organic compounds
Illicium difengpi K.I.B et K.I.M.
of the ethyl 2,4-dihydroxy-6-methylbenzoate fromaSchool of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China, and bDepartment of Pharmacy, Xuhui District Central Hospital, Shanghai, 200031, People's Republic of China
*Correspondence e-mail: zhangningpharm@163.com
The title compound, C10H12O4, was isolated from Illicium difengpi K.I.B et K.I.M. An intramolecular O—H⋯O hydrogen bond stabilizes the molecular conformation. In the crystal, the compound forms offset slanted stacks of alternating inversion-related molecules along the a axis direction. Intermolecular O—H⋯O hydrogen bonds link the molecules into double strands parallel to the [101] direction.
CCDC reference: 1885274
Structure description
Illicium difengpi is a small shrub growing in Guangxi province of China, belonging to the family Illiciaceae (He et al., 2014). The stem bark of I. difengpi is listed in the Chinese Pharmacopoeia (Pharmacopeia Committee of P. R. of China, 2010). It is an important traditional Chinese medicine and is mainly used as a treatment for rheumatic arthritics (Huang et al., 1996). The alcoholature of the stem bark of I. difengpi showed outstanding clinical efficacy and pharmacodynamics potency. Previous studies led to the isolation of phenylpropanoids, and from an extract of I. difengpi (Kouno et al., 1992,1993; Wang et al., 1994; Huang et al., 1997; Fang et al., 2010, 2011; Chu et al., 2011; Li et al., 2013, 2015a,b; Pan et al., 2016). An ongoing search for bioactive natural products from folk medicine resulted in the isolation of the title compound, which was previously obtained from Umbilicaria esculenta (Miyoshi) Minks (Qiu & Ding, 2001). The isolation of the title compound from the stem bark of I. difengpi and its are reported here.
The molecular structure of the title compound is shown in Fig. 1. The molecular structure contains a methyl group, two hydroxyl groups, and a carboethoxy group, which are attached to C2, C4, C6 and C7 of the central benzene ring, respectively. An intramolecular O3—H3⋯O1 hydrogen bond (Table 1) stabilizes the molecular conformation.
|
In the crystal, O4—H4⋯O3i and C3—H3A⋯O4ii hydrogen bonds link the molecules into double strands parallel to the [101] direction. (Fig. 2, Table 2). In the solid state, the compound also forms offset slanted stacks of alternating inversion-related molecules along the a-axis direction. (Fig. 3)
A search of the Cambridge Crystallographic Database (version 5.39 with updates up to May 2018; Groom et al., 2016) indicated that no 2,4-dihydroxy-6-methylbenzoic acid ethyl ester has been structurally characterized. Four structurally similar 2,4-dihydroxy-6-methylbenzoic acid derivatives have been reported, namely (2-ethoxycarbonyl-3,5-dihydroxyphenyl)acetic acid monohydrate (Luck & Mendenhall, 2002), phomozin monohydrate (Mazars et al.,1990), 2,3-dimethyl-3-(O-orsellinoyl)lactic acid monohydrate (Declercq et al.,1991) and 2,3,4,5-tetrahydroxypentyl 4,6-dihydroxy-2,3-dimethylbenzoate (Talontsi et al., 2012).
Synthesis and crystallization
The stem bark of Illicium difengpi (5.0 kg), which was purchased from Caitongde Pharmacy, Shanghai, China, was powdered and extracted three times with aqueous ethanol (ethanol/water 8:2) under reflux. The solvent was then evaporated under reduced pressure to obtain a dry residue (150 g). The residue was suspended in water (2 L) and extracted successively with petroleum ether (3 × 2 L), EtOAc (3 × 2 L) and BuOH (3 × 2 L), affording 5 g, 70 g, and 40 g, respectively, of each dried fraction. The EtOAc fraction was subjected to silica gel using (CH2Cl2/CH3OH, 200:1 to 2:1, v/v) to give four main fractions (Fr.1-1–Fr.1-4), of which Fr.1-2 was purified by successive silica gel (CH2Cl2/CH3OH, 100:1→20:1); 2,4-dihydroxy-6-methylbenzoic acid ethyl ester (30 mg) was obtained from the fraction eluted by CH2Cl2/CH3OH (40:1). Single crystals suitable for X-ray were obtained by slow evaporation from acetone solution after two weeks at room temperature.
Structural data
CCDC reference: 1885274
https://doi.org/10.1107/S2414314618017765/zl4028sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2414314618017765/zl4028Isup2.cml
Data collection: SMART (Bruker, 1997); cell
SMART (Bruker, 1997); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).C10H12O4 | F(000) = 416 |
Mr = 196.20 | Dx = 1.348 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.818 (3) Å | Cell parameters from 878 reflections |
b = 17.017 (6) Å | θ = 2.4–26.4° |
c = 8.189 (3) Å | µ = 0.10 mm−1 |
β = 117.459 (4)° | T = 293 K |
V = 966.7 (6) Å3 | Sheet, colorless |
Z = 4 | 0.15 × 0.13 × 0.08 mm |
Bruker SMART APEX CCD area-detector diffractometer | 1390 reflections with I > 2σ(I) |
phi and ω scans | Rint = 0.037 |
Absorption correction: multi-scan (SAINT-Plus; Bruker, 1999) | θmax = 27.5°, θmin = 2.4° |
Tmin = 0.405, Tmax = 0.968 | h = −5→10 |
4542 measured reflections | k = −21→22 |
2097 independent reflections | l = −10→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: mixed |
wR(F2) = 0.172 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.1019P)2] where P = (Fo2 + 2Fc2)/3 |
2097 reflections | (Δ/σ)max < 0.001 |
135 parameters | Δρmax = 0.45 e Å−3 |
2 restraints | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The positions of hydroxyl H atoms attached to O3 and O4 were refined. All other H atoms were positioned geometrically and treated as riding atoms: C—H = 0.93–0.97 Å. Uiso(H) were set to 1.5Ueq(C/O) for CH3 and OH, and to 1.2Ueq(C) for CH2 and aromatic C—H. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.0021 (2) | 0.46363 (7) | −0.27773 (18) | 0.0663 (5) | |
O2 | 0.11562 (18) | 0.57656 (6) | −0.13811 (16) | 0.0529 (4) | |
O3 | 0.1367 (2) | 0.33529 (7) | −0.13142 (19) | 0.0679 (5) | |
H3 | 0.050 (4) | 0.3664 (16) | −0.216 (3) | 0.102* | |
O4 | 0.6778 (2) | 0.32885 (8) | 0.44828 (18) | 0.0718 (5) | |
H4 | 0.648 (4) | 0.2753 (16) | 0.410 (4) | 0.108* | |
C1 | 0.2660 (2) | 0.45967 (8) | 0.0181 (2) | 0.0420 (4) | |
C2 | 0.2682 (2) | 0.37634 (9) | 0.0131 (2) | 0.0484 (4) | |
C3 | 0.4047 (3) | 0.33288 (9) | 0.1552 (3) | 0.0551 (5) | |
H3A | 0.403637 | 0.278312 | 0.148712 | 0.066* | |
C4 | 0.5412 (3) | 0.37051 (10) | 0.3052 (2) | 0.0524 (5) | |
C5 | 0.5453 (3) | 0.45134 (10) | 0.3168 (2) | 0.0525 (5) | |
H5 | 0.640522 | 0.475644 | 0.420632 | 0.063* | |
C6 | 0.4098 (2) | 0.49723 (9) | 0.1763 (2) | 0.0450 (4) | |
C7 | 0.1165 (2) | 0.49885 (9) | −0.1435 (2) | 0.0450 (4) | |
C8 | −0.0274 (3) | 0.61634 (11) | −0.3005 (3) | 0.0612 (5) | |
H8A | −0.156271 | 0.600967 | −0.324130 | 0.073* | |
H8B | −0.010341 | 0.602890 | −0.407205 | 0.073* | |
C9 | 0.0009 (4) | 0.70282 (12) | −0.2630 (3) | 0.0802 (7) | |
H9A | −0.015784 | 0.715282 | −0.156911 | 0.120* | |
H9B | −0.091898 | 0.731300 | −0.367576 | 0.120* | |
H9C | 0.128638 | 0.717279 | −0.240524 | 0.120* | |
C10 | 0.4251 (3) | 0.58478 (9) | 0.2029 (3) | 0.0592 (5) | |
H10A | 0.535726 | 0.597063 | 0.317280 | 0.089* | |
H10B | 0.310970 | 0.604287 | 0.205170 | 0.089* | |
H10C | 0.438365 | 0.608915 | 0.103419 | 0.089* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0702 (9) | 0.0471 (7) | 0.0545 (8) | −0.0021 (6) | 0.0056 (7) | −0.0024 (5) |
O2 | 0.0591 (8) | 0.0349 (6) | 0.0567 (8) | 0.0057 (5) | 0.0198 (6) | 0.0033 (5) |
O3 | 0.0783 (10) | 0.0327 (6) | 0.0659 (9) | −0.0050 (6) | 0.0105 (7) | −0.0064 (5) |
O4 | 0.0743 (10) | 0.0545 (8) | 0.0646 (9) | 0.0156 (7) | 0.0131 (8) | 0.0103 (6) |
C1 | 0.0470 (9) | 0.0329 (8) | 0.0473 (9) | −0.0001 (6) | 0.0228 (8) | −0.0009 (6) |
C2 | 0.0547 (10) | 0.0351 (8) | 0.0517 (10) | −0.0036 (7) | 0.0214 (8) | −0.0036 (7) |
C3 | 0.0657 (12) | 0.0326 (8) | 0.0659 (11) | 0.0043 (8) | 0.0294 (10) | 0.0027 (8) |
C4 | 0.0542 (10) | 0.0455 (9) | 0.0558 (10) | 0.0095 (8) | 0.0238 (9) | 0.0080 (8) |
C5 | 0.0501 (10) | 0.0517 (10) | 0.0479 (10) | −0.0036 (7) | 0.0159 (8) | −0.0053 (7) |
C6 | 0.0497 (9) | 0.0377 (8) | 0.0484 (9) | −0.0032 (7) | 0.0234 (8) | −0.0029 (7) |
C7 | 0.0496 (9) | 0.0357 (8) | 0.0485 (9) | −0.0018 (7) | 0.0217 (8) | −0.0015 (7) |
C8 | 0.0674 (12) | 0.0505 (10) | 0.0580 (11) | 0.0125 (9) | 0.0223 (10) | 0.0125 (8) |
C9 | 0.0965 (17) | 0.0464 (11) | 0.0998 (17) | 0.0137 (10) | 0.0471 (14) | 0.0177 (10) |
C10 | 0.0657 (12) | 0.0390 (9) | 0.0612 (11) | −0.0087 (8) | 0.0192 (10) | −0.0093 (8) |
O1—C7 | 1.220 (2) | C4—C5 | 1.378 (3) |
O2—C7 | 1.323 (2) | C5—C6 | 1.390 (2) |
O2—C8 | 1.451 (2) | C5—H5 | 0.9300 |
O3—C2 | 1.3502 (19) | C6—C10 | 1.502 (2) |
O3—H3 | 0.89 (2) | C8—C9 | 1.499 (3) |
O4—C4 | 1.365 (2) | C8—H8A | 0.9700 |
O4—H4 | 0.96 (3) | C8—H8B | 0.9700 |
C1—C6 | 1.417 (2) | C9—H9A | 0.9600 |
C1—C2 | 1.419 (2) | C9—H9B | 0.9600 |
C1—C7 | 1.461 (2) | C9—H9C | 0.9600 |
C2—C3 | 1.377 (2) | C10—H10A | 0.9600 |
C3—C4 | 1.359 (2) | C10—H10B | 0.9600 |
C3—H3A | 0.9300 | C10—H10C | 0.9600 |
C7—O2—C8 | 116.70 (13) | O1—C7—O2 | 120.51 (15) |
C2—O3—H3 | 112.1 (18) | O1—C7—C1 | 123.39 (15) |
C4—O4—H4 | 103.7 (17) | O2—C7—C1 | 116.10 (13) |
C6—C1—C2 | 117.54 (14) | O2—C8—C9 | 106.95 (15) |
C6—C1—C7 | 126.02 (14) | O2—C8—H8A | 110.3 |
C2—C1—C7 | 116.42 (14) | C9—C8—H8A | 110.3 |
O3—C2—C3 | 116.31 (14) | O2—C8—H8B | 110.3 |
O3—C2—C1 | 121.87 (14) | C9—C8—H8B | 110.3 |
C3—C2—C1 | 121.82 (15) | H8A—C8—H8B | 108.6 |
C4—C3—C2 | 119.36 (15) | C8—C9—H9A | 109.5 |
C4—C3—H3A | 120.3 | C8—C9—H9B | 109.5 |
C2—C3—H3A | 120.3 | H9A—C9—H9B | 109.5 |
C3—C4—O4 | 120.56 (15) | C8—C9—H9C | 109.5 |
C3—C4—C5 | 121.07 (15) | H9A—C9—H9C | 109.5 |
O4—C4—C5 | 118.36 (16) | H9B—C9—H9C | 109.5 |
C4—C5—C6 | 121.27 (16) | C6—C10—H10A | 109.5 |
C4—C5—H5 | 119.4 | C6—C10—H10B | 109.5 |
C6—C5—H5 | 119.4 | H10A—C10—H10B | 109.5 |
C5—C6—C1 | 118.93 (15) | C6—C10—H10C | 109.5 |
C5—C6—C10 | 117.23 (15) | H10A—C10—H10C | 109.5 |
C1—C6—C10 | 123.84 (14) | H10B—C10—H10C | 109.5 |
C6—C1—C2—O3 | 179.79 (15) | C2—C1—C6—C5 | 0.4 (2) |
C7—C1—C2—O3 | −1.4 (2) | C7—C1—C6—C5 | −178.29 (16) |
C6—C1—C2—C3 | −0.3 (2) | C2—C1—C6—C10 | −179.25 (15) |
C7—C1—C2—C3 | 178.47 (16) | C7—C1—C6—C10 | 2.1 (3) |
O3—C2—C3—C4 | −179.87 (17) | C8—O2—C7—O1 | −2.1 (2) |
C1—C2—C3—C4 | 0.3 (3) | C8—O2—C7—C1 | 177.74 (14) |
C2—C3—C4—O4 | 179.75 (17) | C6—C1—C7—O1 | 178.68 (16) |
C2—C3—C4—C5 | −0.2 (3) | C2—C1—C7—O1 | 0.0 (2) |
C3—C4—C5—C6 | 0.3 (3) | C6—C1—C7—O2 | −1.1 (2) |
O4—C4—C5—C6 | −179.68 (16) | C2—C1—C7—O2 | −179.83 (14) |
C4—C5—C6—C1 | −0.4 (2) | C7—O2—C8—C9 | −179.38 (14) |
C4—C5—C6—C10 | 179.29 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1 | 0.89 (2) | 1.72 (3) | 2.4868 (18) | 143 (3) |
O4—H4···O3i | 0.96 (3) | 1.91 (3) | 2.853 (2) | 169 (3) |
C3—H3A···O4ii | 0.93 | 2.54 | 3.290 (2) | 138 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
The authors thank Professor Zhenxia Chen (Department of Chemistry, Fudan University, Shanghai) for the structure analysis.
Funding information
Funding for this research was provided by: Research Project of Xuhui District Central Hospital (award No. 201706).
References
Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chu, S.-S., Wang, C.-F., Du, S.-S., Liu, S.-L. & Liu, Z.-L. (2011). J. Insect Sci. 11, 152. Google Scholar
Declercq, J.-P., Klaebe, A., Rossignol, M. & Mazars, C. (1991). Acta Cryst. C47, 470–472. CrossRef IUCr Journals Google Scholar
Fang, L., Du, D., Ding, G.-Z., Si, Y.-K., Yu, S.-S., Liu, Y., Wang, W.-J., Ma, S.-G., Xu, S., Qu, J., Wang, J. M. & Liu, Y. X. (2010). J. Nat. Prod. 73, 818–824. CrossRef Google Scholar
Fang, L., Wang, X.-J., Ma, S.-G. & Yu, S.-S. (2011). Acta Pharm. Sin. B, 1, 178–183. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
He, Y.-Z., Osoro, E. K., Palmer, S. I., Wang, L.-N. & Aboud, N. S. (2014). Chinese Herbal Medicines, 6, 76–79. CrossRef Google Scholar
Huang, P., Nishi, M., Zheng, X.-Z., Lai, M.-X. & Naknishi, T. (1997). Acta Pharm. Sin, 32, 704–707. Google Scholar
Huang, P., Xi, Z.-M., Zheng, X.-Z., Lai, M.-X. & Zhong, X.-Q. (1996). Acta Pharm. Sin, 31, 278–281. Google Scholar
Kouno, I., Yanagida, Y., Shimono, S., Shintomi, M., Ito, Y. & Chun-Shu, Y. (1993). Phytochemistry, 32, 1573–1577. CrossRef Google Scholar
Kouno, I., Yanagida, Y., Shimono, S., Shintomi, M. & Yang, C.-S. (1992). Chem. Pharm. Bull. 40, 2461–2464. CrossRef Google Scholar
Li, C.-T., Wu, Z.-J. & Chen, W.-S. (2013). Evid-Based Compl. Alt, 2013, 942541. Google Scholar
Li, C.-T., Wu, Z.-J. & Chen, W.-S. (2015a). Nat. Prod. Res. 29, 1793–1797. CrossRef Google Scholar
Li, C.-T., Wu, Z.-J. & Chen, W.-S. (2015b). Rec. Nat. Prod, 9, 251–261. Google Scholar
Luck, R. L. & Mendenhall, G. D. (2002). Acta Cryst. E58, o1387–o1388. CrossRef IUCr Journals Google Scholar
Mazars, C., Rossignol, M. P., Auriol, P. & Klaebe, A. (1990). Phytochemistry, 29, 3441–3444. CrossRef Google Scholar
Pan, Z.-H., Ning, D.-S., Huang, S.-S., Cheng, L., Xia, M.-W., Peng, L.-Y. & Li, D.-P. (2016). Molecules, 21, 607. CrossRef Google Scholar
Pharmacopeia Committee of P. R. of China (2010). Pharmacopoeia of People's Republic of China. Beijing: Medical Science and Technology Press. Google Scholar
Qiu, C. & Ding, Y. (2001). China J. Chin. Mater. Med, 26, 608–610. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Talontsi, F. M., Nwemeguela Kenla, T. J., Dittrich, B., Douanla-Meli, C. & Laatsch, H. (2012). Planta Med. 78, 1020–1023. Google Scholar
Wang, J.-L., Yang, C.-S. & Da, W.-R. (1994). China J. Chin. Mater. Med, 19, 422–423. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.