organic compounds
2,4-Dichloro-N-(2,5-dioxopyrrolidin-1-yl)benzamide
aX-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu 180 006, India, bDepartment of Chemistry, Mangalore University, Mangalagangothri 574 199, India, and cDepartment of Industrial Chemistry, Mangalore University, Mangalagangothri 574 199, India
*Correspondence e-mail: rkant.ju@gmail.com
In the title compound, C11H8Cl2N2O3, the plane of the pyrrolidine ring (r.m.s. deviation = 0.065 Å) makes a dihedral angle of 52.9 (2)° with the plane of the benzene ring. The least-squares plane of the central amide fragment makes dihedral angles of 49.3 (7) and 77.9 (7)° with those of the benzene and pyrrolidine rings, respectively. In the crystal, molecules are linked via N—H⋯O hydrogen bonds, forming chains along the b-axis direction. π–π interactions link these chains into a two-dimensional network parallel to (100).
Keywords: pyrrolidine ring; benzene ring; dihedral angle; hydrogen bonding; crystal structure.
CCDC reference: 1871635
Structure description
et al., 2004). Compounds containing this moiety have been reported to be potent antibacterial and antifungal agents (Nayakh et al., 2016). Furthermore, the N-substituted in dechlorinated Rebeccamycin have proved to be highly efficient as topoisomerase I inhibitors (Anizon et al., 1997) and hydroxylated thalidomides are found to be potent TNF-α inhibitors (Nakamura et al., 2006). The nitrogen atom plays a significant role in attributing pharmacological functions to these molecules such as analgesic, anti-inflammatory and anti-viral properties (Abdel-Aziz, 2007). Various synthetic routes are available for the synthesis of biologically potent (Barchin et al., 2002), including the acid-mediated condensation of an amine with an anhydride (Jayatunga et al., 2015). The reactivity and structures of substituted phthalimides (Su et al., 2015) have also been reported.
are compounds that contain a nitrogen atom linked to two carbonyl groups. The title compound belongs to the class of that contain two bound to nitrogen. These compounds, being structurally related to derivatives of ammonia, can pass through biological membranes because of their neutral and hydrophobic nature (PradoThe molecular structure of the title compound is illustrated in Fig. 1. The molecule is composed of a benzene ring, a pyrrolidine ring and an amide fragment. The bond distances are in normal ranges and are comparable with the values reported for related structures (e.g. Saeed et al., 2010; Su et al., 2015). The pyrrolidine ring (r.m.s. deviation = 0.065 Å) makes a dihedral angle of 52.9 (2)° with the benzene ring. The central amide fragment makes dihedral angle of 49.3 (7)° and 77.9 (7)° with benzene and pyrrolidine rings, respectively.
In the crystal, N—H⋯O hydrogen bonds link the molecules along the b-axis direction, forming chains (Table 1, Fig. 2). The also features π–π interactions (Fig. 3): Cg1⋯Cg2i = 3.9338 (3) Å, interplanar spacing = 3.587 Å and centroid shift = 1.57 Å and Cg2⋯Cg2ii = 3.9334 (3) Å, interplanar spacing = 3.533 Å and centroid shift = 1.73 Å [symmetry codes: (i) −x, y + , −z + ; (ii) −x, −y + 1, −z + 1; Cg1 and Cg2 are the centroids of pyrrolidine and benzene rings, respectively]. The π–π interactions link the hydrogen-bonded chains into a two-dimensional network parallel to (100).
Synthesis and crystallization
The title compound was obtained by refluxing a mixture of 2,4-dichlorobenzohydrazide (0.41 g, 2 mmol) and succinic anhydride (0.20 g, 2 mmol) for 5 h in 10 ml acetic acid. After the completion of the reaction, the reaction mixture was cooled and quenched into ice-cold water with stirring. The solid obtained was filtered, washed and dried. Single crystals were obtained by slow evaporation of a methanol solution (yield = 83%, m.p. = 435–437 K).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1871635
https://doi.org/10.1107/S2414314618017406/lh4042sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618017406/lh4042Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618017406/lh4042Isup3.cml
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C11H8Cl2N2O3 | F(000) = 584 |
Mr = 287.09 | Dx = 1.622 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8233 (5) Å | Cell parameters from 1764 reflections |
b = 7.4705 (5) Å | θ = 3.8–28.5° |
c = 20.1932 (12) Å | µ = 0.55 mm−1 |
β = 94.866 (6)° | T = 293 K |
V = 1175.92 (13) Å3 | Block, white |
Z = 4 | 0.3 × 0.2 × 0.2 mm |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2306 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1790 reflections with I > 2σ(I) |
Detector resolution: 16.1049 pixels mm-1 | Rint = 0.022 |
ω scans | θmax = 26.0°, θmin = 3.8° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | h = −5→9 |
Tmin = 0.843, Tmax = 1.000 | k = −9→5 |
4484 measured reflections | l = −23→24 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0446P)2 + 0.4192P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.102 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 0.27 e Å−3 |
2306 reflections | Δρmin = −0.25 e Å−3 |
164 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.033 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All the H-atoms were geometrically fixed and allowed to ride on their corresponding non-H atoms with Uiso(H)= 1.2Ueq(C/N). |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.33079 (8) | 0.67402 (9) | 0.44687 (3) | 0.0499 (2) | |
Cl2 | −0.26441 (8) | 0.82692 (10) | 0.54467 (3) | 0.0497 (2) | |
O3 | −0.4599 (2) | 0.4080 (3) | 0.70363 (9) | 0.0631 (6) | |
O2 | −0.0342 (2) | 0.6697 (2) | 0.83595 (8) | 0.0445 (4) | |
O1 | −0.1790 (2) | 0.8061 (2) | 0.69526 (8) | 0.0481 (5) | |
N2 | −0.2154 (2) | 0.5067 (2) | 0.76313 (8) | 0.0322 (4) | |
N1 | −0.1163 (2) | 0.5140 (2) | 0.70973 (9) | 0.0349 (5) | |
H1 | −0.061713 | 0.421471 | 0.697493 | 0.042* | |
C8 | −0.1680 (3) | 0.5927 (3) | 0.82315 (10) | 0.0322 (5) | |
C9 | −0.3159 (3) | 0.5717 (3) | 0.86544 (11) | 0.0397 (6) | |
H9A | −0.354223 | 0.687723 | 0.879901 | 0.048* | |
H9B | −0.282461 | 0.499738 | 0.904372 | 0.048* | |
C10 | −0.4579 (3) | 0.4793 (4) | 0.82189 (11) | 0.0424 (6) | |
H10A | −0.484555 | 0.363709 | 0.840305 | 0.051* | |
H10B | −0.561064 | 0.551838 | 0.818213 | 0.051* | |
C11 | −0.3888 (3) | 0.4575 (3) | 0.75525 (11) | 0.0378 (5) | |
C7 | −0.1084 (3) | 0.6725 (3) | 0.67729 (10) | 0.0305 (5) | |
C1 | 0.0002 (3) | 0.6678 (3) | 0.61942 (10) | 0.0283 (5) | |
C6 | −0.0586 (3) | 0.7415 (3) | 0.55805 (10) | 0.0302 (5) | |
C5 | 0.0427 (3) | 0.7430 (3) | 0.50520 (11) | 0.0327 (5) | |
H5 | 0.001763 | 0.791103 | 0.464426 | 0.039* | |
C4 | 0.2062 (3) | 0.6717 (3) | 0.51414 (11) | 0.0324 (5) | |
C3 | 0.2692 (3) | 0.5985 (3) | 0.57392 (12) | 0.0364 (5) | |
H3 | 0.379787 | 0.552033 | 0.579194 | 0.044* | |
C2 | 0.1649 (3) | 0.5952 (3) | 0.62609 (11) | 0.0341 (5) | |
H2 | 0.205534 | 0.543537 | 0.666277 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0441 (4) | 0.0653 (5) | 0.0439 (4) | 0.0074 (3) | 0.0241 (3) | 0.0035 (3) |
Cl2 | 0.0327 (3) | 0.0773 (5) | 0.0398 (4) | 0.0180 (3) | 0.0069 (2) | 0.0149 (3) |
O3 | 0.0549 (12) | 0.0935 (16) | 0.0397 (11) | −0.0197 (11) | −0.0030 (9) | −0.0141 (11) |
O2 | 0.0408 (10) | 0.0535 (10) | 0.0383 (10) | −0.0099 (8) | −0.0018 (7) | −0.0023 (8) |
O1 | 0.0596 (11) | 0.0449 (10) | 0.0427 (10) | 0.0190 (9) | 0.0213 (8) | 0.0043 (8) |
N2 | 0.0348 (10) | 0.0410 (11) | 0.0218 (9) | −0.0029 (8) | 0.0073 (7) | −0.0005 (8) |
N1 | 0.0423 (11) | 0.0375 (10) | 0.0268 (10) | 0.0055 (8) | 0.0136 (8) | 0.0013 (9) |
C8 | 0.0378 (13) | 0.0337 (12) | 0.0248 (11) | 0.0013 (10) | 0.0010 (9) | 0.0029 (10) |
C9 | 0.0451 (14) | 0.0493 (14) | 0.0257 (11) | 0.0001 (11) | 0.0090 (10) | −0.0004 (11) |
C10 | 0.0370 (13) | 0.0537 (15) | 0.0376 (13) | −0.0044 (11) | 0.0096 (10) | 0.0023 (12) |
C11 | 0.0379 (13) | 0.0428 (13) | 0.0324 (13) | −0.0047 (11) | 0.0011 (10) | 0.0005 (11) |
C7 | 0.0294 (11) | 0.0391 (12) | 0.0230 (11) | 0.0035 (9) | 0.0021 (8) | 0.0013 (10) |
C1 | 0.0277 (11) | 0.0322 (11) | 0.0256 (11) | 0.0015 (9) | 0.0059 (8) | −0.0007 (9) |
C6 | 0.0254 (11) | 0.0357 (11) | 0.0297 (11) | 0.0023 (9) | 0.0035 (9) | 0.0029 (10) |
C5 | 0.0341 (12) | 0.0405 (12) | 0.0240 (11) | 0.0006 (10) | 0.0053 (9) | 0.0028 (10) |
C4 | 0.0316 (11) | 0.0359 (12) | 0.0311 (12) | −0.0020 (10) | 0.0115 (9) | −0.0028 (10) |
C3 | 0.0266 (11) | 0.0416 (13) | 0.0415 (13) | 0.0071 (10) | 0.0066 (10) | −0.0016 (11) |
C2 | 0.0323 (12) | 0.0397 (13) | 0.0301 (12) | 0.0061 (10) | 0.0010 (9) | 0.0031 (10) |
Cl1—C4 | 1.738 (2) | C10—C11 | 1.501 (3) |
Cl2—C6 | 1.732 (2) | C10—H10A | 0.9700 |
O3—C11 | 1.198 (3) | C10—H10B | 0.9700 |
O2—C8 | 1.203 (3) | C7—C1 | 1.502 (3) |
O1—C7 | 1.212 (3) | C1—C2 | 1.394 (3) |
N2—N1 | 1.381 (2) | C1—C6 | 1.398 (3) |
N2—C8 | 1.394 (3) | C6—C5 | 1.382 (3) |
N2—C11 | 1.402 (3) | C5—C4 | 1.383 (3) |
N1—C7 | 1.357 (3) | C5—H5 | 0.9300 |
N1—H1 | 0.8600 | C4—C3 | 1.378 (3) |
C8—C9 | 1.503 (3) | C3—C2 | 1.386 (3) |
C9—C10 | 1.522 (3) | C3—H3 | 0.9300 |
C9—H9A | 0.9700 | C2—H2 | 0.9300 |
C9—H9B | 0.9700 | ||
N1—N2—C8 | 122.35 (18) | N2—C11—C10 | 106.75 (18) |
N1—N2—C11 | 121.57 (17) | O1—C7—N1 | 122.24 (19) |
C8—N2—C11 | 113.77 (17) | O1—C7—C1 | 123.7 (2) |
C7—N1—N2 | 117.59 (17) | N1—C7—C1 | 114.07 (18) |
C7—N1—H1 | 121.2 | C2—C1—C6 | 118.07 (19) |
N2—N1—H1 | 121.2 | C2—C1—C7 | 120.84 (19) |
O2—C8—N2 | 124.7 (2) | C6—C1—C7 | 121.05 (18) |
O2—C8—C9 | 128.7 (2) | C5—C6—C1 | 121.40 (19) |
N2—C8—C9 | 106.57 (19) | C5—C6—Cl2 | 117.57 (16) |
C8—C9—C10 | 106.14 (18) | C1—C6—Cl2 | 120.99 (16) |
C8—C9—H9A | 110.5 | C6—C5—C4 | 118.7 (2) |
C10—C9—H9A | 110.5 | C6—C5—H5 | 120.6 |
C8—C9—H9B | 110.5 | C4—C5—H5 | 120.6 |
C10—C9—H9B | 110.5 | C3—C4—C5 | 121.7 (2) |
H9A—C9—H9B | 108.7 | C3—C4—Cl1 | 120.41 (17) |
C11—C10—C9 | 105.48 (18) | C5—C4—Cl1 | 117.90 (17) |
C11—C10—H10A | 110.6 | C4—C3—C2 | 118.9 (2) |
C9—C10—H10A | 110.6 | C4—C3—H3 | 120.6 |
C11—C10—H10B | 110.6 | C2—C3—H3 | 120.6 |
C9—C10—H10B | 110.6 | C3—C2—C1 | 121.2 (2) |
H10A—C10—H10B | 108.8 | C3—C2—H2 | 119.4 |
O3—C11—N2 | 123.6 (2) | C1—C2—H2 | 119.4 |
O3—C11—C10 | 129.7 (2) | ||
C8—N2—N1—C7 | −70.5 (3) | O1—C7—C1—C2 | 128.9 (2) |
C11—N2—N1—C7 | 91.2 (2) | N1—C7—C1—C2 | −48.9 (3) |
N1—N2—C8—O2 | −5.2 (3) | O1—C7—C1—C6 | −48.9 (3) |
C11—N2—C8—O2 | −168.2 (2) | N1—C7—C1—C6 | 133.3 (2) |
N1—N2—C8—C9 | 173.64 (19) | C2—C1—C6—C5 | 0.0 (3) |
C11—N2—C8—C9 | 10.7 (2) | C7—C1—C6—C5 | 177.8 (2) |
O2—C8—C9—C10 | 174.2 (2) | C2—C1—C6—Cl2 | 177.57 (17) |
N2—C8—C9—C10 | −4.6 (2) | C7—C1—C6—Cl2 | −4.6 (3) |
C8—C9—C10—C11 | −2.3 (3) | C1—C6—C5—C4 | −0.8 (3) |
N1—N2—C11—O3 | 4.9 (4) | Cl2—C6—C5—C4 | −178.47 (17) |
C8—N2—C11—O3 | 168.0 (2) | C6—C5—C4—C3 | 0.5 (3) |
N1—N2—C11—C10 | −175.33 (19) | C6—C5—C4—Cl1 | 179.68 (17) |
C8—N2—C11—C10 | −12.2 (3) | C5—C4—C3—C2 | 0.6 (3) |
C9—C10—C11—O3 | −171.9 (3) | Cl1—C4—C3—C2 | −178.55 (17) |
C9—C10—C11—N2 | 8.3 (3) | C4—C3—C2—C1 | −1.4 (3) |
N2—N1—C7—O1 | 2.9 (3) | C6—C1—C2—C3 | 1.2 (3) |
N2—N1—C7—C1 | −179.25 (18) | C7—C1—C2—C3 | −176.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 2.15 | 3.006 (3) | 171 |
Symmetry code: (i) −x, y−1/2, −z+3/2. |
Acknowledgements
RK acknowledges the Department of Science & Technology for a single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. SK thanks the Department of Science and Technology for financial support through an INSPIRE Fellowship.
Funding information
Funding for this research was provided by: Department of Science and Technology, Government of India (grant No. EMR/204/000467 to Rajni Kant).
References
Abdel-Aziz, A. A. M. (2007). Eur. J. Med. Chem. 42, 614–626. Google Scholar
Anizon, F., Belin, L., Moreau, P., Sancelme, M., Voldoire, A., Prudhomme, M., Ollier, M., Sevère, D., Riou, J. F., Bailly, C., Fabbro, D. & Meyer, T. (1997). J. Med. Chem. 40, 3456–3465. CrossRef Google Scholar
Barchin, B. M., Caudro, A. M. & Alvarez-Builla, J. (2002). Synlett, 2, 343–345. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jayatunga, M. K. P., Thompson, S., McKee, T. C., Chan, M. C., Reece, K. M., Hardy, A. P., Sekirnik, R., Seden, P. T., Cook, K. M., McMahon, J. B., Figg, W. D., Schofield, C. J. & Hamilton, A. D. (2015). Eur. J. Med. Chem. 94, 509–516. CrossRef Google Scholar
Nakamura, T., Noguchi, T., Kobayashi, H., Miyachi, H. & Hashimoto, Y. (2006). Chem. Pharm. Bull. 54, 1709–1714. Web of Science CrossRef PubMed CAS Google Scholar
Nayak, P. S., Narayana, B., Sarojini, B. K., Sheik, S., Shashidhara, K. S. & Chandrashekar, K. R. (2016). J. Taibah Univ. Sci. 10, 823–838. CrossRef Google Scholar
Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Prado, S. R. T, Cechinel-Filho, V., Buzzi, F. C., Corrêa, R., Cadena, S. M. C. S. & de Oliveira, M. B. M.(2004). Z. Naturforsch. Teil C 59, 663–672. Google Scholar
Saeed, S., Rashid, N. & Wong, W.-T. (2010). Acta Cryst. E66, o3078. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, B., Wei, J., Wu, W. & Shi, Z. (2015). ChemCatChem, 7, 2986–2990. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.