organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Di­phenyl­phosphanyl-2-(di­phenyl­phosphor­yl)hydrazine

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: uwe.rosenthal@catalysis.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 4 December 2018; accepted 18 December 2018; online 21 December 2018)

The title compound, C24H22N2OP2, is an asymmetrically substituted hydrazine derivative bearing a phosphoryl and a phosphanyl substituent. The PNNP backbone has a torsion angle of −131.01 (8)°. In the crystal, mol­ecules form centrosymmetric dimers by inter­molecular N—H⋯O hydrogen bonds, which are further linked into a three-dimensional network by weak C—H⋯O and C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound C24H22N2OP2 (Fig. 1[link]) is an asymmetrically substituted hydrazine derivative containing a phosphoryl and phosphane entity. The PNNP backbone has a torsion angle of −131.01 (8)°. As a result of the asymmetrical substitution, the P—N bond lengths have significantly different values. Even if both P—N bond lengths are shortened when compared to the sum of the covalent radii calculated by Pyykkö (2015[Pyykkö, P. (2015). J. Phys. Chem. A, 119, 2326-2337.]) [single: Σrcov(P—N) = 1.82 Å, double: Σrcov(P—N) = 1.62 Å], the PV—N distance [P1—N1 = 1.6561 (11) Å] is noticeably shorter than the PIII—N distance [P2—N2 = 1.7049 (11) Å]. The more pronounced reduction of PV—N bond lengths of phosphoryl hydrazine entities [range from 1.6587 (15) to 1.6989 (10) Å; Gholivand et al., 2012[Gholivand, K., Mahzouni, H. R., Molaei, F. & Kalateh, A. A. (2012). Tetrahedron Lett. 53, 5944-5947.], 2016[Gholivand, K., Asadi, L., Valmoozi, A. A. E., Hodaii, M., Sharifi, M., Kashani, H. M., Mahzouni, H. R., Ghadamyari, M., Kalate, A. A., Davari, E., Salehi, S. & Bonsaii, M. (2016). RSC Adv. 6, 24175-24189.]; Höhne et al., 2018[Höhne, M., Aluri, B. R., Spannenberg, A., Müller, B. H., Peulecke, N. & Rosenthal, U. (2018). IUCrData, 3, x180679-x180686.]] in comparison to phosphane hydrazine PIII—N distances [range from 1.692 (2) to 1.728 (2) Å; Kriel et al., 2010[Kriel, F. H., Fernandes, M. A. & Caddy, J. (2010). Acta Cryst. E66, o1270.]; Aluri et al., 2010[Aluri, B. R., Peulecke, N., Müller, B. H., Peitz, S., Spannenberg, A., Hapke, M. & Rosenthal, U. (2010). Organometallics, 29, 226-231.]; Sushev et al., 2008[Sushev, V. V., Belina, N. V., Fukin, G. K., Kurskiy, Y. A., Kornev, A. N. & Abakumov, G. A. (2008). Inorg. Chem. 47, 2608-2612.]] is documented. The N—N distance within the hydrazine unit amounts to 1.4256 (16) Å and conforms to the sum of the covalent radii calculated by Pyykkö (2015[Pyykkö, P. (2015). J. Phys. Chem. A, 119, 2326-2337.]) [Σrcov(N—N) = 1.42 Å].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

In the crystal, centrosymmetrically related mol­ecules of the title compound are linked by pairs of inter­molecular N—H⋯O hydrogen bonds (Table 1[link]) forming dimers, which are further linked by weak C—H⋯O and C—H⋯π inter­actions into a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C19–C24 and C7–C12 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.828 (18) 2.132 (18) 2.9357 (14) 163.6 (17)
C10—H10A⋯O1ii 0.95 2.50 3.2854 (19) 140
C15—H15ACg1iii 0.95 2.70 3.6125 (17) 162
C17—H17ACg2iv 0.95 2.91 3.7171 (18) 144
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) x, y-1, z.

Synthesis and crystallization

A solution of NEt3 (7.7 ml, 55.0 mmol) in THF was added to another solution of N2H4·HCl (0.685 g, 10.0 mmol) and Ph2PCl (3.7 ml, 20.0 mmol) in THF (20.0 ml). The mixture was stirred for 24 h at room temperature. Afterwards it was filtered; the solvent was removed in vacuum. 7.0 ml of toluene were added. The microcrystalline product was identified by NMR to be (Ph2P)2N—NH2. During the repeated attempts to crystallize (Ph2P)2N—NH2, the compound could have had some air contact, followed by rearrangement. The title compound was recrystallized from toluene.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H22N2OP2
Mr 416.37
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 8.4464 (4), 10.4163 (5), 13.4880 (6)
α, β, γ (°) 71.550 (4), 76.477 (4), 71.750 (4)
V3) 1057.04 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.43 × 0.20 × 0.16
 
Data collection
Diffractometer Stoe IPDS II
No. of measured, independent and observed [I > 2σ(I)] reflections 18510, 5106, 3786
Rint 0.034
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.075, 0.89
No. of reflections 5106
No. of parameters 270
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.22
Computer programs: X-AREA (Stoe & Cie, 2012[Stoe & Cie (2012). X-AREA. Stoe & Cie, Darmstadt, Germany.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2012); cell refinement: X-AREA (Stoe & Cie, 2012); data reduction: X-AREA (Stoe & Cie, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

1-Diphenylphosphanyl-2-(diphenylphosphoryl)hydrazine top
Crystal data top
C24H22N2OP2Z = 2
Mr = 416.37F(000) = 436
Triclinic, P1Dx = 1.308 Mg m3
a = 8.4464 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4163 (5) ÅCell parameters from 7632 reflections
c = 13.4880 (6) Åθ = 2.1–29.7°
α = 71.550 (4)°µ = 0.22 mm1
β = 76.477 (4)°T = 200 K
γ = 71.750 (4)°Prism, colourless
V = 1057.04 (9) Å30.43 × 0.20 × 0.16 mm
Data collection top
Stoe IPDS II
diffractometer
3786 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
ω scansh = 1110
18510 measured reflectionsk = 1313
5106 independent reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0467P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.001
5106 reflectionsΔρmax = 0.38 e Å3
270 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The N-bound hydrogen atoms H1 and H2B could be found from the difference Fourier map and were refined freely. All other H atoms were placed in idealized positions with d(C—H) = 0.95 Å and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48544 (17)0.69757 (13)0.19890 (10)0.0229 (3)
C20.5326 (2)0.64375 (15)0.29896 (11)0.0315 (3)
H2A0.62990.56760.31100.038*
C30.4392 (2)0.70007 (17)0.38115 (12)0.0396 (4)
H3A0.47250.66300.44940.048*
C40.2977 (2)0.81011 (17)0.36409 (13)0.0416 (4)
H4A0.23260.84810.42080.050*
C50.2506 (2)0.86493 (18)0.26515 (14)0.0439 (4)
H5A0.15340.94130.25360.053*
C60.34393 (19)0.80947 (15)0.18232 (12)0.0328 (3)
H6A0.31110.84810.11400.039*
C70.80465 (17)0.66634 (13)0.05663 (10)0.0229 (3)
C80.93398 (19)0.59595 (15)0.11728 (11)0.0302 (3)
H8A0.92100.51850.17620.036*
C91.08141 (19)0.63851 (17)0.09194 (12)0.0347 (3)
H9A1.16960.59000.13340.042*
C101.10071 (19)0.75072 (17)0.00700 (12)0.0344 (3)
H10A1.20140.78050.00940.041*
C110.9744 (2)0.82020 (17)0.05451 (12)0.0382 (4)
H11A0.98880.89700.11360.046*
C120.82649 (19)0.77819 (15)0.03034 (11)0.0319 (3)
H12A0.74000.82580.07320.038*
C130.61345 (17)0.11965 (13)0.30235 (10)0.0246 (3)
C140.6910 (2)0.02742 (16)0.38775 (12)0.0351 (3)
H14A0.67790.05650.44990.042*
C150.7867 (2)0.10579 (17)0.38350 (13)0.0429 (4)
H15A0.83780.16790.44280.052*
C160.8082 (2)0.14876 (16)0.29358 (14)0.0414 (4)
H16A0.87560.23980.29020.050*
C170.7314 (2)0.05915 (15)0.20848 (12)0.0365 (3)
H17A0.74510.08910.14670.044*
C180.63471 (19)0.07405 (14)0.21248 (11)0.0287 (3)
H18A0.58230.13490.15340.034*
C190.28166 (18)0.29918 (14)0.33548 (10)0.0261 (3)
C200.2203 (2)0.19537 (16)0.32568 (12)0.0354 (3)
H20A0.29670.11670.30420.042*
C210.0494 (2)0.20513 (18)0.34677 (14)0.0419 (4)
H21A0.00930.13370.33900.050*
C220.0634 (2)0.31765 (17)0.37906 (12)0.0377 (4)
H22A0.18080.32400.39360.045*
C230.0042 (2)0.42118 (16)0.39012 (12)0.0384 (4)
H23A0.08110.49870.41280.046*
C240.1660 (2)0.41228 (15)0.36827 (12)0.0339 (3)
H24A0.20520.48440.37570.041*
N10.65219 (16)0.45605 (12)0.14559 (9)0.0252 (2)
N20.50757 (15)0.40184 (11)0.18533 (9)0.0259 (2)
O10.50978 (12)0.68341 (10)0.00130 (7)0.0275 (2)
P10.60334 (4)0.62701 (3)0.09005 (3)0.02070 (8)
P20.50410 (5)0.29827 (4)0.31182 (3)0.02479 (9)
H10.732 (2)0.4119 (19)0.1144 (15)0.044 (5)*
H2B0.482 (2)0.3803 (18)0.1384 (14)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0239 (7)0.0243 (6)0.0238 (6)0.0102 (5)0.0020 (5)0.0081 (5)
C20.0354 (8)0.0317 (7)0.0270 (7)0.0057 (6)0.0070 (6)0.0082 (5)
C30.0557 (11)0.0402 (8)0.0244 (7)0.0137 (8)0.0051 (7)0.0098 (6)
C40.0500 (10)0.0414 (8)0.0338 (8)0.0118 (7)0.0067 (7)0.0200 (7)
C50.0395 (10)0.0407 (9)0.0474 (9)0.0040 (7)0.0058 (8)0.0210 (7)
C60.0328 (8)0.0334 (7)0.0328 (7)0.0032 (6)0.0082 (6)0.0123 (6)
C70.0221 (7)0.0266 (6)0.0212 (6)0.0075 (5)0.0023 (5)0.0075 (5)
C80.0279 (8)0.0342 (7)0.0258 (6)0.0087 (6)0.0059 (6)0.0022 (5)
C90.0244 (8)0.0465 (9)0.0335 (7)0.0072 (7)0.0087 (6)0.0097 (6)
C100.0252 (8)0.0479 (9)0.0358 (8)0.0172 (7)0.0020 (6)0.0159 (7)
C110.0368 (9)0.0422 (8)0.0333 (8)0.0204 (7)0.0036 (7)0.0021 (6)
C120.0288 (8)0.0362 (7)0.0286 (7)0.0112 (6)0.0088 (6)0.0000 (6)
C130.0242 (7)0.0254 (6)0.0246 (6)0.0102 (5)0.0031 (5)0.0036 (5)
C140.0407 (9)0.0359 (7)0.0277 (7)0.0094 (7)0.0106 (6)0.0038 (6)
C150.0464 (10)0.0344 (8)0.0391 (9)0.0046 (7)0.0149 (7)0.0029 (6)
C160.0439 (10)0.0265 (7)0.0462 (9)0.0045 (7)0.0028 (7)0.0065 (6)
C170.0447 (10)0.0316 (7)0.0334 (8)0.0114 (7)0.0008 (7)0.0122 (6)
C180.0328 (8)0.0293 (7)0.0237 (6)0.0099 (6)0.0041 (6)0.0046 (5)
C190.0291 (7)0.0288 (6)0.0193 (6)0.0092 (6)0.0026 (5)0.0039 (5)
C200.0316 (8)0.0380 (8)0.0405 (8)0.0126 (6)0.0012 (7)0.0167 (7)
C210.0352 (9)0.0490 (9)0.0476 (9)0.0188 (7)0.0009 (7)0.0171 (8)
C220.0266 (8)0.0475 (9)0.0308 (7)0.0078 (7)0.0032 (6)0.0016 (6)
C230.0347 (9)0.0360 (8)0.0339 (8)0.0006 (7)0.0035 (7)0.0058 (6)
C240.0383 (9)0.0288 (7)0.0324 (7)0.0066 (6)0.0052 (6)0.0073 (6)
N10.0251 (6)0.0233 (5)0.0266 (6)0.0070 (5)0.0006 (5)0.0080 (4)
N20.0336 (7)0.0259 (5)0.0226 (5)0.0143 (5)0.0060 (5)0.0045 (4)
O10.0285 (5)0.0326 (5)0.0238 (5)0.0090 (4)0.0077 (4)0.0070 (4)
P10.02160 (18)0.02251 (16)0.01936 (15)0.00718 (13)0.00382 (12)0.00538 (12)
P20.0297 (2)0.02590 (17)0.02158 (16)0.01021 (14)0.00453 (14)0.00654 (13)
Geometric parameters (Å, º) top
C1—C61.3874 (19)C14—C151.381 (2)
C1—C21.3883 (18)C14—H14A0.9500
C1—P11.7967 (13)C15—C161.376 (2)
C2—C31.382 (2)C15—H15A0.9500
C2—H2A0.9500C16—C171.378 (2)
C3—C41.378 (2)C16—H16A0.9500
C3—H3A0.9500C17—C181.383 (2)
C4—C51.374 (2)C17—H17A0.9500
C4—H4A0.9500C18—H18A0.9500
C5—C61.384 (2)C19—C201.389 (2)
C5—H5A0.9500C19—C241.395 (2)
C6—H6A0.9500C19—P21.8283 (15)
C7—C121.3914 (19)C20—C211.382 (2)
C7—C81.3916 (19)C20—H20A0.9500
C7—P11.7953 (14)C21—C221.379 (2)
C8—C91.384 (2)C21—H21A0.9500
C8—H8A0.9500C22—C231.382 (2)
C9—C101.375 (2)C22—H22A0.9500
C9—H9A0.9500C23—C241.378 (2)
C10—C111.379 (2)C23—H23A0.9500
C10—H10A0.9500C24—H24A0.9500
C11—C121.386 (2)N1—N21.4256 (16)
C11—H11A0.9500N1—P11.6561 (11)
C12—H12A0.9500N1—H10.80 (2)
C13—C181.3915 (18)N2—P21.7049 (12)
C13—C141.3918 (19)N2—H2B0.828 (18)
C13—P21.8304 (14)O1—P11.4813 (9)
C6—C1—C2119.11 (13)C14—C15—H15A119.9
C6—C1—P1119.08 (10)C15—C16—C17119.71 (15)
C2—C1—P1121.82 (10)C15—C16—H16A120.1
C3—C2—C1120.48 (14)C17—C16—H16A120.1
C3—C2—H2A119.8C16—C17—C18120.43 (14)
C1—C2—H2A119.8C16—C17—H17A119.8
C4—C3—C2119.92 (14)C18—C17—H17A119.8
C4—C3—H3A120.0C17—C18—C13120.55 (13)
C2—C3—H3A120.0C17—C18—H18A119.7
C5—C4—C3120.08 (14)C13—C18—H18A119.7
C5—C4—H4A120.0C20—C19—C24118.04 (14)
C3—C4—H4A120.0C20—C19—P2125.26 (11)
C4—C5—C6120.32 (15)C24—C19—P2116.68 (11)
C4—C5—H5A119.8C21—C20—C19120.75 (14)
C6—C5—H5A119.8C21—C20—H20A119.6
C5—C6—C1120.08 (14)C19—C20—H20A119.6
C5—C6—H6A120.0C22—C21—C20120.52 (15)
C1—C6—H6A120.0C22—C21—H21A119.7
C12—C7—C8119.27 (13)C20—C21—H21A119.7
C12—C7—P1117.66 (10)C21—C22—C23119.42 (15)
C8—C7—P1122.95 (10)C21—C22—H22A120.3
C9—C8—C7120.12 (13)C23—C22—H22A120.3
C9—C8—H8A119.9C24—C23—C22120.17 (14)
C7—C8—H8A119.9C24—C23—H23A119.9
C10—C9—C8120.22 (14)C22—C23—H23A119.9
C10—C9—H9A119.9C23—C24—C19121.09 (14)
C8—C9—H9A119.9C23—C24—H24A119.5
C9—C10—C11120.22 (14)C19—C24—H24A119.5
C9—C10—H10A119.9N2—N1—P1112.75 (9)
C11—C10—H10A119.9N2—N1—H1117.6 (14)
C10—C11—C12120.14 (14)P1—N1—H1114.7 (14)
C10—C11—H11A119.9N1—N2—P2114.25 (9)
C12—C11—H11A119.9N1—N2—H2B110.2 (12)
C11—C12—C7120.01 (13)P2—N2—H2B121.8 (12)
C11—C12—H12A120.0O1—P1—N1119.35 (6)
C7—C12—H12A120.0O1—P1—C7111.77 (6)
C18—C13—C14118.22 (13)N1—P1—C7102.73 (6)
C18—C13—P2124.11 (10)O1—P1—C1110.99 (6)
C14—C13—P2117.48 (10)N1—P1—C1102.73 (6)
C15—C14—C13120.97 (14)C7—P1—C1108.36 (6)
C15—C14—H14A119.5N2—P2—C1996.79 (6)
C13—C14—H14A119.5N2—P2—C13106.30 (6)
C16—C15—C14120.11 (14)C19—P2—C13103.11 (6)
C16—C15—H15A119.9
C6—C1—C2—C30.5 (2)C22—C23—C24—C190.4 (2)
P1—C1—C2—C3179.87 (12)C20—C19—C24—C230.1 (2)
C1—C2—C3—C40.3 (2)P2—C19—C24—C23178.73 (11)
C2—C3—C4—C50.8 (3)P1—N1—N2—P2131.01 (8)
C3—C4—C5—C60.5 (3)N2—N1—P1—O159.52 (11)
C4—C5—C6—C10.3 (3)N2—N1—P1—C7176.20 (9)
C2—C1—C6—C50.8 (2)N2—N1—P1—C163.73 (10)
P1—C1—C6—C5179.58 (13)C12—C7—P1—O121.64 (13)
C12—C7—C8—C91.0 (2)C8—C7—P1—O1162.43 (11)
P1—C7—C8—C9174.91 (11)C12—C7—P1—N1150.79 (11)
C7—C8—C9—C100.2 (2)C8—C7—P1—N133.28 (13)
C8—C9—C10—C111.0 (2)C12—C7—P1—C1100.97 (11)
C9—C10—C11—C120.7 (2)C8—C7—P1—C174.96 (12)
C10—C11—C12—C70.5 (2)C6—C1—P1—O111.40 (13)
C8—C7—C12—C111.3 (2)C2—C1—P1—O1169.00 (11)
P1—C7—C12—C11174.78 (12)C6—C1—P1—N1140.06 (11)
C18—C13—C14—C150.1 (2)C2—C1—P1—N140.34 (13)
P2—C13—C14—C15175.06 (13)C6—C1—P1—C7111.69 (12)
C13—C14—C15—C160.7 (3)C2—C1—P1—C767.91 (13)
C14—C15—C16—C171.1 (3)N1—N2—P2—C19165.14 (9)
C15—C16—C17—C180.7 (3)N1—N2—P2—C1389.02 (10)
C16—C17—C18—C130.0 (2)C20—C19—P2—N297.04 (13)
C14—C13—C18—C170.4 (2)C24—C19—P2—N284.50 (11)
P2—C13—C18—C17174.35 (12)C20—C19—P2—C1311.50 (14)
C24—C19—C20—C210.7 (2)C24—C19—P2—C13166.97 (10)
P2—C19—C20—C21179.15 (12)C18—C13—P2—N221.59 (14)
C19—C20—C21—C220.7 (2)C14—C13—P2—N2153.23 (11)
C20—C21—C22—C230.1 (2)C18—C13—P2—C1979.63 (13)
C21—C22—C23—C240.5 (2)C14—C13—P2—C19105.55 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C19–C24 and C7–C12 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.828 (18)2.132 (18)2.9357 (14)163.6 (17)
C10—H10A···O1ii0.952.503.2854 (19)140
C15—H15A···Cg1iii0.952.703.6125 (17)162
C17—H17A···Cg2iv0.952.913.7171 (18)144
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y1, z.
 

