organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Methyl-1H-1,5-benzodiazepin-2(3H)-one

aFormation Doctorale Molécules Bioactives, Santé et Biotechnologies, Centre d'études Doctorales Sciences et Technologies LCO, and Faculté des Sciences Dhar El Marhaz, Fès, Morocco, bLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, cLaboratoire de Chimie Organique Hétérocyclique, Faculté des Sciences, Mohammed V University in Rabat, Rabat, Morocco, and dLaboratoire de Chimie des Matériaux et Biotechnologie des Produits Naturels, E.Ma.Me.P.S, Université Moulay Ismail, Faculté des Sciences, Meknès, Morocco
*Correspondence e-mail: anouar.alami@usmba.ac.ma

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 November 2018; accepted 3 December 2018; online 14 December 2018)

In the title compound, C10H10N2O, the seven-membered heterocycle displays a half-chair conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into chains propagating along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzodiazepines are a class of drugs that act on the GABA-A receptor as an allosteric modulator and increase the frequency of opening of its chloride channel (Twyman et al. 1989[Twyman, R. E., Rogers, C. J. & Macdonald, R. L. (1989). Ann. Neurol. 25, 213-220.]). The biological effects of these drugs include hypnotic, anti­convulsant and muscle relaxant properties (De Sarro et al. 1995[De Sarro, G., Chimirri, A., De Sarro, A., Gitto, R., Grasso, S. & Zappalà, M. (1995). Eur. J. Med. Chem. 30, 925-929.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound.

The mol­ecule of the title compound (Fig. 1[link]) is built up from fused six- and seven-membered rings. The seven-membered ring displays a half-chair conformation as indicated by the puckering amplitude QT = 0.8734 (16) Å and spherical polar angle φ2 = 205.48 (11)° and φ3 = 310.2 (4)°. In the crystal, the mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]), generating [100] chains as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.92 (2) 1.94 (2) 2.8481 (17) 169 (2)
C8—H8A⋯O1ii 0.97 2.57 3.480 (2) 156
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
Structure of the title compound, showing mol­ecules linked through N—H⋯O and C—H⋯O hydrogen bonds (dashed lines).

Synthesis and crystallization

Ethyl aceto­acetate (0.011 mmol) was added to a stirred solution of benzene-1,2-di­amine (0.01 mmol) in 100 ml of xylene. The mixture was stirred at reflux for 1 h. The resulting precipitate was filtered, washed with ethanol, then dried giving a white powder. Colourless prisms of the title compound were obtained by recrystallization from diethyl ether solution.

Yield = 90% (white solid); m.p. = 176–178°C. 1H NMR (300.13 MHz; CDCl3): 2.40 (3H, –CH3, s); 3.15 (2H, –CH2–, s); 7.08–7.37 (4Harom, m); 9.32 (1H, –NH, s). 13C NMR (75.47 MHz; CDCl3): 28.01 (–CH3); 43.57 (–CH2–); 121.88–139.62 (6Carom); 162.89 (CN); 167.36 (CO). MS–EI: [M + 1]+ = 175.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H10N2O
Mr 174.20
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 7.5676 (2), 10.7802 (2), 11.4092 (3)
V3) 930.77 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.32 × 0.28 × 0.20
 
Data collection
Diffractometer Bruker X8 APEXII CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 25369, 1825, 1747
Rint 0.018
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.086, 1.03
No. of reflections 1825
No. of parameters 123
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.15
Absolute structure Flack x determined using 705 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.3 (2)
Computer programs: APEX2 aand SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

4-Methyl-1H-1,5-benzodiazepin-2(3H)-one top
Crystal data top
C10H10N2ODx = 1.243 Mg m3
Mr = 174.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 245 reflections
a = 7.5676 (2) Åθ = 0.5–32°
b = 10.7802 (2) ŵ = 0.08 mm1
c = 11.4092 (3) ÅT = 296 K
V = 930.77 (4) Å3Prism, colourless
Z = 40.32 × 0.28 × 0.20 mm
F(000) = 368
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
1747 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 26.0°, θmin = 3.6°
ω and φ scansh = 99
25369 measured reflectionsk = 1313
1825 independent reflectionsl = 1314
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.0577P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.14 e Å3
1825 reflectionsΔρmin = 0.15 e Å3
123 parametersAbsolute structure: Flack x determined using 705 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.3 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were located in a difference map and treated as riding with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2–1.5Ueq(C, N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0092 (2)0.51751 (13)0.91727 (13)0.0373 (3)
C90.2131 (2)0.35141 (15)0.97843 (13)0.0379 (3)
C60.1120 (2)0.58213 (14)0.83489 (13)0.0410 (4)
C80.3621 (2)0.44253 (15)0.96221 (14)0.0402 (3)
H8A0.47230.40760.99060.048*
H8B0.33830.51851.00490.048*
C20.1472 (2)0.56990 (16)0.95911 (15)0.0466 (4)
H20.21670.52581.01190.056*
C50.0527 (3)0.69915 (16)0.79881 (16)0.0550 (5)
H50.11770.74280.74330.066*
C70.3736 (2)0.46818 (16)0.83226 (14)0.0439 (4)
C30.2001 (3)0.68650 (18)0.92309 (17)0.0601 (5)
H30.30340.72130.95240.072*
C40.0983 (3)0.75106 (17)0.84313 (19)0.0641 (6)
H40.13250.83000.81930.077*
C100.5213 (3)0.4081 (3)0.76664 (19)0.0667 (6)
H10A0.50440.42010.68400.100*
H10B0.52300.32090.78370.100*
H10C0.63160.44450.79000.100*
N10.05078 (16)0.39599 (12)0.95461 (12)0.0394 (3)
N20.26065 (19)0.53402 (13)0.77731 (12)0.0459 (3)
O10.23581 (16)0.24292 (11)1.00743 (13)0.0519 (3)
H1N0.042 (3)0.3435 (19)0.9707 (19)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0376 (7)0.0352 (7)0.0392 (7)0.0012 (6)0.0087 (6)0.0009 (6)
C90.0332 (7)0.0387 (8)0.0419 (7)0.0000 (6)0.0015 (6)0.0047 (6)
C60.0467 (8)0.0381 (7)0.0382 (7)0.0027 (7)0.0076 (6)0.0028 (6)
C80.0325 (7)0.0438 (8)0.0443 (8)0.0043 (6)0.0057 (6)0.0036 (6)
C20.0424 (8)0.0501 (9)0.0473 (8)0.0056 (7)0.0035 (7)0.0015 (7)
C50.0670 (12)0.0448 (9)0.0531 (10)0.0003 (9)0.0084 (9)0.0125 (8)
C70.0378 (8)0.0483 (8)0.0454 (8)0.0078 (7)0.0004 (6)0.0011 (7)
C30.0616 (11)0.0585 (11)0.0601 (10)0.0239 (9)0.0067 (9)0.0046 (9)
C40.0828 (14)0.0448 (9)0.0648 (12)0.0172 (10)0.0152 (11)0.0076 (9)
C100.0471 (10)0.0954 (16)0.0576 (11)0.0069 (11)0.0063 (8)0.0033 (11)
N10.0317 (6)0.0351 (6)0.0514 (7)0.0029 (5)0.0022 (5)0.0078 (5)
N20.0466 (7)0.0498 (8)0.0413 (6)0.0051 (7)0.0003 (6)0.0054 (6)
O10.0383 (6)0.0411 (6)0.0764 (8)0.0023 (5)0.0022 (6)0.0167 (5)
Geometric parameters (Å, º) top
C1—C21.395 (2)C2—H20.9300
C1—C61.405 (2)C5—C41.370 (3)
C1—N11.4131 (19)C5—H50.9300
C9—O11.2275 (19)C7—N21.276 (2)
C9—N11.347 (2)C7—C101.493 (3)
C9—C81.507 (2)C3—C41.382 (3)
C6—C51.401 (2)C3—H30.9300
C6—N21.402 (2)C4—H40.9300
C8—C71.511 (2)C10—H10A0.9600
C8—H8A0.9700C10—H10B0.9600
C8—H8B0.9700C10—H10C0.9600
C2—C31.382 (2)N1—H1N0.918 (18)
C2—C1—C6119.86 (14)C6—C5—H5119.1
C2—C1—N1117.45 (14)N2—C7—C10119.78 (16)
C6—C1—N1122.54 (14)N2—C7—C8123.06 (15)
O1—C9—N1121.47 (14)C10—C7—C8117.11 (16)
O1—C9—C8123.32 (14)C4—C3—C2119.55 (18)
N1—C9—C8115.16 (13)C4—C3—H3120.2
C5—C6—N2116.89 (15)C2—C3—H3120.2
C5—C6—C1117.76 (16)C5—C4—C3120.20 (17)
N2—C6—C1125.06 (14)C5—C4—H4119.9
C9—C8—C7106.43 (13)C3—C4—H4119.9
C9—C8—H8A110.4C7—C10—H10A109.5
C7—C8—H8A110.4C7—C10—H10B109.5
C9—C8—H8B110.4H10A—C10—H10B109.5
C7—C8—H8B110.4C7—C10—H10C109.5
H8A—C8—H8B108.6H10A—C10—H10C109.5
C3—C2—C1120.80 (17)H10B—C10—H10C109.5
C3—C2—H2119.6C9—N1—C1126.51 (13)
C1—C2—H2119.6C9—N1—H1N115.8 (14)
C4—C5—C6121.79 (18)C1—N1—H1N117.5 (14)
C4—C5—H5119.1C7—N2—C6120.87 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.92 (2)1.94 (2)2.8481 (17)169 (2)
C8—H8A···O1ii0.972.573.480 (2)156
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+1/2, y+1/2, z+2.
 

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Sarro, G., Chimirri, A., De Sarro, A., Gitto, R., Grasso, S. & Zappalà, M. (1995). Eur. J. Med. Chem. 30, 925–929.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTwyman, R. E., Rogers, C. J. & Macdonald, R. L. (1989). Ann. Neurol. 25, 213–220.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds