organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Allyl 6-amino-5-cyano-2-methyl-4-phenyl-4H-pyran-3-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Saranathan College of Engineering, Panjappur, Tiruchirappalli, Tamilnadu, India, bDepartment of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamil Nadu, India, cDepartment of Physics, K. Ramakrishnan College of Engineering, Samayapuram, Tiruchirappalli, Tamil Nadu, India, and dDepartment of Physics, Urumu Dhanalakshmi College, Tiruchirappalli, Tamil Nadu, India
*Correspondence e-mail: udkchemist@gmail.com, sakthi2udc@gmail.com

Edited by R. J. Butcher, Howard University, USA (Received 13 September 2018; accepted 10 January 2019; online 15 January 2019)

In the title compound, C17H16N2O3, the 4H-pyran ring adopts a boat conformation. In the crystal, N—H⋯N and N—H⋯O inter­actions link the mol­ecules, forming an infinite ribbon running along the a-axis direction with N—H⋯N inter­actions forming centrosymmetric R22(12) graph-set motifs. The allyl side chain is disordered over two sets of sites with occupancies of 0.720 (7) and 0.280 (7).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyran derivatives constitute a useful class of heterocyclic compounds, which are widely distributed in nature (Moriguchi et al., 1997[Moriguchi, T., Matsuura, H., Itakura, Y., Katsuki, H., Saito, H. & Nishiyama, N. (1997). Life Sci. 61, 1413-1420.]). A number of 2-amino-4H-pyrans are used as photoactive materials (Armesto et al., 1989[Armesto, D., Horspool, W. M., Martin, N., Ramos, A. & Seoane, C. (1989). J. Org. Chem. 54, 3069-3072.]), pigments (Rideout et al., 1976[Rideout, J. A., Smith, I. R. & Sutherland, M. D. (1976). Aust. J. Chem. 29, 1087-1098.]) and potentially biodegradable agrochemicals (Kumar et al., 2009[Kumar, D., Reddy, V. B., Sharad, S., Dube, U. & Kapur, S. (2009). Eur. J. Med. Chem. 44, 3805-3809.]). Substituted allyl 6-amino-4H-pyran derivatives exhibit a wide range of biological properties including anti­proliferative and anti­tubercular activities (Panda et al., 1997[Panda, D., Singh, J. P. & Wilson, L. (1997). J. Biol. Chem. 272, 7681-7687.]; Mungra et al., 2011[Mungra, D. C., Patel, M. P., Rajani, D. P. & Patel, R. G. (2011). Eur. J. Med. Chem. 46, 4192-4200.]) and 4H-pyran derivatives are widely used as organic inter­mediates (Liang et al., 2009[Liang, F., Cheng, X., Liu, J. & Liu, Q. (2009). Chem. Commun. pp. 3636-3638.]).

The 4H-pyran ring in the title compound (Fig. 1[link]) exhibits a boat conformation with puckering parameters Q = 0.230 (3) Å, θ = 79.8 (7)° and φ = 191.1 (7)°. In this ring, the atoms O1 and C7 make the largest deviations of 0.118 (2) and 0.139 (2) Å, respectively, from the mean plane. The C7—C8—C9—C13 and C7—C11—C10—N1 torsion angles are 179.3 (2) and 171.0 (2)°, respectively. The dihedral angle between 4H-pyran ring and the phenyl ring is 85.51 (15)°. The bond lengths in the 4H-pyran ring are similar to those in a related compound (Mohandas et al., 2015[Mohandas, T., Kumar, C. U., Devi, S. A., Prakasam, B. A., Sakthivel, P. & Vidhyasagar, T. (2015). Acta Cryst. E71, o101-o102.]). An intra­molecular C—H⋯O hydrogen bond occurs.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 20% probability level (only the major disorder component of the allyl side chain is shown).

In the crystal, N—H⋯N and N—H⋯O inter­actions (Table 1[link]) link the mol­ecules, forming an infinite ribbon running along [100] (Fig. 2[link]). The N—H⋯N inter­actions form an R22(12) graph-set motif.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2i 0.83 (2) 2.24 (2) 3.051 (2) 166.0 (19)
N1—H1N2⋯O2ii 0.88 (2) 2.04 (2) 2.919 (2) 171 (2)
C13—H13A⋯O3 0.96 2.27 2.868 (3) 120
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z.
[Figure 2]
Figure 2
The packing of the title compound (major disorder component only). N—H⋯N and N—H⋯O inter­actions (Table 1[link]) are shown as dashed lines.

Synthesis and crystallization

A mixture of benzaldehyde (1.0 mmol), malono­nitrile (1.0 mmol), allyl 3-oxo­butano­ate (1.0 mmol) and a few drops of piperidine was stirred magnetically in 30 ml of absolute ethanol at 80°C for 90 min. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was allowed to cool to room temperature and the solvent was evaporated. The resulting solid was collected and washed with cold water and recrystallized from ethanol to obtain the pure product (yield 86%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The allyl side chain is disordered and was refined as having two equivalent conformations with occupancies of 0.720 (7) and 0.280 (7).

Table 2
Experimental details

Crystal data
Chemical formula C17H16N2O3
Mr 296.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.2151 (5), 9.2850 (5), 11.6086 (7)
α, β, γ (°) 108.184 (4), 103.004 (4), 105.089 (2)
V3) 765.64 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.956, 0.960
No. of measured, independent and observed [I > 2σ(I)] reflections 3789, 3789, 2207
Rint 0.053
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.160, 1.02
No. of reflections 3789
No. of parameters 237
No. of restraints 79
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.28
Computer programs: APEX2, SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Allyl 6-amino-5-cyano-2-methyl-4-phenyl-4H-pyran-3-carboxylate top
Crystal data top
C17H16N2O3Z = 2
Mr = 296.32F(000) = 312
Triclinic, P1Dx = 1.285 Mg m3
a = 8.2151 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2850 (5) ÅCell parameters from 4207 reflections
c = 11.6086 (7) Åθ = 2.5–23.4°
α = 108.184 (4)°µ = 0.09 mm1
β = 103.004 (4)°T = 293 K
γ = 105.089 (2)°BLOCK, orange
V = 765.64 (8) Å30.20 × 0.20 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2207 reflections with I > 2σ(I)
ω and φ scanRint = 0.053
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.3°, θmin = 2.5°
Tmin = 0.956, Tmax = 0.960h = 1010
3789 measured reflectionsk = 1212
3789 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.071P)2 + 0.1156P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3789 reflectionsΔρmax = 0.21 e Å3
237 parametersΔρmin = 0.28 e Å3
79 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The positions of the hydrogen atoms bound to the O and C atoms are identified from the difference electron density maps and their distances are geometrically optimized. The hydrogen atoms bound to the C atoms are treated as riding atoms, with d(C—H) = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, d(C—H) = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene and d(C—H) = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl groups. The amine protons were refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.13227 (16)0.88787 (15)0.32279 (13)0.0513 (4)
O20.72395 (18)0.92452 (18)0.36162 (17)0.0742 (5)
O30.62148 (18)1.06948 (19)0.26548 (15)0.0728 (5)
N10.0492 (2)0.7331 (2)0.38698 (18)0.0580 (5)
H1N10.080 (3)0.663 (3)0.4157 (19)0.057 (6)*
H1N20.109 (3)0.797 (3)0.376 (2)0.068 (6)*
N20.1936 (2)0.4855 (2)0.48236 (19)0.0700 (6)
C10.3644 (2)0.5954 (2)0.21556 (18)0.0474 (4)
C20.4475 (3)0.4852 (3)0.2186 (2)0.0693 (6)
H2A0.5230040.4958120.2960260.083*
C30.4174 (4)0.3571 (3)0.1044 (3)0.0938 (9)
H3A0.4722220.2815950.1062310.113*
C40.3083 (5)0.3415 (3)0.0102 (3)0.0942 (9)
H4A0.2900720.2564200.0859360.113*
C50.2271 (4)0.4499 (3)0.0129 (2)0.0881 (8)
H5A0.1525760.4395160.0906760.106*
C60.2543 (3)0.5753 (3)0.0988 (2)0.0700 (6)
H6A0.1967800.6487480.0955590.084*
C70.3897 (2)0.7335 (2)0.33875 (16)0.0424 (4)
H7A0.4949360.7447990.4055990.051*
C80.4222 (2)0.8932 (2)0.32389 (16)0.0421 (4)
C90.2989 (2)0.9618 (2)0.31696 (17)0.0454 (4)
C100.1074 (2)0.7670 (2)0.36705 (16)0.0437 (4)
C110.2308 (2)0.6973 (2)0.38400 (16)0.0426 (4)
C120.2067 (2)0.5791 (2)0.43693 (18)0.0488 (4)
C130.3033 (3)1.1169 (3)0.3039 (2)0.0652 (6)
H13A0.4250211.1842660.3244930.098*
H13B0.2513751.1718480.3617040.098*
H13C0.2365081.0946100.2171070.098*
C140.6031 (2)0.9636 (2)0.31985 (18)0.0484 (4)
C15A0.814 (5)1.136 (3)0.2707 (18)0.084 (3)0.280 (7)
H15A0.8856111.2224350.3542450.101*0.280 (7)
H15B0.8640851.0511130.2572340.101*0.280 (7)
C16A0.8150 (18)1.1965 (15)0.1739 (11)0.098 (3)0.280 (7)
H16A0.8854971.3043060.1982540.117*0.280 (7)
C17A0.728 (2)1.1155 (18)0.0576 (11)0.149 (5)0.280 (7)
H17A0.6561931.0073800.0298710.179*0.280 (7)
H17B0.7349941.1632550.0015480.179*0.280 (7)
C15B0.7942 (19)1.1526 (13)0.2641 (6)0.093 (2)0.720 (7)
H15C0.8244701.2686290.3071930.111*0.720 (7)
H15D0.8827961.1220810.3118360.111*0.720 (7)
C16B0.8014 (7)1.1178 (6)0.1398 (4)0.1014 (17)0.720 (7)
H16B0.7210661.0165440.0799430.122*0.720 (7)
C17B0.8942 (6)1.1959 (7)0.0949 (5)0.1199 (19)0.720 (7)
H17C0.9783441.2986200.1478590.144*0.720 (7)
H17D0.8802571.1524470.0079640.144*0.720 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0444 (7)0.0617 (8)0.0695 (9)0.0266 (6)0.0260 (6)0.0421 (7)
O20.0458 (8)0.0656 (9)0.1176 (13)0.0250 (7)0.0311 (8)0.0375 (9)
O30.0517 (8)0.0913 (11)0.0830 (10)0.0102 (7)0.0273 (7)0.0531 (9)
N10.0509 (10)0.0682 (12)0.0831 (13)0.0301 (9)0.0369 (9)0.0483 (10)
N20.0740 (12)0.0741 (12)0.0988 (15)0.0377 (10)0.0476 (11)0.0585 (12)
C10.0468 (10)0.0454 (10)0.0596 (11)0.0179 (8)0.0293 (9)0.0237 (9)
C20.0816 (15)0.0599 (13)0.0913 (16)0.0384 (12)0.0465 (13)0.0384 (12)
C30.127 (2)0.0589 (15)0.127 (3)0.0528 (16)0.078 (2)0.0362 (16)
C40.123 (2)0.0610 (16)0.090 (2)0.0183 (16)0.0658 (19)0.0093 (14)
C50.0939 (19)0.0846 (18)0.0627 (15)0.0207 (15)0.0283 (13)0.0073 (13)
C60.0752 (14)0.0731 (15)0.0587 (13)0.0329 (12)0.0226 (11)0.0165 (11)
C70.0400 (9)0.0474 (10)0.0465 (10)0.0199 (7)0.0155 (7)0.0228 (8)
C80.0421 (9)0.0431 (9)0.0429 (9)0.0140 (7)0.0165 (7)0.0185 (8)
C90.0454 (10)0.0489 (10)0.0490 (10)0.0179 (8)0.0190 (8)0.0252 (8)
C100.0441 (10)0.0476 (10)0.0464 (10)0.0174 (8)0.0192 (8)0.0236 (8)
C110.0473 (10)0.0440 (9)0.0460 (10)0.0201 (8)0.0208 (8)0.0229 (8)
C120.0496 (10)0.0516 (11)0.0595 (11)0.0246 (8)0.0273 (9)0.0285 (9)
C130.0675 (13)0.0634 (13)0.0876 (16)0.0319 (11)0.0333 (12)0.0467 (12)
C140.0458 (10)0.0440 (10)0.0512 (10)0.0131 (8)0.0194 (8)0.0135 (8)
C15A0.057 (5)0.109 (5)0.094 (5)0.010 (4)0.030 (4)0.061 (4)
C16A0.076 (4)0.110 (5)0.105 (5)0.001 (5)0.027 (4)0.069 (4)
C17A0.191 (10)0.144 (8)0.111 (6)0.050 (8)0.035 (8)0.067 (7)
C15B0.060 (4)0.118 (3)0.084 (2)0.006 (3)0.029 (2)0.047 (2)
C16B0.093 (3)0.098 (3)0.096 (3)0.007 (3)0.049 (2)0.027 (3)
C17B0.095 (3)0.175 (5)0.099 (3)0.018 (3)0.042 (2)0.085 (3)
Geometric parameters (Å, º) top
O1—C101.361 (2)C7—H7A0.9800
O1—C91.389 (2)C8—C91.331 (2)
O2—C141.197 (2)C8—C141.477 (2)
O3—C141.319 (2)C9—C131.486 (2)
O3—C15B1.434 (13)C10—C111.348 (2)
O3—C15A1.52 (4)C11—C121.409 (2)
N1—C101.333 (2)C13—H13A0.9600
N1—H1N10.83 (2)C13—H13B0.9600
N1—H1N20.88 (2)C13—H13C0.9600
N2—C121.143 (2)C15A—C16A1.404 (4)
C1—C21.375 (3)C15A—H15A0.9700
C1—C61.376 (3)C15A—H15B0.9700
C1—C71.521 (2)C16A—C17A1.245 (4)
C2—C31.396 (4)C16A—H16A0.9300
C2—H2A0.9300C17A—H17A0.9300
C3—C41.367 (4)C17A—H17B0.9300
C3—H3A0.9300C15B—C16B1.395 (4)
C4—C51.349 (4)C15B—H15C0.9700
C4—H4A0.9300C15B—H15D0.9700
C5—C61.371 (3)C16B—C17B1.227 (3)
C5—H5A0.9300C16B—H16B0.9300
C6—H6A0.9300C17B—H17C0.9300
C7—C81.508 (2)C17B—H17D0.9300
C7—C111.511 (2)
C10—O1—C9119.93 (13)C11—C10—O1121.05 (15)
C14—O3—C15B120.1 (4)C10—C11—C12119.89 (15)
C14—O3—C15A110.7 (7)C10—C11—C7121.69 (15)
C10—N1—H1N1120.4 (14)C12—C11—C7118.27 (14)
C10—N1—H1N2116.0 (14)N2—C12—C11177.5 (2)
H1N1—N1—H1N2123 (2)C9—C13—H13A109.5
C2—C1—C6118.3 (2)C9—C13—H13B109.5
C2—C1—C7120.80 (19)H13A—C13—H13B109.5
C6—C1—C7120.86 (16)C9—C13—H13C109.5
C1—C2—C3119.4 (2)H13A—C13—H13C109.5
C1—C2—H2A120.3H13B—C13—H13C109.5
C3—C2—H2A120.3O2—C14—O3122.49 (17)
C4—C3—C2120.8 (2)O2—C14—C8121.74 (17)
C4—C3—H3A119.6O3—C14—C8115.75 (16)
C2—C3—H3A119.6C16A—C15A—O3108 (2)
C5—C4—C3119.7 (2)C16A—C15A—H15A110.1
C5—C4—H4A120.1O3—C15A—H15A110.1
C3—C4—H4A120.1C16A—C15A—H15B110.1
C4—C5—C6120.1 (3)O3—C15A—H15B110.1
C4—C5—H5A120.0H15A—C15A—H15B108.4
C6—C5—H5A120.0C17A—C16A—C15A124.5 (11)
C5—C6—C1121.7 (2)C17A—C16A—H16A117.7
C5—C6—H6A119.1C15A—C16A—H16A117.7
C1—C6—H6A119.1C16A—C17A—H17A120.0
C8—C7—C11109.31 (13)C16A—C17A—H17B120.0
C8—C7—C1112.26 (14)H17A—C17A—H17B120.0
C11—C7—C1111.41 (14)C16B—C15B—O3112.7 (8)
C8—C7—H7A107.9C16B—C15B—H15C109.1
C11—C7—H7A107.9O3—C15B—H15C109.1
C1—C7—H7A107.9C16B—C15B—H15D109.1
C9—C8—C14124.63 (16)O3—C15B—H15D109.1
C9—C8—C7122.28 (15)H15C—C15B—H15D107.8
C14—C8—C7113.08 (15)C17B—C16B—C15B131.9 (8)
C8—C9—O1120.91 (15)C17B—C16B—H16B114.0
C8—C9—C13131.04 (17)C15B—C16B—H16B114.0
O1—C9—C13108.05 (15)C16B—C17B—H17C120.0
N1—C10—C11128.55 (17)C16B—C17B—H17D120.0
N1—C10—O1110.40 (15)H17C—C17B—H17D120.0
C6—C1—C2—C30.2 (3)C9—O1—C10—N1168.74 (16)
C7—C1—C2—C3178.11 (18)C9—O1—C10—C1111.9 (2)
C1—C2—C3—C40.8 (4)N1—C10—C11—C124.5 (3)
C2—C3—C4—C50.7 (4)O1—C10—C11—C12176.32 (16)
C3—C4—C5—C60.1 (4)N1—C10—C11—C7171.01 (18)
C4—C5—C6—C10.4 (4)O1—C10—C11—C78.2 (3)
C2—C1—C6—C50.4 (3)C8—C7—C11—C1021.4 (2)
C7—C1—C6—C5178.71 (19)C1—C7—C11—C10103.26 (19)
C2—C1—C7—C8135.66 (18)C8—C7—C11—C12163.08 (15)
C6—C1—C7—C846.0 (2)C1—C7—C11—C1272.3 (2)
C2—C1—C7—C11101.37 (19)C15B—O3—C14—O25.2 (5)
C6—C1—C7—C1176.9 (2)C15A—O3—C14—O22.7 (9)
C11—C7—C8—C917.1 (2)C15B—O3—C14—C8176.0 (4)
C1—C7—C8—C9106.99 (19)C15A—O3—C14—C8178.4 (9)
C11—C7—C8—C14162.07 (14)C9—C8—C14—O2158.52 (19)
C1—C7—C8—C1473.79 (18)C7—C8—C14—O220.7 (2)
C14—C8—C9—O1179.35 (15)C9—C8—C14—O322.6 (3)
C7—C8—C9—O10.2 (3)C7—C8—C14—O3158.17 (15)
C14—C8—C9—C130.1 (3)C14—O3—C15A—C16A158.0 (12)
C7—C8—C9—C13179.25 (19)O3—C15A—C16A—C17A56 (3)
C10—O1—C9—C816.3 (2)C14—O3—C15B—C16B117.5 (6)
C10—O1—C9—C13163.28 (16)O3—C15B—C16B—C17B152.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.83 (2)2.24 (2)3.051 (2)166.0 (19)
N1—H1N2···O2ii0.88 (2)2.04 (2)2.919 (2)171 (2)
C13—H13A···O30.962.272.868 (3)120
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors thank Dr D. Srinivasan, Principal of K. Ramakrishnan College of Engineering, Trichy, for making the work successful.

References

First citationArmesto, D., Horspool, W. M., Martin, N., Ramos, A. & Seoane, C. (1989). J. Org. Chem. 54, 3069–3072.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, D., Reddy, V. B., Sharad, S., Dube, U. & Kapur, S. (2009). Eur. J. Med. Chem. 44, 3805–3809.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiang, F., Cheng, X., Liu, J. & Liu, Q. (2009). Chem. Commun. pp. 3636–3638.  Web of Science CrossRef Google Scholar
First citationMohandas, T., Kumar, C. U., Devi, S. A., Prakasam, B. A., Sakthivel, P. & Vidhyasagar, T. (2015). Acta Cryst. E71, o101–o102.  CrossRef IUCr Journals Google Scholar
First citationMoriguchi, T., Matsuura, H., Itakura, Y., Katsuki, H., Saito, H. & Nishiyama, N. (1997). Life Sci. 61, 1413–1420.  CrossRef CAS Google Scholar
First citationMungra, D. C., Patel, M. P., Rajani, D. P. & Patel, R. G. (2011). Eur. J. Med. Chem. 46, 4192–4200.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPanda, D., Singh, J. P. & Wilson, L. (1997). J. Biol. Chem. 272, 7681–7687.  CrossRef CAS PubMed Google Scholar
First citationRideout, J. A., Smith, I. R. & Sutherland, M. D. (1976). Aust. J. Chem. 29, 1087–1098.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds