metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[S-octyl 3-(4-meth­­oxy­benzyl­­idene)di­thio­carbazato-κ2N3,S]nickel(II)

aDepartment of Physics, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh, bDepartment of Chemical and Pharmaceutical Sciences, via Giorgieri 1, 34127, Trieste, Italy, cDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh, dDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and eCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
*Correspondence e-mail: china@sust.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 November 2018; accepted 26 November 2018; online 5 December 2018)

The nickel(II) cation of the title complex, [Ni(C17H25N2OS2)2], is located on a crystallographic inversion centre. It has a square-planar coordination geometry, with a trans configuration of the N,S-chelating ligands, as imposed by the crystal symmetry.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Bidentate Schiff bases of S-methyl or S-benzyl di­thio­carbaza­tes and their metal complexes have received considerable attention for their possible bioactivities. As part of our ongoing structural studies of S-containing Schiff bases (Howlader et al., 2015[Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26-m27.]; Islam et al., 2011[Islam, M. A. A. A. A., Tarafder, M. T. H., Sheikh, M. C., Alam, M. A. & Zangrando, E. (2011). Transition Met. Chem. 36, 531-537.], 2014[Islam, M. A. A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141-149.]), we now report on the structure of the title complex in which the ligand has a long alkyl chain.

The mol­ecular structure of the title complex is illustrated in Fig. 1[link]. The complex has the nickel(II) cation located on a crystallographic inversion centre with the two Schiff bases, in their deprotonated imino thiol­ate form, chelating through the azomethine nitro­gen atom N1 and the thiol­ate sulfur atom S1 in a trans-planar configuration, as imposed by the crystal symmetry. The complex has a coplanar geometry with the exception of the octyl chains that extend above and below the coordination plane (Fig. 1[link]). The Ni—S and Ni—N bond lengths are 2.1796 (6) and 1.9310 (19) Å, respectively, and the S1—Ni1—N1 chelating angle is 85.67 (5)°. These geometrical parameters are comparable to those found in the related bis-chelated nickel(II) complex with the S-hexyl 3-(4-methyl­benzyl­idene)di­thio­carbazate ligand (Howlader et al., 2015[Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26-m27.]). There the corres­ponding bond lengths and angles are 2.1775 (10) and 1.933 (3) Å, and 86.04 (9)°, respectively, indicating that neither the longer alkyl group nor the different Schiff base affects the coordination bond lengths.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title complex, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code (i) −x + 1, −y + 1, −z + 1.

The structure of the title ligand (HL), reported by Begum et al. (2015[Begum, M. S., Zangrando, E., Sheikh, M. C., Miyatake, R. & Hossain, M. M. (2015). Acta Cryst. E71, o265-o266.]), shows that on coordination, a 180° rotation occurs about the C9—N2 bond in order to allow N,S chelation to the metal atom. Upon coordination, some salient features are also observed with respect to the free ligand. The most significant is an elongation of the C9—S1 bond length from 1.6734 (15) Å in the ligand to 1.7514 (19) Å in the title complex, thus validating the coordination with the deprotonated thiol­ate sulfur atom. Correspondingly, the N2—C9 bond length of 1.3343 (16) Å in HL is shortened to 1.285 (3) Å in the title complex, while the N1—N2 bond length of 1.3829 (17) Å in HL is slightly elongated to 1.413 (3) Å in the complex. These geometrical parameters agree with those reported for similar nickel complexes when the ligands assume either a trans (Islam et al., 2011[Islam, M. A. A. A. A., Tarafder, M. T. H., Sheikh, M. C., Alam, M. A. & Zangrando, E. (2011). Transition Met. Chem. 36, 531-537.], 2014[Islam, M. A. A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141-149.]; Zhang et al., 2004[Zhang, M.-L., Tian, Y.-P., Zhang, X.-J., Wu, J.-Y., Zhang, S.-Y., Wang, D., Jiang, M.-H., Chantrapromm, S. & Fun, H. K. (2004). Transition Met. Chem. 29, 596-602.]) or a cis configuration (Chan et al., 2008[Chan, M. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141-1149.]; Li et al., 2006[Li, S.-L., Wu, J.-Y., Tian, Y.-P., Tang, Y.-W., Jiang, M.-H., Fun, H. K. & Chantrapromma, S. (2006). Opt. Mater. 28, 897-903.]).

In the crystal, complex mol­ecules stack up the a axis at a distance of 4.55302 (14) Å, thus excluding any significant inter­actions between the aromatic rings (see Fig. 2[link]).

[Figure 2]
Figure 2
A view approximately along the b axis of the crystal packing of the title complex.

Synthesis and crystallization

A solution of Ni(CH3COO)2·4H2O (0.06 g, 0.25 mmol) in methanol (7 ml) was added to a methanol solution (10 ml) of the S-octyl (E)-3-(4-methoxy­benzyl­idene)di­thio­carbazate ligand (0.17 g, 0.5 mmol). The resulting mixture was stirred at room temperature for 5 h. The dark orange precipitate that formed was filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Dark orange single crystals of the title complex (m.p. 371 K), suitable for X-ray diffraction analysis, were obtained by slow evaporation from a mixture of chloro­form/toluene (6:1 v:v).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Ni(C17H25N2OS2)2]
Mr 733.73
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 4.55302 (14), 11.5641 (3), 17.5075 (5)
α, β, γ (°) 84.1436 (7), 85.6165 (10), 76.4084 (10)
V3) 890.00 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.82
Crystal size (mm) 0.27 × 0.12 × 0.07
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.866, 0.944
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 8899, 4041, 3705
Rint 0.025
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.15
No. of reflections 4041
No. of parameters 207
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.17, −0.37
Computer programs: RAPID-AUTO (Rigaku, 1999[Rigaku (1999). RAPID AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Structural data


Computing details top

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: RAPID-AUTO (Rigaku, 1999); data reduction: RAPID-AUTO (Rigaku, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Bis[S-octyl 3-(4-methoxybenzylidene)dithiocarbazato-\ κ2N3,S]nickel(II) top
Crystal data top
[Ni(C17H25N2OS2)2]Z = 1
Mr = 733.73F(000) = 390.00
Triclinic, P1Dx = 1.369 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 4.55302 (14) ÅCell parameters from 8264 reflections
b = 11.5641 (3) Åθ = 3.1–27.5°
c = 17.5075 (5) ŵ = 0.82 mm1
α = 84.1436 (7)°T = 173 K
β = 85.6165 (10)°Platelet, orange
γ = 76.4084 (10)°0.27 × 0.12 × 0.07 mm
V = 890.00 (5) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3705 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.025
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 55
Tmin = 0.866, Tmax = 0.944k = 1414
8899 measured reflectionsl = 2221
4041 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.5813P]
where P = (Fo2 + 2Fc2)/3
4041 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 1.17 e Å3
0 restraintsΔρmin = 0.37 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

The H atoms were located geometrically and treated as riding atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.50000.50000.02291 (12)
S10.53959 (14)0.35043 (5)0.58802 (3)0.03236 (15)
S20.72806 (13)0.33241 (4)0.74527 (3)0.02987 (14)
O11.3002 (4)0.96865 (14)0.71096 (9)0.0387 (4)
N10.6922 (4)0.57294 (15)0.57058 (9)0.0247 (4)
N20.7284 (4)0.52311 (15)0.64734 (9)0.0256 (4)
C10.9372 (5)0.73725 (17)0.59923 (11)0.0249 (4)
C21.0441 (5)0.82953 (18)0.55700 (12)0.0292 (5)
C31.1693 (5)0.90850 (18)0.59111 (12)0.0302 (5)
C41.1880 (5)0.89570 (18)0.67074 (12)0.0283 (4)
C51.0869 (6)0.8034 (2)0.71388 (13)0.0353 (5)
C60.9640 (6)0.72470 (19)0.67942 (12)0.0314 (5)
C71.3781 (6)1.0717 (2)0.66998 (15)0.0397 (6)
C80.8008 (5)0.66685 (18)0.55359 (11)0.0264 (4)
C90.6696 (5)0.41906 (17)0.65734 (11)0.0243 (4)
C100.8698 (5)0.42720 (18)0.80277 (11)0.0282 (4)
C110.6211 (5)0.51742 (19)0.84182 (12)0.0291 (4)
C120.7464 (5)0.58919 (19)0.89491 (12)0.0293 (5)
C130.5011 (5)0.6716 (2)0.94072 (12)0.0314 (5)
C140.6261 (5)0.73863 (19)0.99649 (12)0.0306 (5)
C150.3830 (5)0.82086 (19)1.04283 (12)0.0305 (5)
C160.5078 (6)0.8927 (2)1.09547 (13)0.0335 (5)
C170.2620 (6)0.9785 (2)1.13894 (14)0.0418 (6)
H11.03060.83860.50280.0351*
H21.24110.97010.56080.0362*
H31.10270.79430.76810.0423*
H40.89740.66200.70990.0377*
H51.54161.04650.63120.0476*
H61.44521.11840.70600.0476*
H71.20071.12080.64460.0476*
H80.78940.69580.50090.0316*
H90.99570.37630.84260.0338*
H101.00130.47060.76930.0338*
H110.47990.47490.87210.0349*
H120.50550.57300.80210.0349*
H130.87930.53310.93120.0352*
H140.87180.63760.86360.0352*
H150.36940.62380.97000.0377*
H160.37440.73040.90450.0377*
H170.75370.67981.03250.0367*
H180.75710.78660.96710.0367*
H190.25870.77221.07440.0366*
H200.24850.87691.00690.0366*
H210.63470.83681.13300.0402*
H220.63910.93881.06430.0402*
H230.12961.03191.10220.0501*
H240.35571.02591.16890.0501*
H250.14260.93311.17370.0501*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0282 (2)0.02338 (19)0.02004 (18)0.01005 (13)0.00419 (13)0.00357 (13)
S10.0511 (4)0.0275 (3)0.0245 (3)0.0186 (3)0.0109 (2)0.00139 (19)
S20.0432 (3)0.0257 (3)0.0235 (3)0.0124 (2)0.0073 (2)0.00067 (18)
O10.0545 (11)0.0323 (8)0.0371 (9)0.0207 (7)0.0132 (8)0.0064 (7)
N10.0302 (9)0.0249 (8)0.0207 (8)0.0086 (7)0.0036 (7)0.0027 (6)
N20.0322 (9)0.0259 (8)0.0206 (8)0.0089 (7)0.0047 (7)0.0030 (6)
C10.0266 (10)0.0241 (9)0.0258 (10)0.0070 (7)0.0046 (7)0.0053 (7)
C20.0362 (11)0.0285 (10)0.0250 (10)0.0103 (8)0.0045 (8)0.0035 (8)
C30.0355 (11)0.0258 (10)0.0318 (11)0.0118 (8)0.0018 (9)0.0034 (8)
C40.0287 (10)0.0251 (9)0.0335 (11)0.0070 (8)0.0077 (8)0.0075 (8)
C50.0517 (14)0.0316 (11)0.0266 (10)0.0142 (10)0.0113 (10)0.0037 (8)
C60.0444 (13)0.0281 (10)0.0256 (10)0.0148 (9)0.0067 (9)0.0015 (8)
C70.0493 (14)0.0314 (11)0.0456 (14)0.0196 (10)0.0076 (11)0.0095 (10)
C80.0305 (10)0.0280 (10)0.0227 (9)0.0097 (8)0.0047 (8)0.0032 (7)
C90.0258 (10)0.0268 (10)0.0211 (9)0.0056 (7)0.0027 (7)0.0050 (7)
C100.0336 (11)0.0297 (10)0.0235 (10)0.0096 (8)0.0085 (8)0.0024 (8)
C110.0310 (11)0.0335 (11)0.0261 (10)0.0119 (8)0.0043 (8)0.0060 (8)
C120.0304 (11)0.0364 (11)0.0251 (10)0.0133 (9)0.0042 (8)0.0059 (8)
C130.0309 (11)0.0374 (11)0.0291 (10)0.0108 (9)0.0048 (8)0.0083 (9)
C140.0330 (11)0.0353 (11)0.0272 (10)0.0130 (9)0.0047 (8)0.0057 (8)
C150.0350 (11)0.0316 (10)0.0277 (10)0.0118 (9)0.0050 (8)0.0041 (8)
C160.0396 (12)0.0345 (11)0.0300 (11)0.0125 (9)0.0078 (9)0.0057 (9)
C170.0534 (15)0.0356 (12)0.0375 (13)0.0065 (11)0.0114 (11)0.0104 (10)
Geometric parameters (Å, º) top
Ni—S12.1796 (6)C2—H10.950
Ni—S1i2.1796 (6)C3—H20.950
Ni—N11.9310 (19)C5—H30.950
Ni—N1i1.9310 (19)C6—H40.950
S1—C91.726 (3)C7—H50.980
S2—C91.7514 (19)C7—H60.980
S2—C101.813 (3)C7—H70.980
O1—C41.359 (3)C8—H80.950
O1—C71.430 (3)C10—H90.990
N1—N21.413 (3)C10—H100.990
N1—C81.295 (3)C11—H110.990
N2—C91.285 (3)C11—H120.990
C1—C21.397 (3)C12—H130.990
C1—C61.408 (3)C12—H140.990
C1—C81.461 (4)C13—H150.990
C2—C31.387 (4)C13—H160.990
C3—C41.394 (3)C14—H170.990
C4—C51.391 (4)C14—H180.990
C5—C61.381 (4)C15—H190.990
C10—C111.520 (3)C15—H200.990
C11—C121.530 (4)C16—H210.990
C12—C131.523 (3)C16—H220.990
C13—C141.524 (4)C17—H230.980
C14—C151.521 (3)C17—H240.980
C15—C161.523 (4)C17—H250.980
C16—C171.523 (4)
S1—Ni—S1i180H5—C7—H7109.469
S1—Ni—N185.67 (5)H6—C7—H7109.468
S1—Ni—N1i94.33 (5)N1—C8—H8113.566
S1i—Ni—N194.33 (5)C1—C8—H8113.564
S1i—Ni—N1i85.67 (5)S2—C10—H9108.878
N1—Ni—N1i180S2—C10—H10108.867
Ni—S1—C996.01 (7)C11—C10—H9108.875
C9—S2—C10102.83 (10)C11—C10—H10108.870
C4—O1—C7117.90 (18)H9—C10—H10107.715
Ni—N1—N2120.42 (14)C10—C11—H11109.150
Ni—N1—C8125.18 (14)C10—C11—H12109.154
N2—N1—C8114.39 (18)C12—C11—H11109.156
N1—N2—C9111.78 (18)C12—C11—H12109.148
C2—C1—C6117.6 (2)H11—C11—H12107.871
C2—C1—C8114.61 (18)C11—C12—H13108.897
C6—C1—C8127.8 (2)C11—C12—H14108.908
C1—C2—C3122.6 (2)C13—C12—H13108.898
C2—C3—C4118.7 (2)C13—C12—H14108.904
O1—C4—C3124.3 (2)H13—C12—H14107.731
O1—C4—C5116.1 (2)C12—C13—H15108.904
C3—C4—C5119.7 (3)C12—C13—H16108.898
C4—C5—C6121.2 (2)C14—C13—H15108.903
C1—C6—C5120.2 (2)C14—C13—H16108.909
N1—C8—C1132.87 (18)H15—C13—H16107.731
S1—C9—S2114.13 (12)C13—C14—H17108.794
S1—C9—N2124.92 (15)C13—C14—H18108.791
S2—C9—N2120.93 (17)C15—C14—H17108.796
S2—C10—C11113.48 (16)C15—C14—H18108.799
C10—C11—C12112.26 (18)H17—C14—H18107.675
C11—C12—C13113.35 (18)C14—C15—H19108.797
C12—C13—C14113.35 (19)C14—C15—H20108.794
C13—C14—C15113.81 (19)C16—C15—H19108.799
C14—C15—C16113.81 (19)C16—C15—H20108.804
C15—C16—C17113.3 (2)H19—C15—H20107.669
C1—C2—H1118.691C15—C16—H21108.921
C3—C2—H1118.690C15—C16—H22108.918
C2—C3—H2120.632C17—C16—H21108.926
C4—C3—H2120.627C17—C16—H22108.913
C4—C5—H3119.383H21—C16—H22107.738
C6—C5—H3119.378C16—C17—H23109.473
C1—C6—H4119.926C16—C17—H24109.467
C5—C6—H4119.914C16—C17—H25109.462
O1—C7—H5109.474H23—C17—H24109.479
O1—C7—H6109.474H23—C17—H25109.474
O1—C7—H7109.472H24—C17—H25109.472
H5—C7—H6109.470
S1—Ni—N1—N211.14 (10)C8—N1—N2—C9167.88 (15)
S1—Ni—N1—C8167.80 (12)N1—N2—C9—S13.7 (3)
N1—Ni—S1—C96.77 (5)N1—N2—C9—S2174.53 (13)
S1—Ni—N1i—N2i168.86 (10)C2—C1—C6—C51.2 (3)
S1—Ni—N1i—C8i12.20 (12)C6—C1—C2—C30.9 (3)
N1i—Ni—S1—C9173.23 (5)C2—C1—C8—N1176.14 (18)
S1i—Ni—N1—N2168.86 (10)C8—C1—C2—C3177.33 (15)
S1i—Ni—N1—C812.20 (12)C6—C1—C8—N15.8 (4)
N1—Ni—S1i—C9i173.23 (5)C8—C1—C6—C5176.73 (17)
S1i—Ni—N1i—N2i11.14 (10)C1—C2—C3—C40.3 (3)
S1i—Ni—N1i—C8i167.80 (12)C2—C3—C4—O1178.68 (17)
N1i—Ni—S1i—C9i6.77 (5)C2—C3—C4—C51.2 (3)
Ni—S1—C9—S2177.99 (9)O1—C4—C5—C6179.01 (17)
Ni—S1—C9—N23.64 (16)C3—C4—C5—C60.9 (3)
C9—S2—C10—C1184.61 (13)C4—C5—C6—C10.4 (3)
C10—S2—C9—S1178.65 (11)S2—C10—C11—C12175.43 (11)
C10—S2—C9—N20.21 (17)C10—C11—C12—C13174.38 (15)
C7—O1—C4—C36.1 (3)C11—C12—C13—C14177.19 (15)
C7—O1—C4—C5173.77 (16)C12—C13—C14—C15179.74 (15)
Ni—N1—N2—C911.17 (19)C13—C14—C15—C16176.95 (15)
Ni—N1—C8—C1176.31 (13)C14—C15—C16—C17177.52 (15)
N2—N1—C8—C14.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

KB and MSB are grateful to the Department of Chemistry, Shahjalal University of Science and Technology, Sylhet-3114, for the provision of laboratory facilities.

Funding information

MCS acknowledges the Department of Applied Chemistry, Toyama University, for providing funds for single-crystal X-ray analyses.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBegum, M. S., Zangrando, E., Sheikh, M. C., Miyatake, R. & Hossain, M. M. (2015). Acta Cryst. E71, o265–o266.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChan, M. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHowlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26–m27.  CrossRef IUCr Journals Google Scholar
First citationIslam, M. A. A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141–149.  Web of Science CrossRef CAS Google Scholar
First citationIslam, M. A. A. A. A., Tarafder, M. T. H., Sheikh, M. C., Alam, M. A. & Zangrando, E. (2011). Transition Met. Chem. 36, 531–537.  CrossRef Google Scholar
First citationLi, S.-L., Wu, J.-Y., Tian, Y.-P., Tang, Y.-W., Jiang, M.-H., Fun, H. K. & Chantrapromma, S. (2006). Opt. Mater. 28, 897–903.  CrossRef Google Scholar
First citationRigaku (1999). RAPID AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M.-L., Tian, Y.-P., Zhang, X.-J., Wu, J.-Y., Zhang, S.-Y., Wang, D., Jiang, M.-H., Chantrapromm, S. & Fun, H. K. (2004). Transition Met. Chem. 29, 596–602.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds