 2013). It also plays an important role in plant responses to environmental stress and plant pathogens (Zhu, 2002; Seo & Koshiba 2002). Many methods for the synthesis of this diene system in pent-2,4-dienoic acids have been developed (Huh et al., 1993; Bellassoued & Ennigrou 1991). In this paper we report a new methodology for the synthesis of the title compound, 1, and its crystal structure.
The 1 has monoclinic symmetry with one molecule in the the molecular structure contains two conjugated carbon double bonds (C1=C14) and (C15=C16) in which the former diene fragment at C1 bound to two phenyl-ring substituents and the latter diene moiety further binds at C16 to a carboxylic acid leading to a cis configuration (Fig. 1). The bond lengths of the diene arrangements C1=C14 and C15=C16 are 1.349 (2) Å and 1.346 (2) Å, respectively. The carboxyl group has the following bond lengths: C17—O1 [1.228 (2) Å] and C17—O2 [1.324 (2) Å]. In the crystal, pairwise O2—H2⋯O1 hydrogen-bonding interactions form dimeric arrangements between molecules, forming a loop with an R22(8) graph-set motif (Fig. 2 and Table 1).
ofSynthesis and crystallization
The reaction of propargyl bromide, 2, with n-BuLi in the presence of tetramethylethylenediamine (TMEDA), at −78°C, generated the synthetic equivalent of the dianion 1,3-dilithiopropyne, 3, Fig. 3 (Cabezas et al., 2001). Sequential treatment of this dianion, 3, with benzophenone followed by addition of ethyl chloroformate, and warming to room temperature overnight, produced carbonate, 4, in 70% yield. Alkaline hydrolysis of 4, using KOH in methanol, at room temperature for 3 h yielded 5,5-diphenylpent-4-ene-2-ynoic acid, 5, in 87% yield. Hydrogenation of 5, using Lindlar's catalyst yielded 5,5-diphenyl-cis-penta-2,4-dienoic acid, 1, in 97% isolated yield. The overall yield for this synthesis was 59%. Light-yellow blocks were recrystallized from ethyl acetate solution at ambient temperature.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1883168
https://doi.org/10.1107/S2414314618017996/hb4275sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618017996/hb4275Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006).C17H14O2 | F(000) = 528 |
Mr = 250.29 | Dx = 1.244 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0801 (4) Å | Cell parameters from 7723 reflections |
b = 15.4598 (7) Å | θ = 2.5–27.5° |
c = 10.0920 (4) Å | µ = 0.08 mm−1 |
β = 109.453 (1)° | T = 100 K |
V = 1335.81 (10) Å3 | Block, light yellow |
Z = 4 | 0.25 × 0.15 × 0.10 mm |
Bruker D8 Venture diffractometer | 3081 independent reflections |
Radiation source: Incoatec Microsource | 2479 reflections with I > 2σ(I) |
Mirrors monochromator | Rint = 0.037 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.6°, θmin = 2.5° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −20→20 |
Tmin = 0.713, Tmax = 0.746 | l = −13→13 |
19268 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0392P)2 + 0.6455P] where P = (Fo2 + 2Fc2)/3 |
3081 reflections | (Δ/σ)max < 0.001 |
174 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.05901 (11) | 0.54513 (7) | 0.15632 (10) | 0.0237 (2) | |
O2 | −0.18489 (12) | 0.50474 (7) | 0.03482 (10) | 0.0228 (2) | |
H2 | −0.1377 (11) | 0.4886 (11) | −0.0300 (16) | 0.034* | |
C1 | 0.18364 (15) | 0.64377 (9) | 0.56368 (13) | 0.0154 (3) | |
C2 | 0.10925 (15) | 0.70128 (9) | 0.64163 (14) | 0.0158 (3) | |
C3 | 0.14619 (16) | 0.68961 (9) | 0.78666 (14) | 0.0187 (3) | |
H3 | 0.2151 | 0.6444 | 0.8327 | 0.022* | |
C4 | 0.08313 (17) | 0.74347 (10) | 0.86354 (15) | 0.0230 (3) | |
H4 | 0.1068 | 0.7341 | 0.9615 | 0.028* | |
C5 | −0.01446 (17) | 0.81101 (10) | 0.79803 (16) | 0.0241 (3) | |
H5 | −0.0564 | 0.8484 | 0.8512 | 0.029* | |
C6 | −0.05063 (17) | 0.82382 (10) | 0.65483 (16) | 0.0241 (3) | |
H6 | −0.1172 | 0.8702 | 0.6099 | 0.029* | |
C7 | 0.01017 (16) | 0.76900 (10) | 0.57661 (15) | 0.0207 (3) | |
H7 | −0.016 | 0.7778 | 0.4783 | 0.025* | |
C8 | 0.35685 (16) | 0.63744 (9) | 0.62313 (13) | 0.0156 (3) | |
C9 | 0.44543 (16) | 0.71162 (9) | 0.67401 (14) | 0.0191 (3) | |
H9 | 0.3941 | 0.7653 | 0.6724 | 0.023* | |
C10 | 0.60701 (17) | 0.70804 (10) | 0.72673 (15) | 0.0224 (3) | |
H10 | 0.6658 | 0.7592 | 0.7594 | 0.027* | |
C11 | 0.68287 (17) | 0.62948 (10) | 0.73173 (15) | 0.0227 (3) | |
H11 | 0.7937 | 0.6267 | 0.7676 | 0.027* | |
C12 | 0.59618 (17) | 0.55526 (10) | 0.68411 (15) | 0.0219 (3) | |
H12 | 0.6479 | 0.5013 | 0.6891 | 0.026* | |
C13 | 0.43436 (16) | 0.55893 (9) | 0.62916 (14) | 0.0184 (3) | |
H13 | 0.3761 | 0.5077 | 0.5955 | 0.022* | |
C14 | 0.10456 (16) | 0.60064 (9) | 0.44511 (14) | 0.0168 (3) | |
H14 | 0.1645 | 0.5701 | 0.3991 | 0.02* | |
C15 | −0.06333 (16) | 0.59693 (9) | 0.38208 (14) | 0.0180 (3) | |
H15 | −0.1222 | 0.6177 | 0.4376 | 0.022* | |
C16 | −0.14545 (16) | 0.56720 (9) | 0.25332 (14) | 0.0180 (3) | |
H16 | −0.2558 | 0.5646 | 0.2294 | 0.022* | |
C17 | −0.07883 (16) | 0.53848 (9) | 0.14689 (14) | 0.0170 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0181 (5) | 0.0348 (6) | 0.0173 (5) | −0.0027 (4) | 0.0048 (4) | −0.0075 (4) |
O2 | 0.0200 (5) | 0.0319 (6) | 0.0148 (5) | −0.0042 (4) | 0.0035 (4) | −0.0056 (4) |
C1 | 0.0170 (7) | 0.0164 (7) | 0.0133 (6) | 0.0015 (5) | 0.0058 (5) | 0.0031 (5) |
C2 | 0.0138 (7) | 0.0185 (7) | 0.0151 (6) | −0.0015 (5) | 0.0046 (5) | −0.0031 (5) |
C3 | 0.0170 (7) | 0.0218 (7) | 0.0162 (7) | −0.0013 (6) | 0.0042 (5) | −0.0002 (5) |
C4 | 0.0223 (8) | 0.0321 (8) | 0.0163 (7) | −0.0047 (6) | 0.0086 (6) | −0.0062 (6) |
C5 | 0.0181 (7) | 0.0290 (8) | 0.0283 (8) | −0.0036 (6) | 0.0121 (6) | −0.0139 (6) |
C6 | 0.0172 (7) | 0.0251 (8) | 0.0277 (8) | 0.0047 (6) | 0.0045 (6) | −0.0047 (6) |
C7 | 0.0189 (7) | 0.0254 (8) | 0.0158 (7) | 0.0019 (6) | 0.0030 (6) | −0.0024 (6) |
C8 | 0.0167 (7) | 0.0211 (7) | 0.0102 (6) | 0.0010 (5) | 0.0061 (5) | −0.0001 (5) |
C9 | 0.0221 (7) | 0.0190 (7) | 0.0188 (7) | 0.0009 (6) | 0.0103 (6) | −0.0015 (5) |
C10 | 0.0226 (8) | 0.0264 (8) | 0.0206 (7) | −0.0063 (6) | 0.0102 (6) | −0.0046 (6) |
C11 | 0.0156 (7) | 0.0342 (9) | 0.0181 (7) | 0.0003 (6) | 0.0053 (6) | −0.0005 (6) |
C12 | 0.0198 (7) | 0.0243 (8) | 0.0210 (7) | 0.0060 (6) | 0.0061 (6) | 0.0003 (6) |
C13 | 0.0197 (7) | 0.0191 (7) | 0.0165 (7) | −0.0003 (6) | 0.0061 (5) | −0.0024 (5) |
C14 | 0.0188 (7) | 0.0174 (7) | 0.0151 (6) | 0.0032 (5) | 0.0070 (5) | 0.0002 (5) |
C15 | 0.0203 (7) | 0.0171 (7) | 0.0178 (7) | 0.0023 (5) | 0.0081 (6) | 0.0009 (5) |
C16 | 0.0147 (7) | 0.0188 (7) | 0.0192 (7) | 0.0006 (5) | 0.0041 (5) | 0.0013 (5) |
C17 | 0.0182 (7) | 0.0147 (6) | 0.0150 (7) | 0.0001 (5) | 0.0015 (5) | 0.0011 (5) |
O1—C17 | 1.2275 (17) | C8—C13 | 1.3943 (19) |
O2—C17 | 1.3241 (16) | C8—C9 | 1.397 (2) |
O2—H2 | 0.928 (19) | C9—C10 | 1.385 (2) |
C1—C14 | 1.3489 (19) | C9—H9 | 0.95 |
C1—C8 | 1.4882 (19) | C10—C11 | 1.389 (2) |
C1—C2 | 1.4898 (18) | C10—H10 | 0.95 |
C2—C7 | 1.394 (2) | C11—C12 | 1.384 (2) |
C2—C3 | 1.4000 (19) | C11—H11 | 0.95 |
C3—C4 | 1.385 (2) | C12—C13 | 1.388 (2) |
C3—H3 | 0.95 | C12—H12 | 0.95 |
C4—C5 | 1.386 (2) | C13—H13 | 0.95 |
C4—H4 | 0.95 | C14—C15 | 1.444 (2) |
C5—C6 | 1.385 (2) | C14—H14 | 0.95 |
C5—H5 | 0.95 | C15—C16 | 1.3455 (19) |
C6—C7 | 1.392 (2) | C15—H15 | 0.95 |
C6—H6 | 0.95 | C16—C17 | 1.466 (2) |
C7—H7 | 0.95 | C16—H16 | 0.95 |
C17—O2—H2 | 109.5 | C10—C9—H9 | 119.5 |
C14—C1—C8 | 120.27 (12) | C8—C9—H9 | 119.5 |
C14—C1—C2 | 124.22 (12) | C9—C10—C11 | 119.86 (14) |
C8—C1—C2 | 115.50 (11) | C9—C10—H10 | 120.1 |
C7—C2—C3 | 118.77 (13) | C11—C10—H10 | 120.1 |
C7—C2—C1 | 122.32 (12) | C12—C11—C10 | 119.64 (13) |
C3—C2—C1 | 118.83 (12) | C12—C11—H11 | 120.2 |
C4—C3—C2 | 120.55 (13) | C10—C11—H11 | 120.2 |
C4—C3—H3 | 119.7 | C11—C12—C13 | 120.59 (14) |
C2—C3—H3 | 119.7 | C11—C12—H12 | 119.7 |
C3—C4—C5 | 120.22 (13) | C13—C12—H12 | 119.7 |
C3—C4—H4 | 119.9 | C12—C13—C8 | 120.31 (13) |
C5—C4—H4 | 119.9 | C12—C13—H13 | 119.8 |
C6—C5—C4 | 119.80 (13) | C8—C13—H13 | 119.8 |
C6—C5—H5 | 120.1 | C1—C14—C15 | 125.61 (13) |
C4—C5—H5 | 120.1 | C1—C14—H14 | 117.2 |
C5—C6—C7 | 120.24 (14) | C15—C14—H14 | 117.2 |
C5—C6—H6 | 119.9 | C16—C15—C14 | 127.09 (13) |
C7—C6—H6 | 119.9 | C16—C15—H15 | 116.5 |
C6—C7—C2 | 120.41 (13) | C14—C15—H15 | 116.5 |
C6—C7—H7 | 119.8 | C15—C16—C17 | 125.44 (13) |
C2—C7—H7 | 119.8 | C15—C16—H16 | 117.3 |
C13—C8—C9 | 118.58 (12) | C17—C16—H16 | 117.3 |
C13—C8—C1 | 121.67 (12) | O1—C17—O2 | 122.14 (13) |
C9—C8—C1 | 119.75 (12) | O1—C17—C16 | 125.22 (12) |
C10—C9—C8 | 121.01 (13) | O2—C17—C16 | 112.64 (12) |
C14—C1—C2—C7 | −53.4 (2) | C2—C1—C8—C9 | −41.06 (17) |
C8—C1—C2—C7 | 125.11 (14) | C13—C8—C9—C10 | 1.3 (2) |
C14—C1—C2—C3 | 129.82 (15) | C1—C8—C9—C10 | −178.39 (12) |
C8—C1—C2—C3 | −51.65 (17) | C8—C9—C10—C11 | −1.2 (2) |
C7—C2—C3—C4 | 1.1 (2) | C9—C10—C11—C12 | −0.1 (2) |
C1—C2—C3—C4 | 178.03 (13) | C10—C11—C12—C13 | 1.1 (2) |
C2—C3—C4—C5 | −1.6 (2) | C11—C12—C13—C8 | −0.9 (2) |
C3—C4—C5—C6 | 0.9 (2) | C9—C8—C13—C12 | −0.3 (2) |
C4—C5—C6—C7 | 0.2 (2) | C1—C8—C13—C12 | 179.43 (12) |
C5—C6—C7—C2 | −0.7 (2) | C8—C1—C14—C15 | 175.75 (13) |
C3—C2—C7—C6 | 0.0 (2) | C2—C1—C14—C15 | −5.8 (2) |
C1—C2—C7—C6 | −176.78 (13) | C1—C14—C15—C16 | 168.04 (14) |
C14—C1—C8—C13 | −42.21 (19) | C14—C15—C16—C17 | −5.0 (2) |
C2—C1—C8—C13 | 139.20 (13) | C15—C16—C17—O1 | −7.0 (2) |
C14—C1—C8—C9 | 137.53 (14) | C15—C16—C17—O2 | 173.96 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.93 | 1.74 | 2.6628 (14) | 177 |
Symmetry code: (i) −x, −y+1, −z. |
Acknowledgements
CELEQ is thanked for supplying liquid nitrogen for the X-ray measurements.
Funding information
Funding for this research was provided by: Vicerrectoría de Investigación, Universidad de Costa Rica (UCR).
References
Bellassoued, M. & Ennigrou, R. (1991). Bull. Soc. Chim. Belg. 100, 767–768. CrossRef CAS Google Scholar
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cabezas, J. A., Pereira, A. R. & Amey, A. (2001). Tetrahedron Lett. 42, 6819–6822. CrossRef CAS Google Scholar
Finkelstein, R. (2013). Abscisic Acid Synthesis and Response inThe Arabidopsis Book, vol. 11, pp. 1–36. American Society of Plant Biologists. Google Scholar
Huh, K. T., Orita, A. & Alper, H. (1993). J. Org. Chem. 58, 6956–6957. CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Masi, M., Meyer, S., Cimmino, A., Andolfi, A. & Evidente, A. (2014). J. Nat. Prod. 77, 925–930. CrossRef CAS Google Scholar
Ohkuma, K., Lyon, J. L., Addicott, F. T. & Smith, O. E. (1963). Science, 142, 1592–1593. CrossRef PubMed CAS Web of Science Google Scholar
Seo, M. & Koshiba, T. (2002). Trends Plant Sci. 7, 41–48. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Zhu, J. K. (2002). Annu. Rev. Plant Biol. 53, 247–273. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.