Funding information

The publication of this article was funded by the Open Access Fund of the Leibniz Association.

References

First citationAluri, B. R., Peulecke, N., Müller, B. H., Peitz, S., Spannenberg, A., Hapke, M. & Rosenthal, U. (2010). Organometallics, 29, 226–231.  CrossRef Google Scholar
First citationGholivand, K., Asadi, L., Valmoozi, A. A. E., Hodaii, M., Sharifi, M., Kashani, H. M., Mahzouni, H. R., Ghadamyari, M., Kalate, A. A., Davari, E., Salehi, S. & Bonsaii, M. (2016). RSC Adv. 6, 24175–24189.  CrossRef Google Scholar
First citationGholivand, K., Mahzouni, H. R., Molaei, F. & Kalateh, A. A. (2012). Tetrahedron Lett. 53, 5944–5947.  CrossRef Google Scholar
First citationHöhne, M., Aluri, B. R., Spannenberg, A., Müller, B. H., Peulecke, N. & Rosenthal, U. (2018). IUCrData, 3, x180679–x180686.  Google Scholar
First citationKriel, F. H., Fernandes, M. A. & Caddy, J. (2010). Acta Cryst. E66, o1270.  CrossRef IUCr Journals Google Scholar
First citationPyykkö, P. (2015). J. Phys. Chem. A, 119, 2326–2337.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2012). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSushev, V. V., Belina, N. V., Fukin, G. K., Kurskiy, Y. A., Kornev, A. N. & Abakumov, G. A. (2008). Inorg. Chem. 47, 2608–2612.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds