organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,4-Di­chloro-N-(2,5-dioxopyrrolidin-1-yl)benzamide

aX-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu 180 006, India, bDepartment of Chemistry, Mangalore University, Mangalagangothri 574 199, India, and cDepartment of Industrial Chemistry, Mangalore University, Mangalagangothri 574 199, India
*Correspondence e-mail: rkant.ju@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 27 November 2018; accepted 8 December 2018; online 14 December 2018)

In the title compound, C11H8Cl2N2O3, the plane of the pyrrolidine ring (r.m.s. deviation = 0.065 Å) makes a dihedral angle of 52.9 (2)° with the plane of the benzene ring. The least-squares plane of the central amide fragment makes dihedral angles of 49.3 (7) and 77.9 (7)° with those of the benzene and pyrrolidine rings, respectively. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds, forming chains along the b-axis direction. ππ inter­actions link these chains into a two-dimensional network parallel to (100).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Imides are compounds that contain a nitro­gen atom linked to two carbonyl groups. The title compound belongs to the class of imides that contain two acyl groups bound to nitrogen. These compounds, being structurally related to derivatives of ammonia, can pass through biological membranes because of their neutral and hydro­phobic nature (Prado et al., 2004[Prado, S. R. T, Cechinel-Filho, V., Buzzi, F. C., Corrêa, R., Cadena, S. M. C. S. & de Oliveira, M. B. M.(2004). Z. Naturforsch. Teil C 59, 663-672.]). Compounds containing this moiety have been reported to be potent anti­bacterial and anti­fungal agents (Nayakh et al., 2016[Nayak, P. S., Narayana, B., Sarojini, B. K., Sheik, S., Shashidhara, K. S. & Chandrashekar, K. R. (2016). J. Taibah Univ. Sci. 10, 823-838.]). Furthermore, the N-substituted imides in dechlorinated Rebeccamycin have proved to be highly efficient as topoisomerase I inhibitors (Anizon et al., 1997[Anizon, F., Belin, L., Moreau, P., Sancelme, M., Voldoire, A., Prudhomme, M., Ollier, M., Sevère, D., Riou, J. F., Bailly, C., Fabbro, D. & Meyer, T. (1997). J. Med. Chem. 40, 3456-3465.]) and hy­droxy­lated thalidomides are found to be potent TNF-α inhibitors (Nakamura et al., 2006[Nakamura, T., Noguchi, T., Kobayashi, H., Miyachi, H. & Hashimoto, Y. (2006). Chem. Pharm. Bull. 54, 1709-1714.]). The nitro­gen atom plays a significant role in attributing pharmacological functions to these mol­ecules such as analgesic, anti-inflammatory and anti-viral properties (Abdel-Aziz, 2007[Abdel-Aziz, A. A. M. (2007). Eur. J. Med. Chem. 42, 614-626.]). Various synthetic routes are available for the synthesis of biologically potent imides (Barchin et al., 2002[Barchin, B. M., Caudro, A. M. & Alvarez-Builla, J. (2002). Synlett, 2, 343-345.]), including the acid-mediated condensation of an amine with an anhydride (Jayatunga et al., 2015[Jayatunga, M. K. P., Thompson, S., McKee, T. C., Chan, M. C., Reece, K. M., Hardy, A. P., Sekirnik, R., Seden, P. T., Cook, K. M., McMahon, J. B., Figg, W. D., Schofield, C. J. & Hamilton, A. D. (2015). Eur. J. Med. Chem. 94, 509-516.]). The reactivity and structures of substituted phthalimides (Su et al., 2015[Su, B., Wei, J., Wu, W. & Shi, Z. (2015). ChemCatChem, 7, 2986-2990.]) have also been reported.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The mol­ecule is composed of a benzene ring, a pyrrolidine ring and an amide fragment. The bond distances are in normal ranges and are comparable with the values reported for related structures (e.g. Saeed et al., 2010[Saeed, S., Rashid, N. & Wong, W.-T. (2010). Acta Cryst. E66, o3078.]; Su et al., 2015[Su, B., Wei, J., Wu, W. & Shi, Z. (2015). ChemCatChem, 7, 2986-2990.]). The pyrrolidine ring (r.m.s. deviation = 0.065 Å) makes a dihedral angle of 52.9 (2)° with the benzene ring. The central amide fragment makes dihedral angle of 49.3 (7)° and 77.9 (7)° with benzene and pyrrolidine rings, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

In the crystal, N—H⋯O hydrogen bonds link the mol­ecules along the b-axis direction, forming chains (Table 1[link], Fig. 2[link]). The crystal structure also features ππ inter­actions (Fig. 3[link]): Cg1⋯Cg2i = 3.9338 (3) Å, inter­planar spacing = 3.587 Å and centroid shift = 1.57 Å and Cg2⋯Cg2ii = 3.9334 (3) Å, inter­planar spacing = 3.533 Å and centroid shift = 1.73 Å [symmetry codes: (i) −x, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x, −y + 1, −z + 1; Cg1 and Cg2 are the centroids of pyrrolidine and benzene rings, respectively]. The ππ inter­actions link the hydrogen-bonded chains into a two-dimensional network parallel to (100).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.15 3.006 (3) 171
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure showing N—H⋯O hydrogen bonds as dashed lines.
[Figure 3]
Figure 3
Part of the crystal structure showing the ππ stacking inter­actions.

Synthesis and crystallization

The title compound was obtained by refluxing a mixture of 2,4-di­chloro­benzohydrazide (0.41 g, 2 mmol) and succinic anhydride (0.20 g, 2 mmol) for 5 h in 10 ml acetic acid. After the completion of the reaction, the reaction mixture was cooled and quenched into ice-cold water with stirring. The solid obtained was filtered, washed and dried. Single crystals were obtained by slow evaporation of a methanol solution (yield = 83%, m.p. = 435–437 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H8Cl2N2O3
Mr 287.09
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 7.8233 (5), 7.4705 (5), 20.1932 (12)
β (°) 94.866 (6)
V3) 1175.92 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.55
Crystal size (mm) 0.3 × 0.2 × 0.2
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.843, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4484, 2306, 1790
Rint 0.022
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.03
No. of reflections 2306
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.25
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

2,4-Dichloro-N-(2,5-dioxopyrrolidin-1-yl)benzamide top
Crystal data top
C11H8Cl2N2O3F(000) = 584
Mr = 287.09Dx = 1.622 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.8233 (5) ÅCell parameters from 1764 reflections
b = 7.4705 (5) Åθ = 3.8–28.5°
c = 20.1932 (12) ŵ = 0.55 mm1
β = 94.866 (6)°T = 293 K
V = 1175.92 (13) Å3Block, white
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2306 independent reflections
Radiation source: Enhance (Mo) X-ray Source1790 reflections with I > 2σ(I)
Detector resolution: 16.1049 pixels mm-1Rint = 0.022
ω scansθmax = 26.0°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
h = 59
Tmin = 0.843, Tmax = 1.000k = 95
4484 measured reflectionsl = 2324
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.4192P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.27 e Å3
2306 reflectionsΔρmin = 0.25 e Å3
164 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.033 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H-atoms were geometrically fixed and allowed to ride on their corresponding non-H atoms with Uiso(H)= 1.2Ueq(C/N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33079 (8)0.67402 (9)0.44687 (3)0.0499 (2)
Cl20.26441 (8)0.82692 (10)0.54467 (3)0.0497 (2)
O30.4599 (2)0.4080 (3)0.70363 (9)0.0631 (6)
O20.0342 (2)0.6697 (2)0.83595 (8)0.0445 (4)
O10.1790 (2)0.8061 (2)0.69526 (8)0.0481 (5)
N20.2154 (2)0.5067 (2)0.76313 (8)0.0322 (4)
N10.1163 (2)0.5140 (2)0.70973 (9)0.0349 (5)
H10.0617130.4214710.6974930.042*
C80.1680 (3)0.5927 (3)0.82315 (10)0.0322 (5)
C90.3159 (3)0.5717 (3)0.86544 (11)0.0397 (6)
H9A0.3542230.6877230.8799010.048*
H9B0.2824610.4997380.9043720.048*
C100.4579 (3)0.4793 (4)0.82189 (11)0.0424 (6)
H10A0.4845550.3637090.8403050.051*
H10B0.5610640.5518380.8182130.051*
C110.3888 (3)0.4575 (3)0.75525 (11)0.0378 (5)
C70.1084 (3)0.6725 (3)0.67729 (10)0.0305 (5)
C10.0002 (3)0.6678 (3)0.61942 (10)0.0283 (5)
C60.0586 (3)0.7415 (3)0.55805 (10)0.0302 (5)
C50.0427 (3)0.7430 (3)0.50520 (11)0.0327 (5)
H50.0017630.7911030.4644260.039*
C40.2062 (3)0.6717 (3)0.51414 (11)0.0324 (5)
C30.2692 (3)0.5985 (3)0.57392 (12)0.0364 (5)
H30.3797870.5520330.5791940.044*
C20.1649 (3)0.5952 (3)0.62609 (11)0.0341 (5)
H20.2055340.5435370.6662770.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0441 (4)0.0653 (5)0.0439 (4)0.0074 (3)0.0241 (3)0.0035 (3)
Cl20.0327 (3)0.0773 (5)0.0398 (4)0.0180 (3)0.0069 (2)0.0149 (3)
O30.0549 (12)0.0935 (16)0.0397 (11)0.0197 (11)0.0030 (9)0.0141 (11)
O20.0408 (10)0.0535 (10)0.0383 (10)0.0099 (8)0.0018 (7)0.0023 (8)
O10.0596 (11)0.0449 (10)0.0427 (10)0.0190 (9)0.0213 (8)0.0043 (8)
N20.0348 (10)0.0410 (11)0.0218 (9)0.0029 (8)0.0073 (7)0.0005 (8)
N10.0423 (11)0.0375 (10)0.0268 (10)0.0055 (8)0.0136 (8)0.0013 (9)
C80.0378 (13)0.0337 (12)0.0248 (11)0.0013 (10)0.0010 (9)0.0029 (10)
C90.0451 (14)0.0493 (14)0.0257 (11)0.0001 (11)0.0090 (10)0.0004 (11)
C100.0370 (13)0.0537 (15)0.0376 (13)0.0044 (11)0.0096 (10)0.0023 (12)
C110.0379 (13)0.0428 (13)0.0324 (13)0.0047 (11)0.0011 (10)0.0005 (11)
C70.0294 (11)0.0391 (12)0.0230 (11)0.0035 (9)0.0021 (8)0.0013 (10)
C10.0277 (11)0.0322 (11)0.0256 (11)0.0015 (9)0.0059 (8)0.0007 (9)
C60.0254 (11)0.0357 (11)0.0297 (11)0.0023 (9)0.0035 (9)0.0029 (10)
C50.0341 (12)0.0405 (12)0.0240 (11)0.0006 (10)0.0053 (9)0.0028 (10)
C40.0316 (11)0.0359 (12)0.0311 (12)0.0020 (10)0.0115 (9)0.0028 (10)
C30.0266 (11)0.0416 (13)0.0415 (13)0.0071 (10)0.0066 (10)0.0016 (11)
C20.0323 (12)0.0397 (13)0.0301 (12)0.0061 (10)0.0010 (9)0.0031 (10)
Geometric parameters (Å, º) top
Cl1—C41.738 (2)C10—C111.501 (3)
Cl2—C61.732 (2)C10—H10A0.9700
O3—C111.198 (3)C10—H10B0.9700
O2—C81.203 (3)C7—C11.502 (3)
O1—C71.212 (3)C1—C21.394 (3)
N2—N11.381 (2)C1—C61.398 (3)
N2—C81.394 (3)C6—C51.382 (3)
N2—C111.402 (3)C5—C41.383 (3)
N1—C71.357 (3)C5—H50.9300
N1—H10.8600C4—C31.378 (3)
C8—C91.503 (3)C3—C21.386 (3)
C9—C101.522 (3)C3—H30.9300
C9—H9A0.9700C2—H20.9300
C9—H9B0.9700
N1—N2—C8122.35 (18)N2—C11—C10106.75 (18)
N1—N2—C11121.57 (17)O1—C7—N1122.24 (19)
C8—N2—C11113.77 (17)O1—C7—C1123.7 (2)
C7—N1—N2117.59 (17)N1—C7—C1114.07 (18)
C7—N1—H1121.2C2—C1—C6118.07 (19)
N2—N1—H1121.2C2—C1—C7120.84 (19)
O2—C8—N2124.7 (2)C6—C1—C7121.05 (18)
O2—C8—C9128.7 (2)C5—C6—C1121.40 (19)
N2—C8—C9106.57 (19)C5—C6—Cl2117.57 (16)
C8—C9—C10106.14 (18)C1—C6—Cl2120.99 (16)
C8—C9—H9A110.5C6—C5—C4118.7 (2)
C10—C9—H9A110.5C6—C5—H5120.6
C8—C9—H9B110.5C4—C5—H5120.6
C10—C9—H9B110.5C3—C4—C5121.7 (2)
H9A—C9—H9B108.7C3—C4—Cl1120.41 (17)
C11—C10—C9105.48 (18)C5—C4—Cl1117.90 (17)
C11—C10—H10A110.6C4—C3—C2118.9 (2)
C9—C10—H10A110.6C4—C3—H3120.6
C11—C10—H10B110.6C2—C3—H3120.6
C9—C10—H10B110.6C3—C2—C1121.2 (2)
H10A—C10—H10B108.8C3—C2—H2119.4
O3—C11—N2123.6 (2)C1—C2—H2119.4
O3—C11—C10129.7 (2)
C8—N2—N1—C770.5 (3)O1—C7—C1—C2128.9 (2)
C11—N2—N1—C791.2 (2)N1—C7—C1—C248.9 (3)
N1—N2—C8—O25.2 (3)O1—C7—C1—C648.9 (3)
C11—N2—C8—O2168.2 (2)N1—C7—C1—C6133.3 (2)
N1—N2—C8—C9173.64 (19)C2—C1—C6—C50.0 (3)
C11—N2—C8—C910.7 (2)C7—C1—C6—C5177.8 (2)
O2—C8—C9—C10174.2 (2)C2—C1—C6—Cl2177.57 (17)
N2—C8—C9—C104.6 (2)C7—C1—C6—Cl24.6 (3)
C8—C9—C10—C112.3 (3)C1—C6—C5—C40.8 (3)
N1—N2—C11—O34.9 (4)Cl2—C6—C5—C4178.47 (17)
C8—N2—C11—O3168.0 (2)C6—C5—C4—C30.5 (3)
N1—N2—C11—C10175.33 (19)C6—C5—C4—Cl1179.68 (17)
C8—N2—C11—C1012.2 (3)C5—C4—C3—C20.6 (3)
C9—C10—C11—O3171.9 (3)Cl1—C4—C3—C2178.55 (17)
C9—C10—C11—N28.3 (3)C4—C3—C2—C11.4 (3)
N2—N1—C7—O12.9 (3)C6—C1—C2—C31.2 (3)
N2—N1—C7—C1179.25 (18)C7—C1—C2—C3176.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.153.006 (3)171
Symmetry code: (i) x, y1/2, z+3/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for a single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. SK thanks the Department of Science and Technology for financial support through an INSPIRE Fellowship.

Funding information

Funding for this research was provided by: Department of Science and Technology, Government of India (grant No. EMR/204/000467 to Rajni Kant).

References

First citationAbdel-Aziz, A. A. M. (2007). Eur. J. Med. Chem. 42, 614–626.  Google Scholar
First citationAnizon, F., Belin, L., Moreau, P., Sancelme, M., Voldoire, A., Prudhomme, M., Ollier, M., Sevère, D., Riou, J. F., Bailly, C., Fabbro, D. & Meyer, T. (1997). J. Med. Chem. 40, 3456–3465.  CrossRef Google Scholar
First citationBarchin, B. M., Caudro, A. M. & Alvarez-Builla, J. (2002). Synlett, 2, 343–345.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJayatunga, M. K. P., Thompson, S., McKee, T. C., Chan, M. C., Reece, K. M., Hardy, A. P., Sekirnik, R., Seden, P. T., Cook, K. M., McMahon, J. B., Figg, W. D., Schofield, C. J. & Hamilton, A. D. (2015). Eur. J. Med. Chem. 94, 509–516.  CrossRef Google Scholar
First citationNakamura, T., Noguchi, T., Kobayashi, H., Miyachi, H. & Hashimoto, Y. (2006). Chem. Pharm. Bull. 54, 1709–1714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNayak, P. S., Narayana, B., Sarojini, B. K., Sheik, S., Shashidhara, K. S. & Chandrashekar, K. R. (2016). J. Taibah Univ. Sci. 10, 823–838.  CrossRef Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrado, S. R. T, Cechinel-Filho, V., Buzzi, F. C., Corrêa, R., Cadena, S. M. C. S. & de Oliveira, M. B. M.(2004). Z. Naturforsch. Teil C 59, 663–672.  Google Scholar
First citationSaeed, S., Rashid, N. & Wong, W.-T. (2010). Acta Cryst. E66, o3078.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, B., Wei, J., Wu, W. & Shi, Z. (2015). ChemCatChem, 7, 2986–2990.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds