metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Redetermination of poly[di-μ3-iodido-[μ-1,2-trans-(pyridin-4-yl)ethene-κ2N:N′]dicopper(I)]

CROSSMARK_Color_square_no_text.svg

aAustin College, 900 N Grand, Sherman, TX 75090, USA, and bDepartment of Chemistry, University of North Texas, 1508 W. Mulberry, Denton, TX 76201, USA
*Correspondence e-mail: bsmucker@austincollege.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 21 December 2018; accepted 22 January 2019; online 29 January 2019)

The re-investigated structure of the title compound, [Cu2I2(C12H10N2)]n, a two-dimensional coordination polymer crystallizing with monoclinic (P21/n) symmetry, is based on data collected at 100 K, while the previously reported structure was obtained with data collected at 203 K [Blake et al. (1999[Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). Cryst. Eng. 2, 181-195.]). Cryst. Eng. 2, 181–195]. The refinement of the crystal structure is greatly improved; for example, the wR2 residual converges to 0.047 for 1532 independent data, versus wR2 = 0.179 for 992 independent data in the 1999 study.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The previously reported structure for the title compound (Blake et al., 1999[Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). Cryst. Eng. 2, 181-195.]) at 203 K with R1 = 6.48% [I > 2σ(I)] was re-investigated at 100 K (Fig. 1[link]), producing a much more accurate refinement for the crystal structure. We were able to achieve R1 = 1.78% and wR2 = 4.74% (as compared with R1 = 6.48% and wR2 = 17.86% for the structure reported by Blake et al.) after collecting 1532 independent reflections for 83 refined parameters (as compared with 992 independent reflections for 82 parameters in the previously reported structure). Our completeness is 100%, a vast improvement over the reported 76.6%, and our goodness of fit is 1.073 (as compared with 1.109). We were able to achieve an Rint of 2.19% after collecting experimental data up to 2θmax angle of 54° as compared with an Rint of 13.48% after collecting experimental data up to 2θmax angle of 48°. A comparison of the improved resolution of select bond lengths between this refinement and that reported by Blake et al. is given in Table 1[link].

Table 1
Comparison of some bond lengths (Å) in the reported refinement and the refinement published by Blake et al. (1999[Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). Cryst. Eng. 2, 181-195.])

Bond This structure Structure of Blake et al.
Cu1—I1 2.6200 (4) 2.6314 (16)
Cu1⋯Cu1i 2.7852 (4) 2.8182 (17)
Cu1—N1 2.039 (2) 2.055 (8)
C6=C6ii 1.329 (5) 1.31 (2)
N1—C1 1.344 (4) 1.360 (14)
N1—C5 1.343 (4) 1.331 (15)
Symmetry codes: (i) [{3\over 2}] − x, y − [{1\over 2}], [{3\over 2}] − z; (ii) −x, 1 − y, 1 − z.
[Figure 1]
Figure 1
Ellipsoid plot (50% probability level for all non-hydrogen atoms) of the title compound with additional Cu–I fragments included to indicate the directionality of the two-dimensional coordination polymer.

Analysis of the crystal packing shows that mol­ecules in the crystal form staggered sheets (Fig. 2[link]). Equidistant inter­molecular contacts Cu1⋯Cu1 [2.7852 (4) Å] and I1⋯I1 [4.0743 (1) Å] link these sheets along the b-axis direction and form stacks (Fig. 3[link]).

[Figure 2]
Figure 2
Fragment of the crystal packing along the b-axis direction.
[Figure 3]
Figure 3
Fragment of the crystal packing along the a-axis direction. Dashed lines indicate inter­molecular Cu⋯Cu and I⋯I contacts.

Synthesis and crystallization

Following the general procedure for making copper(I)-pyridine-iodide clusters (Parmeggiani & Sacchetti, 2012[Parmeggiani, F. & Sacchetti, A. (2012). J. Chem. Educ. 89, 946-949.]), an aceto­nitrile solution of copper(I) iodide, ascorbic acid, and potassium iodide was added to a thin tube and layered first with aceto­nitrile then with an aceto­nitrile solution of 1,2-di(pyridin-4-yl)ethyl­ene. Large yello–orange crystals were present after 1 week.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Single crystal X-ray data were collected using a Rigaku XtaLAB Synergy-S diffractometer equipped with a HyPix-6000HE Hybrid Photon Counting (HPC) detector and dual Mo and Cu microfocus sealed X-ray source as well as a low-temperature Oxford Cryostream 800 liquid nitro­gen cooling system at 100 (2) K. The data collection strategy was calculated within CrysAlis PRO (Rigaku OD, 2018[Rigaku, OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]) to ensure desired data redundancy and percent completeness.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2I2(C12H10N2)]
Mr 563.1
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.4695 (3), 4.0743 (1), 18.6048 (6)
β (°) 102.878 (4)
V3) 699.75 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 7.43
Crystal size (mm) 0.09 × 0.03 × 0.02
 
Data collection
Diffractometer Rigaku XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku, OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.604, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4364, 1532, 1435
Rint 0.022
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.047, 1.07
No. of reflections 1532
No. of parameters 83
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.70
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku, OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).

Poly[di-µ3-iodido-[µ-1,2-trans-(pyridin-4-yl)ethene-κ2N:N']dicopper(I)] top
Crystal data top
[Cu2I2(C12H10N2)]F(000) = 520
Mr = 563.1Dx = 2.673 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4695 (3) ÅCell parameters from 3630 reflections
b = 4.0743 (1) Åθ = 2.3–31.1°
c = 18.6048 (6) ŵ = 7.43 mm1
β = 102.878 (4)°T = 100 K
V = 699.75 (4) Å3Plate, clear light yellow
Z = 20.09 × 0.03 × 0.02 mm
Data collection top
Rigaku XtaLAB Synergy, Dualflex, HyPix
diffractometer
1532 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet X-ray Source1435 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
ω scansθmax = 27.1°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 1212
Tmin = 0.604, Tmax = 1.000k = 55
4364 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.023P)2 + 0.7134P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
1532 reflectionsΔρmax = 0.46 e Å3
83 parametersΔρmin = 0.70 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0016 (3)
Special details top

Refinement. Single crystal X-ray data were collected using a Rigaku XtaLAB Synergy-S diffractometer equipped with a HyPix-6000HE Hybrid Photon Counting (HPC) detector and dual Mo and Cu microfocus sealed X-ray source as well as a low-temperature Oxford Cryostream 800 liquid nitrogen cooling system at 100 (2) K. The data collection strategy was calculated within CrysAlis PRO (Rigaku OD, 2018; Table 2) to ensure desired data redundancy and percent completeness. All non-hydrogen atoms were refined anisotropically using SHELXL (Sheldrick, 2015b) and the space group was unambiguously verified by PLATON (Spek, 2009). All H atoms were attached via the riding model at calculated positions, with calculated isotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.68604 (2)0.62004 (4)0.84525 (2)0.01014 (9)
Cu10.68200 (4)0.62033 (8)0.70399 (2)0.01281 (10)
N10.4696 (2)0.5974 (5)0.65013 (12)0.0123 (5)
C10.3630 (3)0.7307 (7)0.67755 (14)0.0141 (5)
H10.3871650.8312710.7235390.017*
C20.2186 (3)0.7258 (7)0.64066 (15)0.0149 (6)
H20.1485560.8213870.6618900.018*
C30.1788 (3)0.5767 (7)0.57138 (14)0.0115 (5)
C40.2899 (3)0.4386 (7)0.54285 (14)0.0139 (5)
H40.2691630.3381180.4968050.017*
C50.4311 (3)0.4528 (7)0.58375 (14)0.0138 (5)
H50.5033480.3567470.5641670.017*
C60.0256 (3)0.5728 (7)0.53223 (15)0.0122 (5)
H60.0404260.6804600.5542440.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01214 (11)0.00854 (12)0.01046 (11)0.00082 (6)0.00406 (7)0.00027 (6)
Cu10.01037 (17)0.0149 (2)0.01267 (17)0.00004 (12)0.00152 (13)0.00116 (13)
N10.0103 (10)0.0145 (12)0.0116 (10)0.0003 (9)0.0013 (8)0.0003 (9)
C10.0137 (13)0.0161 (14)0.0116 (12)0.0018 (11)0.0011 (10)0.0024 (11)
C20.0136 (13)0.0155 (14)0.0166 (13)0.0020 (11)0.0053 (10)0.0017 (11)
C30.0099 (12)0.0129 (13)0.0117 (12)0.0014 (10)0.0021 (10)0.0024 (10)
C40.0137 (13)0.0178 (14)0.0095 (11)0.0012 (11)0.0013 (10)0.0023 (11)
C50.0115 (12)0.0168 (14)0.0132 (12)0.0013 (11)0.0028 (10)0.0010 (11)
C60.0109 (12)0.0130 (13)0.0135 (12)0.0008 (10)0.0042 (9)0.0017 (10)
Geometric parameters (Å, º) top
I1—Cu12.6200 (4)C2—H20.9300
I1—Cu1i2.6563 (4)C2—C31.399 (4)
I1—Cu1ii2.6582 (4)C3—C41.398 (4)
Cu1—Cu1i2.7852 (4)C3—C61.472 (4)
Cu1—Cu1ii2.7852 (4)C4—H40.9300
Cu1—N12.039 (2)C4—C51.384 (4)
N1—C11.344 (4)C5—H50.9300
N1—C51.343 (4)C6—C6iii1.329 (5)
C1—H10.9300C6—H60.9300
C1—C21.386 (4)
Cu1—I1—Cu1i63.719 (10)C5—N1—C1117.0 (2)
Cu1—I1—Cu1ii63.694 (10)N1—C1—H1118.4
Cu1i—I1—Cu1ii100.106 (12)N1—C1—C2123.2 (2)
I1—Cu1—I1ii116.327 (13)C2—C1—H1118.4
I1—Cu1—I1i116.263 (13)C1—C2—H2120.1
I1ii—Cu1—I1i100.105 (13)C1—C2—C3119.7 (3)
I1—Cu1—Cu1i58.776 (13)C3—C2—H2120.1
I1i—Cu1—Cu1ii125.749 (19)C2—C3—C6119.6 (2)
I1ii—Cu1—Cu1ii57.506 (9)C4—C3—C2117.0 (2)
I1ii—Cu1—Cu1i125.731 (19)C4—C3—C6123.4 (2)
I1—Cu1—Cu1ii58.820 (13)C3—C4—H4120.3
I1i—Cu1—Cu1i57.487 (9)C5—C4—C3119.4 (2)
Cu1i—Cu1—Cu1ii94.010 (19)C5—C4—H4120.3
N1—Cu1—I1ii110.72 (7)N1—C5—C4123.7 (3)
N1—Cu1—I1106.57 (6)N1—C5—H5118.2
N1—Cu1—I1i106.46 (6)C4—C5—H5118.2
N1—Cu1—Cu1ii127.29 (7)C3—C6—H6117.5
N1—Cu1—Cu1i122.60 (7)C6iii—C6—C3124.9 (3)
C1—N1—Cu1122.50 (18)C6iii—C6—H6117.5
C5—N1—Cu1120.53 (18)
Cu1—N1—C1—C2178.0 (2)C2—C3—C4—C50.5 (4)
Cu1—N1—C5—C4177.6 (2)C2—C3—C6—C6iii177.1 (3)
N1—C1—C2—C30.0 (5)C3—C4—C5—N10.9 (5)
C1—N1—C5—C40.8 (4)C4—C3—C6—C6iii3.2 (5)
C1—C2—C3—C40.1 (4)C5—N1—C1—C20.3 (4)
C1—C2—C3—C6179.8 (3)C6—C3—C4—C5179.8 (3)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x, y+1, z+1.
Comparison of some bond lengths (Å) in the reported refinement and the refinement published by Blake et al. (1999) top
BondThis structureStructure of Blake et al.
Cu1—I12.6200 (4)2.6314 (16)
Cu1···Cu1i2.7852 (4)2.8182 (17)
Cu1—N12.039 (2)2.055 (8)
C6C6ii1.329 (5)1.31 (2)
N1—C11.344 (4)1.360 (14)
N1—C51.343 (4)1.331 (15)
Symmetry codes: (i) 3/2 - x, y - 1/2, 3/2 - z; (ii) -x, 1 - y, 1 - z.
 

Acknowledgements

We acknowledge the NSF MRI Program (CHE-1726652) and the UNT for supporting the acquisition of the Rigaku XtaLAB Synergy-S X-ray diffractometer.

Funding information

Funding for this research was provided by: National Science Foundation.

References

First citationBlake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). Cryst. Eng. 2, 181–195.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParmeggiani, F. & Sacchetti, A. (2012). J. Chem. Educ. 89, 946–949.  CrossRef CAS Google Scholar
First citationRigaku, OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds