organic compounds
Allyl 6-amino-5-cyano-2-methyl-4-phenyl-4H-pyran-3-carboxylate
aDepartment of Physics, Saranathan College of Engineering, Panjappur, Tiruchirappalli, Tamilnadu, India, bDepartment of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamil Nadu, India, cDepartment of Physics, K. Ramakrishnan College of Engineering, Samayapuram, Tiruchirappalli, Tamil Nadu, India, and dDepartment of Physics, Urumu Dhanalakshmi College, Tiruchirappalli, Tamil Nadu, India
*Correspondence e-mail: udkchemist@gmail.com, sakthi2udc@gmail.com
In the title compound, C17H16N2O3, the 4H-pyran ring adopts a boat conformation. In the crystal, N—H⋯N and N—H⋯O interactions link the molecules, forming an infinite ribbon running along the a-axis direction with N—H⋯N interactions forming centrosymmetric R22(12) graph-set motifs. The allyl side chain is disordered over two sets of sites with occupancies of 0.720 (7) and 0.280 (7).
Keywords: crystal structure; 4H-pyran derivatives.
CCDC reference: 1889948
Structure description
Pyran derivatives constitute a useful class of et al., 1997). A number of 2-amino-4H-pyrans are used as photoactive materials (Armesto et al., 1989), pigments (Rideout et al., 1976) and potentially biodegradable agrochemicals (Kumar et al., 2009). Substituted allyl 6-amino-4H-pyran derivatives exhibit a wide range of biological properties including antiproliferative and antitubercular activities (Panda et al., 1997; Mungra et al., 2011) and 4H-pyran derivatives are widely used as organic intermediates (Liang et al., 2009).
which are widely distributed in nature (MoriguchiThe 4H-pyran ring in the title compound (Fig. 1) exhibits a boat conformation with puckering parameters Q = 0.230 (3) Å, θ = 79.8 (7)° and φ = 191.1 (7)°. In this ring, the atoms O1 and C7 make the largest deviations of 0.118 (2) and 0.139 (2) Å, respectively, from the mean plane. The C7—C8—C9—C13 and C7—C11—C10—N1 torsion angles are 179.3 (2) and 171.0 (2)°, respectively. The dihedral angle between 4H-pyran ring and the phenyl ring is 85.51 (15)°. The bond lengths in the 4H-pyran ring are similar to those in a related compound (Mohandas et al., 2015). An intramolecular C—H⋯O hydrogen bond occurs.
In the crystal, N—H⋯N and N—H⋯O interactions (Table 1) link the molecules, forming an infinite ribbon running along [100] (Fig. 2). The N—H⋯N interactions form an R22(12) graph-set motif.
Synthesis and crystallization
A mixture of benzaldehyde (1.0 mmol), malononitrile (1.0 mmol), allyl 3-oxobutanoate (1.0 mmol) and a few drops of piperidine was stirred magnetically in 30 ml of absolute ethanol at 80°C for 90 min. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was allowed to cool to room temperature and the solvent was evaporated. The resulting solid was collected and washed with cold water and recrystallized from ethanol to obtain the pure product (yield 86%).
Refinement
Crystal data, data collection and structure . The allyl side chain is disordered and was refined as having two equivalent conformations with occupancies of 0.720 (7) and 0.280 (7).
details are summarized in Table 2Structural data
CCDC reference: 1889948
https://doi.org/10.1107/S2414314619000543/bv4022sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619000543/bv4022Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314619000543/bv4022Isup3.cml
Data collection: APEX2 (Bruker, 2008); cell
APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C17H16N2O3 | Z = 2 |
Mr = 296.32 | F(000) = 312 |
Triclinic, P1 | Dx = 1.285 Mg m−3 |
a = 8.2151 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.2850 (5) Å | Cell parameters from 4207 reflections |
c = 11.6086 (7) Å | θ = 2.5–23.4° |
α = 108.184 (4)° | µ = 0.09 mm−1 |
β = 103.004 (4)° | T = 293 K |
γ = 105.089 (2)° | BLOCK, orange |
V = 765.64 (8) Å3 | 0.20 × 0.20 × 0.15 mm |
Bruker Kappa APEXII CCD diffractometer | 2207 reflections with I > 2σ(I) |
ω and φ scan | Rint = 0.053 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 28.3°, θmin = 2.5° |
Tmin = 0.956, Tmax = 0.960 | h = −10→10 |
3789 measured reflections | k = −12→12 |
3789 independent reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.052 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.160 | w = 1/[σ2(Fo2) + (0.071P)2 + 0.1156P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3789 reflections | Δρmax = 0.21 e Å−3 |
237 parameters | Δρmin = −0.28 e Å−3 |
79 restraints | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.028 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The positions of the hydrogen atoms bound to the O and C atoms are identified from the difference electron density maps and their distances are geometrically optimized. The hydrogen atoms bound to the C atoms are treated as riding atoms, with d(C—H) = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, d(C—H) = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene and d(C—H) = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl groups. The amine protons were refined isotropically. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.13227 (16) | 0.88787 (15) | 0.32279 (13) | 0.0513 (4) | |
O2 | 0.72395 (18) | 0.92452 (18) | 0.36162 (17) | 0.0742 (5) | |
O3 | 0.62148 (18) | 1.06948 (19) | 0.26548 (15) | 0.0728 (5) | |
N1 | −0.0492 (2) | 0.7331 (2) | 0.38698 (18) | 0.0580 (5) | |
H1N1 | −0.080 (3) | 0.663 (3) | 0.4157 (19) | 0.057 (6)* | |
H1N2 | −0.109 (3) | 0.797 (3) | 0.376 (2) | 0.068 (6)* | |
N2 | 0.1936 (2) | 0.4855 (2) | 0.48236 (19) | 0.0700 (6) | |
C1 | 0.3644 (2) | 0.5954 (2) | 0.21556 (18) | 0.0474 (4) | |
C2 | 0.4475 (3) | 0.4852 (3) | 0.2186 (2) | 0.0693 (6) | |
H2A | 0.523004 | 0.495812 | 0.296026 | 0.083* | |
C3 | 0.4174 (4) | 0.3571 (3) | 0.1044 (3) | 0.0938 (9) | |
H3A | 0.472222 | 0.281595 | 0.106231 | 0.113* | |
C4 | 0.3083 (5) | 0.3415 (3) | −0.0102 (3) | 0.0942 (9) | |
H4A | 0.290072 | 0.256420 | −0.085936 | 0.113* | |
C5 | 0.2271 (4) | 0.4499 (3) | −0.0129 (2) | 0.0881 (8) | |
H5A | 0.152576 | 0.439516 | −0.090676 | 0.106* | |
C6 | 0.2543 (3) | 0.5753 (3) | 0.0988 (2) | 0.0700 (6) | |
H6A | 0.196780 | 0.648748 | 0.095559 | 0.084* | |
C7 | 0.3897 (2) | 0.7335 (2) | 0.33875 (16) | 0.0424 (4) | |
H7A | 0.494936 | 0.744799 | 0.405599 | 0.051* | |
C8 | 0.4222 (2) | 0.8932 (2) | 0.32389 (16) | 0.0421 (4) | |
C9 | 0.2989 (2) | 0.9618 (2) | 0.31696 (17) | 0.0454 (4) | |
C10 | 0.1074 (2) | 0.7670 (2) | 0.36705 (16) | 0.0437 (4) | |
C11 | 0.2308 (2) | 0.6973 (2) | 0.38400 (16) | 0.0426 (4) | |
C12 | 0.2067 (2) | 0.5791 (2) | 0.43693 (18) | 0.0488 (4) | |
C13 | 0.3033 (3) | 1.1169 (3) | 0.3039 (2) | 0.0652 (6) | |
H13A | 0.425021 | 1.184266 | 0.324493 | 0.098* | |
H13B | 0.251375 | 1.171848 | 0.361704 | 0.098* | |
H13C | 0.236508 | 1.094610 | 0.217107 | 0.098* | |
C14 | 0.6031 (2) | 0.9636 (2) | 0.31985 (18) | 0.0484 (4) | |
C15A | 0.814 (5) | 1.136 (3) | 0.2707 (18) | 0.084 (3) | 0.280 (7) |
H15A | 0.885611 | 1.222435 | 0.354245 | 0.101* | 0.280 (7) |
H15B | 0.864085 | 1.051113 | 0.257234 | 0.101* | 0.280 (7) |
C16A | 0.8150 (18) | 1.1965 (15) | 0.1739 (11) | 0.098 (3) | 0.280 (7) |
H16A | 0.885497 | 1.304306 | 0.198254 | 0.117* | 0.280 (7) |
C17A | 0.728 (2) | 1.1155 (18) | 0.0576 (11) | 0.149 (5) | 0.280 (7) |
H17A | 0.656193 | 1.007380 | 0.029871 | 0.179* | 0.280 (7) |
H17B | 0.734994 | 1.163255 | −0.001548 | 0.179* | 0.280 (7) |
C15B | 0.7942 (19) | 1.1526 (13) | 0.2641 (6) | 0.093 (2) | 0.720 (7) |
H15C | 0.824470 | 1.268629 | 0.307193 | 0.111* | 0.720 (7) |
H15D | 0.882796 | 1.122081 | 0.311836 | 0.111* | 0.720 (7) |
C16B | 0.8014 (7) | 1.1178 (6) | 0.1398 (4) | 0.1014 (17) | 0.720 (7) |
H16B | 0.721066 | 1.016544 | 0.079943 | 0.122* | 0.720 (7) |
C17B | 0.8942 (6) | 1.1959 (7) | 0.0949 (5) | 0.1199 (19) | 0.720 (7) |
H17C | 0.978344 | 1.298620 | 0.147859 | 0.144* | 0.720 (7) |
H17D | 0.880257 | 1.152447 | 0.007964 | 0.144* | 0.720 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0444 (7) | 0.0617 (8) | 0.0695 (9) | 0.0266 (6) | 0.0260 (6) | 0.0421 (7) |
O2 | 0.0458 (8) | 0.0656 (9) | 0.1176 (13) | 0.0250 (7) | 0.0311 (8) | 0.0375 (9) |
O3 | 0.0517 (8) | 0.0913 (11) | 0.0830 (10) | 0.0102 (7) | 0.0273 (7) | 0.0531 (9) |
N1 | 0.0509 (10) | 0.0682 (12) | 0.0831 (13) | 0.0301 (9) | 0.0369 (9) | 0.0483 (10) |
N2 | 0.0740 (12) | 0.0741 (12) | 0.0988 (15) | 0.0377 (10) | 0.0476 (11) | 0.0585 (12) |
C1 | 0.0468 (10) | 0.0454 (10) | 0.0596 (11) | 0.0179 (8) | 0.0293 (9) | 0.0237 (9) |
C2 | 0.0816 (15) | 0.0599 (13) | 0.0913 (16) | 0.0384 (12) | 0.0465 (13) | 0.0384 (12) |
C3 | 0.127 (2) | 0.0589 (15) | 0.127 (3) | 0.0528 (16) | 0.078 (2) | 0.0362 (16) |
C4 | 0.123 (2) | 0.0610 (16) | 0.090 (2) | 0.0183 (16) | 0.0658 (19) | 0.0093 (14) |
C5 | 0.0939 (19) | 0.0846 (18) | 0.0627 (15) | 0.0207 (15) | 0.0283 (13) | 0.0073 (13) |
C6 | 0.0752 (14) | 0.0731 (15) | 0.0587 (13) | 0.0329 (12) | 0.0226 (11) | 0.0165 (11) |
C7 | 0.0400 (9) | 0.0474 (10) | 0.0465 (10) | 0.0199 (7) | 0.0155 (7) | 0.0228 (8) |
C8 | 0.0421 (9) | 0.0431 (9) | 0.0429 (9) | 0.0140 (7) | 0.0165 (7) | 0.0185 (8) |
C9 | 0.0454 (10) | 0.0489 (10) | 0.0490 (10) | 0.0179 (8) | 0.0190 (8) | 0.0252 (8) |
C10 | 0.0441 (10) | 0.0476 (10) | 0.0464 (10) | 0.0174 (8) | 0.0192 (8) | 0.0236 (8) |
C11 | 0.0473 (10) | 0.0440 (9) | 0.0460 (10) | 0.0201 (8) | 0.0208 (8) | 0.0229 (8) |
C12 | 0.0496 (10) | 0.0516 (11) | 0.0595 (11) | 0.0246 (8) | 0.0273 (9) | 0.0285 (9) |
C13 | 0.0675 (13) | 0.0634 (13) | 0.0876 (16) | 0.0319 (11) | 0.0333 (12) | 0.0467 (12) |
C14 | 0.0458 (10) | 0.0440 (10) | 0.0512 (10) | 0.0131 (8) | 0.0194 (8) | 0.0135 (8) |
C15A | 0.057 (5) | 0.109 (5) | 0.094 (5) | 0.010 (4) | 0.030 (4) | 0.061 (4) |
C16A | 0.076 (4) | 0.110 (5) | 0.105 (5) | 0.001 (5) | 0.027 (4) | 0.069 (4) |
C17A | 0.191 (10) | 0.144 (8) | 0.111 (6) | 0.050 (8) | 0.035 (8) | 0.067 (7) |
C15B | 0.060 (4) | 0.118 (3) | 0.084 (2) | −0.006 (3) | 0.029 (2) | 0.047 (2) |
C16B | 0.093 (3) | 0.098 (3) | 0.096 (3) | 0.007 (3) | 0.049 (2) | 0.027 (3) |
C17B | 0.095 (3) | 0.175 (5) | 0.099 (3) | 0.018 (3) | 0.042 (2) | 0.085 (3) |
O1—C10 | 1.361 (2) | C7—H7A | 0.9800 |
O1—C9 | 1.389 (2) | C8—C9 | 1.331 (2) |
O2—C14 | 1.197 (2) | C8—C14 | 1.477 (2) |
O3—C14 | 1.319 (2) | C9—C13 | 1.486 (2) |
O3—C15B | 1.434 (13) | C10—C11 | 1.348 (2) |
O3—C15A | 1.52 (4) | C11—C12 | 1.409 (2) |
N1—C10 | 1.333 (2) | C13—H13A | 0.9600 |
N1—H1N1 | 0.83 (2) | C13—H13B | 0.9600 |
N1—H1N2 | 0.88 (2) | C13—H13C | 0.9600 |
N2—C12 | 1.143 (2) | C15A—C16A | 1.404 (4) |
C1—C2 | 1.375 (3) | C15A—H15A | 0.9700 |
C1—C6 | 1.376 (3) | C15A—H15B | 0.9700 |
C1—C7 | 1.521 (2) | C16A—C17A | 1.245 (4) |
C2—C3 | 1.396 (4) | C16A—H16A | 0.9300 |
C2—H2A | 0.9300 | C17A—H17A | 0.9300 |
C3—C4 | 1.367 (4) | C17A—H17B | 0.9300 |
C3—H3A | 0.9300 | C15B—C16B | 1.395 (4) |
C4—C5 | 1.349 (4) | C15B—H15C | 0.9700 |
C4—H4A | 0.9300 | C15B—H15D | 0.9700 |
C5—C6 | 1.371 (3) | C16B—C17B | 1.227 (3) |
C5—H5A | 0.9300 | C16B—H16B | 0.9300 |
C6—H6A | 0.9300 | C17B—H17C | 0.9300 |
C7—C8 | 1.508 (2) | C17B—H17D | 0.9300 |
C7—C11 | 1.511 (2) | ||
C10—O1—C9 | 119.93 (13) | C11—C10—O1 | 121.05 (15) |
C14—O3—C15B | 120.1 (4) | C10—C11—C12 | 119.89 (15) |
C14—O3—C15A | 110.7 (7) | C10—C11—C7 | 121.69 (15) |
C10—N1—H1N1 | 120.4 (14) | C12—C11—C7 | 118.27 (14) |
C10—N1—H1N2 | 116.0 (14) | N2—C12—C11 | 177.5 (2) |
H1N1—N1—H1N2 | 123 (2) | C9—C13—H13A | 109.5 |
C2—C1—C6 | 118.3 (2) | C9—C13—H13B | 109.5 |
C2—C1—C7 | 120.80 (19) | H13A—C13—H13B | 109.5 |
C6—C1—C7 | 120.86 (16) | C9—C13—H13C | 109.5 |
C1—C2—C3 | 119.4 (2) | H13A—C13—H13C | 109.5 |
C1—C2—H2A | 120.3 | H13B—C13—H13C | 109.5 |
C3—C2—H2A | 120.3 | O2—C14—O3 | 122.49 (17) |
C4—C3—C2 | 120.8 (2) | O2—C14—C8 | 121.74 (17) |
C4—C3—H3A | 119.6 | O3—C14—C8 | 115.75 (16) |
C2—C3—H3A | 119.6 | C16A—C15A—O3 | 108 (2) |
C5—C4—C3 | 119.7 (2) | C16A—C15A—H15A | 110.1 |
C5—C4—H4A | 120.1 | O3—C15A—H15A | 110.1 |
C3—C4—H4A | 120.1 | C16A—C15A—H15B | 110.1 |
C4—C5—C6 | 120.1 (3) | O3—C15A—H15B | 110.1 |
C4—C5—H5A | 120.0 | H15A—C15A—H15B | 108.4 |
C6—C5—H5A | 120.0 | C17A—C16A—C15A | 124.5 (11) |
C5—C6—C1 | 121.7 (2) | C17A—C16A—H16A | 117.7 |
C5—C6—H6A | 119.1 | C15A—C16A—H16A | 117.7 |
C1—C6—H6A | 119.1 | C16A—C17A—H17A | 120.0 |
C8—C7—C11 | 109.31 (13) | C16A—C17A—H17B | 120.0 |
C8—C7—C1 | 112.26 (14) | H17A—C17A—H17B | 120.0 |
C11—C7—C1 | 111.41 (14) | C16B—C15B—O3 | 112.7 (8) |
C8—C7—H7A | 107.9 | C16B—C15B—H15C | 109.1 |
C11—C7—H7A | 107.9 | O3—C15B—H15C | 109.1 |
C1—C7—H7A | 107.9 | C16B—C15B—H15D | 109.1 |
C9—C8—C14 | 124.63 (16) | O3—C15B—H15D | 109.1 |
C9—C8—C7 | 122.28 (15) | H15C—C15B—H15D | 107.8 |
C14—C8—C7 | 113.08 (15) | C17B—C16B—C15B | 131.9 (8) |
C8—C9—O1 | 120.91 (15) | C17B—C16B—H16B | 114.0 |
C8—C9—C13 | 131.04 (17) | C15B—C16B—H16B | 114.0 |
O1—C9—C13 | 108.05 (15) | C16B—C17B—H17C | 120.0 |
N1—C10—C11 | 128.55 (17) | C16B—C17B—H17D | 120.0 |
N1—C10—O1 | 110.40 (15) | H17C—C17B—H17D | 120.0 |
C6—C1—C2—C3 | −0.2 (3) | C9—O1—C10—N1 | 168.74 (16) |
C7—C1—C2—C3 | 178.11 (18) | C9—O1—C10—C11 | −11.9 (2) |
C1—C2—C3—C4 | 0.8 (4) | N1—C10—C11—C12 | −4.5 (3) |
C2—C3—C4—C5 | −0.7 (4) | O1—C10—C11—C12 | 176.32 (16) |
C3—C4—C5—C6 | 0.1 (4) | N1—C10—C11—C7 | 171.01 (18) |
C4—C5—C6—C1 | 0.4 (4) | O1—C10—C11—C7 | −8.2 (3) |
C2—C1—C6—C5 | −0.4 (3) | C8—C7—C11—C10 | 21.4 (2) |
C7—C1—C6—C5 | −178.71 (19) | C1—C7—C11—C10 | −103.26 (19) |
C2—C1—C7—C8 | 135.66 (18) | C8—C7—C11—C12 | −163.08 (15) |
C6—C1—C7—C8 | −46.0 (2) | C1—C7—C11—C12 | 72.3 (2) |
C2—C1—C7—C11 | −101.37 (19) | C15B—O3—C14—O2 | −5.2 (5) |
C6—C1—C7—C11 | 76.9 (2) | C15A—O3—C14—O2 | −2.7 (9) |
C11—C7—C8—C9 | −17.1 (2) | C15B—O3—C14—C8 | 176.0 (4) |
C1—C7—C8—C9 | 106.99 (19) | C15A—O3—C14—C8 | 178.4 (9) |
C11—C7—C8—C14 | 162.07 (14) | C9—C8—C14—O2 | 158.52 (19) |
C1—C7—C8—C14 | −73.79 (18) | C7—C8—C14—O2 | −20.7 (2) |
C14—C8—C9—O1 | −179.35 (15) | C9—C8—C14—O3 | −22.6 (3) |
C7—C8—C9—O1 | −0.2 (3) | C7—C8—C14—O3 | 158.17 (15) |
C14—C8—C9—C13 | 0.1 (3) | C14—O3—C15A—C16A | 158.0 (12) |
C7—C8—C9—C13 | 179.25 (19) | O3—C15A—C16A—C17A | −56 (3) |
C10—O1—C9—C8 | 16.3 (2) | C14—O3—C15B—C16B | 117.5 (6) |
C10—O1—C9—C13 | −163.28 (16) | O3—C15B—C16B—C17B | 152.6 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···N2i | 0.83 (2) | 2.24 (2) | 3.051 (2) | 166.0 (19) |
N1—H1N2···O2ii | 0.88 (2) | 2.04 (2) | 2.919 (2) | 171 (2) |
C13—H13A···O3 | 0.96 | 2.27 | 2.868 (3) | 120 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z. |
Acknowledgements
The authors thank Dr D. Srinivasan, Principal of K. Ramakrishnan College of Engineering, Trichy, for making the work successful.
References
Armesto, D., Horspool, W. M., Martin, N., Ramos, A. & Seoane, C. (1989). J. Org. Chem. 54, 3069–3072. CrossRef CAS Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kumar, D., Reddy, V. B., Sharad, S., Dube, U. & Kapur, S. (2009). Eur. J. Med. Chem. 44, 3805–3809. Web of Science CrossRef PubMed CAS Google Scholar
Liang, F., Cheng, X., Liu, J. & Liu, Q. (2009). Chem. Commun. pp. 3636–3638. Web of Science CrossRef Google Scholar
Mohandas, T., Kumar, C. U., Devi, S. A., Prakasam, B. A., Sakthivel, P. & Vidhyasagar, T. (2015). Acta Cryst. E71, o101–o102. CrossRef IUCr Journals Google Scholar
Moriguchi, T., Matsuura, H., Itakura, Y., Katsuki, H., Saito, H. & Nishiyama, N. (1997). Life Sci. 61, 1413–1420. CrossRef CAS Google Scholar
Mungra, D. C., Patel, M. P., Rajani, D. P. & Patel, R. G. (2011). Eur. J. Med. Chem. 46, 4192–4200. Web of Science CrossRef CAS PubMed Google Scholar
Panda, D., Singh, J. P. & Wilson, L. (1997). J. Biol. Chem. 272, 7681–7687. CrossRef CAS PubMed Google Scholar
Rideout, J. A., Smith, I. R. & Sutherland, M. D. (1976). Aust. J. Chem. 29, 1087–1098. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.