organic compounds
Methyl 1-methyl-1H-indole-3-carboxylate
aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India
*Correspondence e-mail: akitsu2@rs.tus.ac.jp
The title indole derivative, C11H11NO2, was synthesized from 1-methyl-1H-indole-3-carboxylic acid and methanol. The molecule is planar as it is situated on a mirror plane present in the Pbcm. In the crystal, molecules form three kinds of intermolecular C—H⋯O hydrogen bonds, resulting in a sheet structure in the ab plane. Parallel sheets interact by C—H⋯π stacking, stabilizing the crystal packing.
Keywords: indole; crystal structure; carboxylate; hydrogen bonding; coplanar.
CCDC reference: 1883282
Structure description
The indole moiety is found in a large array of natural products and pharmaceuticals and widely used for its anti-allergic (Shigenaga et al., 1993), central-nervous-system depressant (Sen Gupta et al., 1982) and muscle relaxant (Butera et al., 1978) properties. Indolecarboxylic acid derivatives show biological activity (Morzyk-Ociepa et al., 2004). 5-Fluoroindole-3-acetic acid has plant-growth regulating activity (Antolic et al., 1996). A comprehensive review on the biological importance of the indole nucleus in recent years was published by Sharma et al. (2010) and the biomedical importance of indoles was reported on by Kaushik et al. (2013). Reviews on indoles as anticancer agents (El Sayed et al., 2015) and on recent developments of indole-containing antiviral agents (Zhang et al., 2015) have been published.
The crystal structures of similar compounds viz. indole-3-carboxylic acid (Smith et al., 2003), indole-2-carboxylic acid (Morzyk-Ociepa et al., 2004), methyl 5-fluoro-1H-indole-2-carboxylate (Harrison et al., 2006), 5-fluoro-1H-indole-2-carbohydrazide (Harrison et al., 2006a), methyl 5-chloro-1H-indole-2-carboxylate (Butcher et al., 2006), methyl 5-bromo-1H-indole-2-carboxylate (Butcher et al., 2007), (4-bromophenyl)(1H-indol-7-yl)methanone (Dutkiewicz et al., 2009), 6-fluoro-1H-indole-3-carboxylic acid (Lou & Luo, 2012), 5-fluoro-1H-indole-3-carboxylic acid (Lu et al., 2012) and 6-bromo-1H-indole-3-carboxylic acid (Zhao & Wang, 2012) have been reported.
The molecular structure of the title compound consists of an indole substituted by one methyl and one carboxymethyl group (Fig. 1). The molecule is planar as it is situated on a mirror plane belonging to the Pbcm (except for hydrogen atoms H10B, H10C, H11B and H11C). The N1—C11 bond length of the methyl substituent is 1.453 (3) Å, the C7—C9 bond length of the carboxymethyl substituent is 1.467 (3) Å and the O2—C10 bond of the carboxymethyl substituent is 1.445 (3) Å.
In the crystal, molecules are connected along the a- and b-axis directions by C—H⋯O hydrogen bonds, forming two-dimensional sheets (Table 1 and Fig. 2). In addition, a weak C—H⋯π interaction C11—H11B⋯Cg1 (2.69 Å) is observed between neighboring sheets (Table 1 and Fig. 3; Cg1 is the centroid of the C1–C6 ring). In the packing of the similar structure methyl indole-3-carboxylate (Hu et al., 2005), the molecules are linked by intermolecular hydrogen bonds and form chains along the b-axis direction.
Synthesis and crystallization
1-Methyl-1H-indole-3-carboxylic acid (Sigma–Aldrich) (2 g) was taken in a 100 ml round-bottomed flask. 20 ml of methanol and a catalytic amount of conc. H2SO4 (2 drops) was added and the reaction mixture was refluxed overnight. The completion of the reaction was confirmed by TLC and the reaction mixture was quenched with water; the precipitate formed was collected by filtration and dried. The product was recrystallized from methanol solution (m.p. 410 K). IR (KBr, cm−1): 1704 (C=O). The UV–vis spectrum was measured in MeOH solution (concentration ≃ 1.0×10 −2 mM): λmax = 297 nm.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1883282
https://doi.org/10.1107/S2414314618017285/vm4039sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618017285/vm4039Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618017285/vm4039Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C11H11NO2 | Dx = 1.346 Mg m−3 |
Mr = 189.21 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcm | Cell parameters from 3337 reflections |
a = 8.3019 (17) Å | θ = 2.5–27.5° |
b = 16.628 (3) Å | µ = 0.09 mm−1 |
c = 6.7622 (14) Å | T = 173 K |
V = 933.5 (3) Å3 | Prism, colorless |
Z = 4 | 0.50 × 0.24 × 0.17 mm |
F(000) = 400 |
Bruker APEXII CCD diffractometer | 1142 independent reflections |
Radiation source: fine-focus sealed tube | 1053 reflections with I > 2σ(I) |
Detector resolution: 8.3333 pixels mm-1 | Rint = 0.018 |
φ and ω scans | θmax = 27.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −10→10 |
Tmin = 0.88, Tmax = 0.98 | k = −20→21 |
4700 measured reflections | l = −8→6 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.208 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.1286P)2 + 0.595P] where P = (Fo2 + 2Fc2)/3 |
1142 reflections | (Δ/σ)max < 0.001 |
85 parameters | Δρmax = 0.72 e Å−3 |
0 restraints | Δρmin = −0.98 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were located in difference Fourier maps. C-bound H atoms were constrained using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for indole H atoms, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms]. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.6055 (2) | 0.79479 (11) | 0.75 | 0.0350 (6) | |
N1 | 0.6285 (3) | 0.52415 (12) | 0.75 | 0.0240 (5) | |
O2 | 0.8514 (2) | 0.73850 (12) | 0.75 | 0.0445 (7) | |
C8 | 0.7251 (3) | 0.58886 (12) | 0.75 | 0.0179 (5) | |
H8 | 0.8395 | 0.589 | 0.75 | 0.021* | |
C7 | 0.6279 (3) | 0.65316 (14) | 0.75 | 0.0233 (6) | |
C6 | 0.4631 (3) | 0.62971 (13) | 0.75 | 0.0225 (6) | |
C1 | 0.4691 (3) | 0.54488 (14) | 0.75 | 0.0228 (6) | |
C11 | 0.6944 (3) | 0.44316 (16) | 0.75 | 0.0290 (6) | |
H11A | 0.606 | 0.4041 | 0.75 | 0.044* | |
H11B | 0.7607 | 0.4354 | 0.6317 | 0.044* | 0.5 |
H11C | 0.7607 | 0.4354 | 0.8683 | 0.044* | 0.5 |
C9 | 0.6900 (3) | 0.73575 (15) | 0.75 | 0.0254 (6) | |
C2 | 0.3304 (3) | 0.49675 (16) | 0.75 | 0.0284 (6) | |
H2 | 0.3362 | 0.4397 | 0.75 | 0.034* | |
C5 | 0.3130 (3) | 0.66896 (16) | 0.75 | 0.0277 (6) | |
H5 | 0.3062 | 0.726 | 0.75 | 0.033* | |
C4 | 0.1759 (3) | 0.62199 (17) | 0.75 | 0.0315 (7) | |
H4 | 0.0733 | 0.6473 | 0.75 | 0.038* | |
C3 | 0.1847 (3) | 0.53694 (18) | 0.75 | 0.0325 (7) | |
H3 | 0.0877 | 0.5066 | 0.75 | 0.039* | |
C10 | 0.9213 (4) | 0.81809 (17) | 0.75 | 0.0488 (10) | |
H10A | 1.0391 | 0.8138 | 0.75 | 0.073* | |
H10B | 0.8862 | 0.8472 | 0.6317 | 0.073* | 0.5 |
H10C | 0.8862 | 0.8472 | 0.8683 | 0.073* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0301 (10) | 0.0179 (9) | 0.0569 (13) | 0.0022 (7) | 0 | 0 |
N1 | 0.0231 (11) | 0.0175 (10) | 0.0315 (11) | 0.0010 (8) | 0 | 0 |
O2 | 0.0240 (10) | 0.0187 (10) | 0.0908 (19) | −0.0017 (7) | 0 | 0 |
C8 | 0.0178 (11) | 0.0123 (10) | 0.0235 (11) | 0.0001 (7) | 0 | 0 |
C7 | 0.0244 (12) | 0.0181 (12) | 0.0273 (12) | 0.0022 (9) | 0 | 0 |
C6 | 0.0251 (13) | 0.0181 (11) | 0.0244 (11) | −0.0001 (9) | 0 | 0 |
C1 | 0.0232 (13) | 0.0198 (11) | 0.0253 (12) | 0.0047 (9) | 0 | 0 |
C11 | 0.0314 (13) | 0.0181 (12) | 0.0375 (14) | 0.0056 (9) | 0 | 0 |
C9 | 0.0244 (12) | 0.0202 (13) | 0.0315 (12) | 0.0008 (8) | 0 | 0 |
C2 | 0.0268 (13) | 0.0223 (12) | 0.0360 (13) | −0.0003 (10) | 0 | 0 |
C5 | 0.0268 (13) | 0.0219 (12) | 0.0343 (13) | 0.0049 (9) | 0 | 0 |
C4 | 0.0236 (13) | 0.0302 (14) | 0.0407 (15) | 0.0043 (10) | 0 | 0 |
C3 | 0.0226 (12) | 0.0300 (14) | 0.0450 (16) | −0.0015 (10) | 0 | 0 |
C10 | 0.0281 (14) | 0.0199 (13) | 0.098 (3) | −0.0039 (10) | 0 | 0 |
O1—C9 | 1.206 (3) | C11—H11A | 0.98 |
N1—C8 | 1.342 (3) | C11—H11B | 0.98 |
N1—C1 | 1.368 (3) | C11—H11C | 0.98 |
N1—C11 | 1.453 (3) | C2—C3 | 1.382 (4) |
O2—C9 | 1.341 (3) | C2—H2 | 0.95 |
O2—C10 | 1.445 (3) | C5—C4 | 1.380 (4) |
C8—C7 | 1.340 (3) | C5—H5 | 0.95 |
C8—H8 | 0.95 | C4—C3 | 1.416 (4) |
C7—C6 | 1.423 (3) | C4—H4 | 0.95 |
C7—C9 | 1.467 (3) | C3—H3 | 0.95 |
C6—C5 | 1.407 (3) | C10—H10A | 0.98 |
C6—C1 | 1.412 (3) | C10—H10B | 0.98 |
C1—C2 | 1.402 (4) | C10—H10C | 0.98 |
C8—N1—C1 | 112.1 (2) | O1—C9—O2 | 123.6 (2) |
C8—N1—C11 | 121.2 (2) | O1—C9—C7 | 123.9 (2) |
C1—N1—C11 | 126.7 (2) | O2—C9—C7 | 112.5 (2) |
C9—O2—C10 | 115.6 (2) | C3—C2—C1 | 116.3 (2) |
C7—C8—N1 | 106.3 (2) | C3—C2—H2 | 121.9 |
C7—C8—H8 | 126.9 | C1—C2—H2 | 121.9 |
N1—C8—H8 | 126.9 | C4—C5—C6 | 117.9 (2) |
C8—C7—C6 | 111.1 (2) | C4—C5—H5 | 121.1 |
C8—C7—C9 | 122.4 (2) | C6—C5—H5 | 121.1 |
C6—C7—C9 | 126.5 (2) | C5—C4—C3 | 121.5 (2) |
C5—C6—C1 | 119.7 (2) | C5—C4—H4 | 119.3 |
C5—C6—C7 | 136.5 (2) | C3—C4—H4 | 119.3 |
C1—C6—C7 | 103.9 (2) | C2—C3—C4 | 121.9 (2) |
N1—C1—C2 | 130.6 (2) | C2—C3—H3 | 119.0 |
N1—C1—C6 | 106.6 (2) | C4—C3—H3 | 119.0 |
C2—C1—C6 | 122.8 (2) | O2—C10—H10A | 109.5 |
N1—C11—H11A | 109.5 | O2—C10—H10B | 109.5 |
N1—C11—H11B | 109.5 | H10A—C10—H10B | 109.5 |
H11A—C11—H11B | 109.5 | O2—C10—H10C | 109.5 |
N1—C11—H11C | 109.5 | H10A—C10—H10C | 109.5 |
H11A—C11—H11C | 109.5 | H10B—C10—H10C | 109.5 |
H11B—C11—H11C | 109.5 | ||
C1—N1—C8—C7 | 0 | C7—C6—C1—C2 | 180.0 |
C11—N1—C8—C7 | 180.0 | C10—O2—C9—O1 | 0 |
N1—C8—C7—C6 | 0 | C10—O2—C9—C7 | 180.0 |
N1—C8—C7—C9 | 180.0 | C8—C7—C9—O1 | 180.0 |
C8—C7—C6—C5 | 180.0 | C6—C7—C9—O1 | 0 |
C9—C7—C6—C5 | 0 | C8—C7—C9—O2 | 0 |
C8—C7—C6—C1 | 0 | C6—C7—C9—O2 | 180.0 |
C9—C7—C6—C1 | 180.0 | N1—C1—C2—C3 | 180.0 |
C8—N1—C1—C2 | 180.0 | C6—C1—C2—C3 | 0 |
C11—N1—C1—C2 | 0 | C1—C6—C5—C4 | 0 |
C8—N1—C1—C6 | 0 | C7—C6—C5—C4 | 180.0 |
C11—N1—C1—C6 | 180.0 | C6—C5—C4—C3 | 0 |
C5—C6—C1—N1 | 180.0 | C1—C2—C3—C4 | 0 |
C7—C6—C1—N1 | 0 | C5—C4—C3—C2 | 0 |
C5—C6—C1—C2 | 0 |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.95 | 2.39 | 3.318 (3) | 167 |
C11—H11A···O1ii | 0.98 | 2.53 | 3.505 (4) | 176 |
C2—H2···O1ii | 0.95 | 2.46 | 3.400 (3) | 172 |
C11—H11B···Cg1iii | 0.98 | 2.69 | 3.412 | 131 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+1, −y+1, z−1/2. |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | A···H | D—H···A |
C4—H4···O2i | 0.95 | 2.39 | 3.318 (3) | 167 |
C11—H11A···O1ii | 0.98 | 2.53 | 3.505 (4) | 176 |
C2—H2···O1ii | 0.95 | 2.46 | 3.400 (3) | 172 |
C11—H11B···Cg1iii | 0.98 | 2.69 | 3.412 | 131 |
Symmetry codes: (i) x-1, y, z; (ii) -x+1, y-1/2, -z+3/2; (iii) -x+1, -y+1, z-1/2. |
Acknowledgements
NM is grateful to the University of Mysore for research facilities.
Funding information
HSY is grateful to the UGC, New Delhi for the award of BSR Faculty Fellowship for three years. BKS thanks the UGC, New Delhi, for the award of an RGNF.
References
Antolić, A., Kojić-Prodić, B., Tomić, S., Nigović, B., Magnus, V. & Cohen, J. D. (1996). Acta Cryst. B52, 651–661. CrossRef IUCr Journals Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Ashalatha, B. V. & Narayana, B. (2007). Acta Cryst. E63, o3505. Web of Science CrossRef IUCr Journals Google Scholar
Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2006). Acta Cryst. E62, o3915–o3917. Web of Science CrossRef IUCr Journals Google Scholar
Butera, T. S., Moore, J. N., Garner, H. E., Amend, J. F., Clarke, L. L. & Hatfield, D. G. (1978). Vet. Med./Sm. An. Clin. 490–497. Google Scholar
Dutkiewicz, G., Chidan Kumar, C. S., Yathirajan, H. S. & Kubicki, M. (2009). Acta Cryst. E65, o2933. CrossRef IUCr Journals Google Scholar
El Sayed, M. T., Hamdy, N. A., Osman, D. A. & Ahmed, K. M. (2015). Adv. Mod. Oncol. Res. 1, 20–35. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006a). Acta Cryst. E62, o4986–o4988. CrossRef IUCr Journals Google Scholar
Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o4050–o4051. Web of Science CrossRef IUCr Journals Google Scholar
Hu, S.-C., Tan, R.-X., Hong, K., Yu, Z.-N. & Zhu, H.-L. (2005). Acta Cryst. E61, o1654–o1656. Web of Science CrossRef IUCr Journals Google Scholar
Kaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). Molecules, 18, 6620–6662. Web of Science CrossRef CAS PubMed Google Scholar
Lou, M. & Luo, Y.-H. (2012). Acta Cryst. E68, o1580. CrossRef IUCr Journals Google Scholar
Lu, W.-J., Zou, Z.-H. & Luo, Y.-H. (2012). Acta Cryst. E68, o187. CrossRef IUCr Journals Google Scholar
Morzyk-Ociepa, B., Michalska, D. & Pietraszko, A. (2004). J. Mol. Struct. 688, 79–86. Web of Science CrossRef CAS Google Scholar
Sen Gupta, A. K., Srivastava, N. & Gupta, A. A. (1982). Curr. Sci. 51, 1100–1103. Google Scholar
Sharma, V., Kumar, P. & Pathak, D. (2010). J. Heterocycl. Chem. 47, 491–502. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shigenaga, S., Manabe, T., Matsuda, H., Fujii, T. & Hiroi, J. (1993). Chem. Pharm. Bull. 41, 589–1595. CrossRef Google Scholar
Smith, G., Wermuth, U. D. & Healy, P. C. (2003). Acta Cryst. E59, o1766–o1767. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, M., Chen, Q. & Yang, G. (2015). Eur. J. Med. Chem. 89, 421–441. CrossRef Google Scholar
Zhao, J. & Wang, Y. (2012). Acta Cryst. E68, o1019. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.