organic compounds
Polar crystal of vanillylformamide through replacement of the alkene by an isosteric formamide group
aDépartement de Chimie, Cégep de Sherbrooke, 475 Rue du Cégep, Sherbrooke, Québec, J1E 4K1, Canada, bLaboratoire d'Analyses Structurales par Diffraction des rayons-X, Département de Chimie, Université de Sherbrooke, 2500, Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada, and cLaboratoire de Synthèse Supramoléculaire, Département de Chimie, Institut de Pharmacologie, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
*Correspondence e-mail: Pierre.Baillargeon@usherbrooke.ca
Vanillylformamide [systematic name: N-(4-hydroxy-3-methoxybenzyl)formamide], C9H11NO3, (II), has been synthesized from vanillylamine hydrochloride and studied by single-crystal X-ray diffraction. Compound (II) and the well known biologically active eugenol compound (I) can be considered to be `isosteres' of each other, since they share comparable molecular shape and volume. The product (II) crystallizes in the P1. In the crystal, the vanillylformamide molecules are linked mainly by N—H⋯O, O—H⋯O and Csp2—H⋯O hydrogen bonds, forming infinite two-dimensional polar sheets. These two-dimensional layers pack in a parallel fashion, constructing a polar three-dimensional network. Except for and weak Csp3—H⋯O hydrogen bonds, there are no significant intermolecular interactions between the layers. A Cambridge Structural Database search revealed that vanillylamide-related crystals are scarce.
Keywords: polar crystal structure; vanillylamine; eugenol; capsaicin analogs; isosteres.
CCDC reference: 1846884
Structure description
Eugenol is a natural molecule that exhibits versatile properties useful in various domains. Indeed, there is increasing interest from the scientific and industrial community in eugenol-based polymers (Miao et al. 2017; Guzmán et al., 2017; Chen et al., 2017; Modjinou et al., 2016; Wan et al., 2016a,b; Deng et al., 2015). Moreover, this bioactive compound has high potential as a therapeutic agent since it has antiparasitic, antiviral, antibacterial, antifungal, anticancer, antioxidant and anti-inflammatory activities (Raja et al., 2015; Khalil et al., 2017). On the other hand, to the best of our knowledge, no study on the bioisosteres of eugenol has been undertaken. The definition of bioisosterism has been broadened by Burger (1991) as `Compounds or groups that possess near-equal molecular shapes and volumes, approximately the same distribution of electrons, and which exhibit similar physical properties'. Thus, chemical modification of lead compounds represents a rational approach in drug design (Patani et al., 1996). and are isosteric since they are both planar and possess two sp2-hybridized atoms in the main chain (Choudhary et al., 2011). In this context, effort has been focused in our group to determine the of the vanillylformamide (II), which mimics eugenol (I) (Fig. 1) and could have some biological interest. We were also pleased that the title compound crystallized in a polar since several functional properties of advanced materials (piezoelectricity, ferroelectricity, second harmonic generation, and electro-optic response) are only allowed or significantly enhanced in polar crystal structures (Centore et al., 2012, 2016; Takahashi et al., 2016).
The molecular structure of the title compound (II) is shown in Fig. 2. All bond lengths and angles are within normal ranges. Although the O3—H3⋯O1 angle [113 (5)°] is far from linear, we can consider that the phenol and methoxy group are partners in an intramolecular hydrogen bond (Hunt et al., 2005). The cis/trans conformational equilibrium of the formamide group is fixed in the solid state in the trans conformation, as can be confirmed by the torsion angle C5—N1—C6—O2 [1.3 (6)°].
In the crystal, the vanillylformamide molecules are linked by a series of classical hydrogen bonds (N1—H1⋯O2, O3—H3⋯O1, O3—H3⋯O2; Table 1) and non-conventional Csp2—H⋯O hydrogen bonds (C6—H6⋯O3; Table 1), forming infinite two-dimensional polar sheets [Fig. 3(a)] parallel to (01). Moreover, C6⋯O1 close contacts stabilize this architecture. The stacking pattern reveals that each layer is oriented in the same direction [Fig. 3(b)], generating a complete three-dimensional polar network. The main intermolecular contacts between layers [Fig. 2(c)] consist of (C1⋯H7 and H1B⋯H7) and weak Csp3—H⋯O hydrogen bonds (C5—H5B⋯O3 and C5—H5A⋯O3 of neighbouring molecules).
A search of the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016) indicated that 11 vanillylamide derivatives have been reported [FABVAF and FABVEJ (Oliver et al., 1985); FABVAF01 (David et al., 1998); FOSXOB (Winkler et al., 2009); FOWTUH (Xia et al., 2009); FOWTUH01 and KUTMAO01 (Wang et al., 2010); KUTMAO (Huang et al., 2010); QUZKOM (Xia et al., 2010); SOFTEN (Zhang et al., 2008); SOFTEN01 (Zhang & Cai, 2008)]. However, there was no structural report on vanillylamide analogues containing small amide units (such as a formamide) that could be considered as true isosteres of eugenol.
Synthesis and crystallization
Vanillylformamide (II) was already characterized in the literature through NMR spectroscopy (Baldessari et al., 1987). However, this molecule has no known crystal structure.
Compound (II): To a solution of 4-nitrophenylformate (575 mg, 3.44 mmol) in ethyl acetate (10 ml) at room temperature was added potassium carbonate (715 mg, 5.17 mmol) and vanillylamine hydrochloride (717 mg, 3.78 mmol) under an argon atmosphere. After 1 h of stirring at room temperature, a catalytic amount of water (30 µl) was added, the resulting mixture was stirred for an additional 3 h. The reaction was followed by TLC (30/70 acetone/DCM). The reaction mixture was poured in HCl 0.1M (15 ml) and then extracted twice with ethyl acetate (2 × 15 ml). Hexane (50 ml) was added to the combined organic layers and the resulting organic phase was then filtrated directly through a silica gel pad, eluting with 100 ml of acetone/DCM (5:95) and 100 ml of acetone/DCM (30:70), to yield compound (II) as a yellowish white crystalline powder (485 mg, 78%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of an ether/acetone/hexane (70:5:25) solution of (II) at room temperature.
Rf = 0.37 (acetone/DCM 30:70); 1H NMR (400 MHz, CDCl3, p.p.m.): 8.20 (s, 1H), 6.86–6.71 (m, 3H), 6.03 (m, 1H), 5.86 (s, 1H), 4.37 (d, J = 5.84 Hz, 2H), 3.85 (s, 3H).
Refinement
Crystal data, data collection and structure . The could not be determined reliably from the collected diffraction data.
details are summarized in Table 2
|
Structural data
CCDC reference: 1846884
https://doi.org/10.1107/S2414314618016309/fy2132sup1.cif
contains datablocks global, II. DOI:Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2414314618016309/fy2132IIsup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618016309/fy2132Isup3.smi
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: ORTEP for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).C9H11NO3 | Z = 1 |
Mr = 181.19 | F(000) = 96 |
Triclinic, P1 | Dx = 1.346 Mg m−3 |
Hall symbol: P 1 | Cu Kα radiation, λ = 1.54178 Å |
a = 4.8011 (2) Å | Cell parameters from 2759 reflections |
b = 6.5522 (3) Å | θ = 6.2–70.7° |
c = 7.5052 (3) Å | µ = 0.85 mm−1 |
α = 93.618 (2)° | T = 173 K |
β = 107.044 (2)° | Prism, colorless |
γ = 95.658 (2)° | 0.32 × 0.16 × 0.12 mm |
V = 223.58 (2) Å3 |
Bruker APEXII diffractometer | 1206 independent reflections |
Radiation source: sealed x-ray tube | 1139 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
φ or ω oscillation scans | θmax = 69.8°, θmin = 6.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −5→5 |
Tmin = 0.574, Tmax = 0.753 | k = −7→7 |
2726 measured reflections | l = −9→8 |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.052 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.0912P)2 + 0.0525P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
1206 reflections | Δρmax = 0.25 e Å−3 |
123 parameters | Δρmin = −0.23 e Å−3 |
4 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Hydrogen atoms bound to carbon atoms were positioned with idealized geometry and refined isotropically using a riding model, with Uiso(H) = 1.2 Ueq(C) and C—H = 0.95 Å for aromatic, Uiso(H) = 1.2 Ueq(C) and C—H = 0.99 Å for methylene and Uiso(H) = 1.5 Ueq(C) and C—H = 0.98 Å for methyl groups. The N-bound H atom was placed in idealized position with N—H = 0.88 Å and refined in riding mode with Uiso(H) = 1.2 Ueq(N). The hydroxyl H atom was refined independently in isotropic mode, with an O—H distance restraint of 0.96 (2) Å. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7872 (8) | 0.7526 (5) | 0.5754 (4) | 0.0436 (9) | |
O2 | 1.0943 (7) | −0.0646 (5) | −0.0270 (5) | 0.0376 (8) | |
O3 | 1.2189 (6) | 0.5811 (5) | 0.8054 (4) | 0.0346 (8) | |
N1 | 0.6936 (8) | 0.0863 (6) | −0.0091 (5) | 0.0313 (8) | |
H1 | 0.506646 | 0.0619 | −0.016887 | 0.038* | |
C1 | 0.5812 (13) | 0.8622 (8) | 0.4558 (8) | 0.0457 (12) | |
H1A | 0.673811 | 0.934512 | 0.373509 | 0.069* | |
H1B | 0.513623 | 0.962513 | 0.531259 | 0.069* | |
H1C | 0.413277 | 0.765528 | 0.379819 | 0.069* | |
C2 | 0.8948 (9) | 0.6005 (6) | 0.4953 (6) | 0.0300 (10) | |
C3 | 0.8016 (9) | 0.5279 (6) | 0.3069 (6) | 0.0313 (9) | |
H3A | 0.648153 | 0.586589 | 0.222842 | 0.038* | |
C4 | 0.9284 (9) | 0.3719 (6) | 0.2397 (6) | 0.0296 (9) | |
C5 | 0.8312 (9) | 0.2985 (7) | 0.0327 (6) | 0.0330 (10) | |
H5A | 0.690774 | 0.388824 | −0.035372 | 0.04* | |
H5B | 1.004057 | 0.312362 | −0.014027 | 0.04* | |
C6 | 0.8314 (9) | −0.0728 (6) | −0.0364 (6) | 0.0318 (9) | |
H6 | 0.718873 | −0.204814 | −0.065598 | 0.038* | |
C7 | 1.1468 (11) | 0.2848 (7) | 0.3628 (6) | 0.0387 (11) | |
H7 | 1.235762 | 0.177733 | 0.317846 | 0.046* | |
C8 | 1.2385 (10) | 0.3531 (6) | 0.5538 (6) | 0.0382 (11) | |
H8 | 1.385838 | 0.289743 | 0.638179 | 0.046* | |
C9 | 1.1167 (9) | 0.5113 (6) | 0.6200 (5) | 0.0295 (10) | |
H3 | 1.144 (16) | 0.711 (7) | 0.817 (10) | 0.061 (18)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.054 (2) | 0.0452 (19) | 0.0316 (18) | 0.0282 (16) | 0.0062 (14) | −0.0004 (14) |
O2 | 0.0287 (17) | 0.0393 (17) | 0.0418 (19) | 0.0016 (12) | 0.0094 (13) | −0.0082 (14) |
O3 | 0.0383 (17) | 0.0347 (16) | 0.0260 (15) | 0.0064 (12) | 0.0027 (12) | −0.0021 (12) |
N1 | 0.0234 (16) | 0.0360 (18) | 0.0309 (19) | 0.0017 (13) | 0.0047 (14) | −0.0041 (14) |
C1 | 0.054 (3) | 0.047 (3) | 0.038 (3) | 0.024 (2) | 0.011 (2) | 0.009 (2) |
C2 | 0.033 (2) | 0.027 (2) | 0.030 (2) | 0.0017 (17) | 0.0105 (19) | 0.0021 (17) |
C3 | 0.032 (2) | 0.032 (2) | 0.026 (2) | 0.0069 (17) | 0.0025 (17) | 0.0053 (16) |
C4 | 0.028 (2) | 0.030 (2) | 0.029 (2) | 0.0017 (16) | 0.0052 (17) | 0.0032 (17) |
C5 | 0.038 (2) | 0.035 (2) | 0.024 (2) | 0.0041 (17) | 0.0066 (18) | 0.0056 (16) |
C6 | 0.035 (2) | 0.033 (2) | 0.025 (2) | −0.0045 (17) | 0.0096 (17) | −0.0031 (16) |
C7 | 0.047 (3) | 0.037 (2) | 0.028 (2) | 0.015 (2) | 0.0018 (19) | −0.0023 (18) |
C8 | 0.040 (3) | 0.036 (3) | 0.032 (3) | 0.014 (2) | −0.002 (2) | 0.0008 (19) |
C9 | 0.031 (2) | 0.029 (2) | 0.025 (2) | −0.0005 (17) | 0.0059 (18) | −0.0017 (17) |
O1—C2 | 1.352 (6) | C2—C9 | 1.400 (6) |
O1—C1 | 1.415 (6) | C3—C4 | 1.382 (6) |
O2—C6 | 1.239 (5) | C3—H3A | 0.95 |
O3—C9 | 1.364 (5) | C4—C7 | 1.376 (6) |
O3—H3 | 0.96 (3) | C4—C5 | 1.516 (6) |
N1—C6 | 1.325 (6) | C5—H5A | 0.99 |
N1—C5 | 1.453 (6) | C5—H5B | 0.99 |
N1—H1 | 0.88 | C6—H6 | 0.95 |
C1—H1A | 0.98 | C7—C8 | 1.400 (6) |
C1—H1B | 0.98 | C7—H7 | 0.95 |
C1—H1C | 0.98 | C8—C9 | 1.374 (6) |
C2—C3 | 1.389 (6) | C8—H8 | 0.95 |
C2—O1—C1 | 117.7 (3) | C3—C4—C5 | 120.6 (4) |
C9—O3—H3 | 106 (4) | N1—C5—C4 | 113.5 (3) |
C6—N1—C5 | 124.2 (3) | N1—C5—H5A | 108.9 |
C6—N1—H1 | 117.9 | C4—C5—H5A | 108.9 |
C5—N1—H1 | 117.9 | N1—C5—H5B | 108.9 |
O1—C1—H1A | 109.5 | C4—C5—H5B | 108.9 |
O1—C1—H1B | 109.5 | H5A—C5—H5B | 107.7 |
H1A—C1—H1B | 109.5 | O2—C6—N1 | 125.7 (4) |
O1—C1—H1C | 109.5 | O2—C6—H6 | 117.1 |
H1A—C1—H1C | 109.5 | N1—C6—H6 | 117.1 |
H1B—C1—H1C | 109.5 | C4—C7—C8 | 120.4 (4) |
O1—C2—C3 | 125.9 (4) | C4—C7—H7 | 119.8 |
O1—C2—C9 | 114.6 (4) | C8—C7—H7 | 119.8 |
C3—C2—C9 | 119.5 (4) | C9—C8—C7 | 120.4 (4) |
C4—C3—C2 | 121.1 (4) | C9—C8—H8 | 119.8 |
C4—C3—H3A | 119.5 | C7—C8—H8 | 119.8 |
C2—C3—H3A | 119.5 | O3—C9—C8 | 119.3 (4) |
C7—C4—C3 | 119.2 (4) | O3—C9—C2 | 121.3 (4) |
C7—C4—C5 | 120.3 (4) | C8—C9—C2 | 119.4 (4) |
C1—O1—C2—C3 | −6.5 (6) | C3—C4—C7—C8 | 0.2 (7) |
C1—O1—C2—C9 | 174.5 (4) | C5—C4—C7—C8 | 179.6 (4) |
O1—C2—C3—C4 | 179.7 (4) | C4—C7—C8—C9 | −1.6 (7) |
C9—C2—C3—C4 | −1.3 (6) | C7—C8—C9—O3 | −177.1 (4) |
C2—C3—C4—C7 | 1.2 (6) | C7—C8—C9—C2 | 1.5 (7) |
C2—C3—C4—C5 | −178.1 (3) | O1—C2—C9—O3 | −2.3 (5) |
C6—N1—C5—C4 | −97.8 (5) | C3—C2—C9—O3 | 178.5 (4) |
C7—C4—C5—N1 | 65.2 (5) | O1—C2—C9—C8 | 179.0 (4) |
C3—C4—C5—N1 | −115.5 (4) | C3—C2—C9—C8 | −0.1 (6) |
C5—N1—C6—O2 | 1.3 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.88 | 2.05 | 2.910 (4) | 167 |
O3—H3···O1 | 0.96 (3) | 2.15 (7) | 2.672 (4) | 113 (5) |
C6—H6···O3ii | 0.95 | 2.54 | 3.391 (5) | 149 |
O3—H3···O2iii | 0.96 (3) | 1.90 (4) | 2.771 (4) | 149 (6) |
C5—H5B···O3iv | 0.99 | 2.60 | 3.374 (5) | 135 |
C5—H5A···O3v | 0.99 | 2.70 | 3.676 (5) | 167 |
Symmetry codes: (i) x−1, y, z; (ii) x−1, y−1, z−1; (iii) x, y+1, z+1; (iv) x, y, z−1; (v) x−1, y, z−1. |
Funding information
Funding for this research was provided by: Fonds de Recherche du Québec - Nature et Technologies (grant No. 2016-CO-194882; grant No. 2019-CO-254502).
References
Baldessari, A. & Gros, E. G. (1987). Magn. Reson. Chem. 25, 1012–1018. CrossRef Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Burger, A. (1991). Prog. Drug Res. 37, 287–371. PubMed CAS Google Scholar
Centore, R., Fusco, S., Capone, F. & Causà, M. (2016). Cryst. Growth Des. 16, 2260–2265. CrossRef Google Scholar
Centore, R., Jazbinsek, M., Tuzi, A., Roviello, A., Capobianco, A. & Peluso, A. (2012). CrystEngComm, 14, 2645–2653. Web of Science CrossRef CAS Google Scholar
Chen, G., Feng, J., Qiu, W. & Zhao, Y. (2017). RSC Adv. 7, 55967–55976. CrossRef Google Scholar
Choudhary, A. & Raines, R. T. (2011). ChemBioChem, 12, 1801–1807. CrossRef Google Scholar
David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931–932. Web of Science CrossRef Google Scholar
Deng, J., Yang, B., Chen, C. & Liang, J. (2015). ACS Sustainable Chem. Eng. 3, 599-605. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guzmán, D., Ramis, X., Fernández-Francos, X., De la Flor, S. & Serra, A. (2017). Eur. Polym. J. 93, 530–544. Google Scholar
Huang, Y.-L., Wang, W.-L. & Shan, S. (2010). Acta Cryst. E66, o877. Web of Science CrossRef IUCr Journals Google Scholar
Hunt, N. T., Turner, A. R. & Wynne, K. (2005). J. Phys. Chem. B, 109, 19008–19017. CrossRef Google Scholar
Khalil, A. A., Rahman, U. U., Khan, M. R., Sahar, A., Mehmood, T. & Khan, M. (2017). RSC Adv. 7, 32669–32681. CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Miao, J.-T., Yuan, L., Guan, Q., Liang, G. & Gu, A. (2017). ACS Sustainable Chem. Eng. 5, 7003–7011. CrossRef Google Scholar
Modjinou, T., Versace, D.-L., Abbad-Andallousi, S., Bousserrhine, N., Dubot, P., Langlois, V. & Renard, E. (2016). React. Funct. Polym. 101, 47–53. CrossRef Google Scholar
Oliver, J. D. (1985). ACA Abstr. Papers (Winter) 13, 57. Google Scholar
Patani, G. A. & LaVoie, E. J. (1996). Chem. Rev. 96, 3147–3176. CrossRef PubMed CAS Web of Science Google Scholar
Raja, M. R. C., Srinivasan, V., Selvaraj, S. & Mahapatra, S. K. (2015). Pharm. Anal. Acta 6, 367. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Takahashi, K., Hoshino, N., Takeda, T., Satomi, K., Suzuki, Y., Noro, S.-I., Nakamura, T., Kawamata, J. & Akutagawa, T. (2016). Dalton Trans. 45, 3398–3406. CrossRef Google Scholar
Wan, J., Gan, B., Li, C., Molina-Aldareguia, J., Kalali, E. N., Wang, X. & Wang, D.-Y. (2016a). Chem. Eng. J. 284, 1080–1093. CrossRef Google Scholar
Wan, J., Zhao, J., Gan, B., Li, C., Molina-Aldareguia, J., Zhao, Y., Pan, Y.-T. & Wang, D.-Y. (2016b). ACS Sustainable Chem. Eng. 4, 2869-2880. CrossRef Google Scholar
Wang, W.-L., Huang, Y.-L., Hu, W.-X. & Shan, S. (2010). Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chin. Univ.) 31, 2400-2406. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Winkler, M., Moraux, T., Khairy, H. A., Scott, R. H., Slawin, A. M. & O'Hagan, D. (2009). ChemBioChem, 10, 823–828. CrossRef Google Scholar
Xia, L.-Y., Wang, W.-L., Huang, Y.-L. & Shan, S. (2010). Acta Cryst. E66, o1700. CrossRef IUCr Journals Google Scholar
Xia, L.-Y., Wang, W.-L., Wang, S.-H., Huang, Y.-L. & Shan, S. (2009). Acta Cryst. E65, o1899. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, M.-L. & Cai, H.-M. (2008). Jiangxi Shifan Daxue Xuebao Ziran Kexueban, 32, 657-661 Google Scholar
Zhang, M.-L., Gao, X.-M., Wang, D.-J., Guo, L. & Wang, J.-W. (2008). Z. Kristallogr. New Cryst. Struct. 223, 173–174. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.