organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Polar crystal of vanillylformamide through replacement of the alkene by an isosteric formamide group

aDépartement de Chimie, Cégep de Sherbrooke, 475 Rue du Cégep, Sherbrooke, Québec, J1E 4K1, Canada, bLaboratoire d'Analyses Structurales par Diffraction des rayons-X, Département de Chimie, Université de Sherbrooke, 2500, Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada, and cLaboratoire de Synthèse Supramoléculaire, Département de Chimie, Institut de Pharmacologie, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
*Correspondence e-mail: Pierre.Baillargeon@usherbrooke.ca

Edited by L. Fabian, University of East Anglia, England (Received 27 September 2018; accepted 16 November 2018; online 5 December 2018)

Vanillylformamide [systematic name: N-(4-hy­droxy-3-meth­oxy­benz­yl)form­amide], C9H11NO3, (II), has been synthesized from vanillyl­amine hydro­chloride and studied by single-crystal X-ray diffraction. Compound (II) and the well known biologically active eugenol compound (I) can be considered to be `isosteres' of each other, since they share comparable mol­ecular shape and volume. The product (II) crystallizes in the space group P1. In the crystal, the vanillylformamide mol­ecules are linked mainly by N—H⋯O, O—H⋯O and Csp2—H⋯O hydrogen bonds, forming infinite two-dimensional polar sheets. These two-dimensional layers pack in a parallel fashion, constructing a polar three-dimensional network. Except for van der Waals forces and weak Csp3—H⋯O hydrogen bonds, there are no significant inter­mol­ecular inter­actions between the layers. A Cambridge Structural Database search revealed that vanillyl­amide-related crystals are scarce.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Eugenol is a natural mol­ecule that exhibits versatile properties useful in various domains. Indeed, there is increasing inter­est from the scientific and industrial community in eugenol-based polymers (Miao et al. 2017[Miao, J.-T., Yuan, L., Guan, Q., Liang, G. & Gu, A. (2017). ACS Sustainable Chem. Eng. 5, 7003-7011.]; Guzmán et al., 2017[Guzmán, D., Ramis, X., Fernández-Francos, X., De la Flor, S. & Serra, A. (2017). Eur. Polym. J. 93, 530-544.]; Chen et al., 2017[Chen, G., Feng, J., Qiu, W. & Zhao, Y. (2017). RSC Adv. 7, 55967-55976.]; Modjinou et al., 2016[Modjinou, T., Versace, D.-L., Abbad-Andallousi, S., Bousserrhine, N., Dubot, P., Langlois, V. & Renard, E. (2016). React. Funct. Polym. 101, 47-53.]; Wan et al., 2016a[Wan, J., Gan, B., Li, C., Molina-Aldareguia, J., Kalali, E. N., Wang, X. & Wang, D.-Y. (2016a). Chem. Eng. J. 284, 1080-1093.],b[Wan, J., Zhao, J., Gan, B., Li, C., Molina-Aldareguia, J., Zhao, Y., Pan, Y.-T. & Wang, D.-Y. (2016b). ACS Sustainable Chem. Eng. 4, 2869-2880.]; Deng et al., 2015[Deng, J., Yang, B., Chen, C. & Liang, J. (2015). ACS Sustainable Chem. Eng. 3, 599-605.]). Moreover, this bioactive compound has high potential as a therapeutic agent since it has anti­parasitic, anti­viral, anti­bacterial, anti­fungal, anti­cancer, anti­oxidant and anti-inflammatory activities (Raja et al., 2015[Raja, M. R. C., Srinivasan, V., Selvaraj, S. & Mahapatra, S. K. (2015). Pharm. Anal. Acta 6, 367.]; Khalil et al., 2017[Khalil, A. A., Rahman, U. U., Khan, M. R., Sahar, A., Mehmood, T. & Khan, M. (2017). RSC Adv. 7, 32669-32681.]). On the other hand, to the best of our knowledge, no study on the bioisosteres of eugenol has been undertaken. The definition of bioisosterism has been broadened by Burger (1991[Burger, A. (1991). Prog. Drug Res. 37, 287-371.]) as `Compounds or groups that possess near-equal mol­ecular shapes and volumes, approximately the same distribution of electrons, and which exhibit similar physical properties'. Thus, chemical modification of lead compounds represents a rational approach in drug design (Patani et al., 1996[Patani, G. A. & LaVoie, E. J. (1996). Chem. Rev. 96, 3147-3176.]). Alkenes and amides are isosteric since they are both planar and possess two sp2-hybridized atoms in the main chain (Choudhary et al., 2011[Choudhary, A. & Raines, R. T. (2011). ChemBioChem, 12, 1801-1807.]). In this context, effort has been focused in our group to determine the crystal structure of the vanillylformamide (II), which mimics eugenol (I) (Fig. 1[link]) and could have some biological inter­est. We were also pleased that the title compound crystallized in a polar space group, since several functional properties of advanced materials (piezoelectricity, pyroelectricity, ferroelectricity, second harmonic generation, and electro-optic response) are only allowed or significantly enhanced in polar crystal structures (Centore et al., 2012[Centore, R., Jazbinsek, M., Tuzi, A., Roviello, A., Capobianco, A. & Peluso, A. (2012). CrystEngComm, 14, 2645-2653.], 2016[Centore, R., Fusco, S., Capone, F. & Causà, M. (2016). Cryst. Growth Des. 16, 2260-2265.]; Takahashi et al., 2016[Takahashi, K., Hoshino, N., Takeda, T., Satomi, K., Suzuki, Y., Noro, S.-I., Nakamura, T., Kawamata, J. & Akutagawa, T. (2016). Dalton Trans. 45, 3398-3406.]).

[Figure 1]
Figure 1
Eugenol (I) and the title compound (II).

The mol­ecular structure of the title compound (II) is shown in Fig. 2[link]. All bond lengths and angles are within normal ranges. Although the O3—H3⋯O1 angle [113 (5)°] is far from linear, we can consider that the phenol and meth­oxy group are partners in an intra­molecular hydrogen bond (Hunt et al., 2005[Hunt, N. T., Turner, A. R. & Wynne, K. (2005). J. Phys. Chem. B, 109, 19008-19017.]). The cis/trans conformational equilibrium of the formamide group is fixed in the solid state in the trans conformation, as can be confirmed by the torsion angle C5—N1—C6—O2 [1.3 (6)°].

[Figure 2]
Figure 2
The mol­ecular structure of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as fixed-size spheres of 0.30 Å.

In the crystal, the vanillylformamide mol­ecules are linked by a series of classical hydrogen bonds (N1—H1⋯O2, O3—H3⋯O1, O3—H3⋯O2; Table 1[link]) and non-conventional Csp2—H⋯O hydrogen bonds (C6—H6⋯O3; Table 1[link]), forming infinite two-dimensional polar sheets [Fig. 3[link](a)] parallel to (01[\overline{1}]). Moreover, C6⋯O1 close contacts stabilize this architecture. The stacking pattern reveals that each layer is oriented in the same direction [Fig. 3[link](b)], generating a complete three-dimensional polar network. The main inter­molecular contacts between layers [Fig. 2[link](c)] consist of van der Waals forces (C1⋯H7 and H1B⋯H7) and weak Csp3—H⋯O hydrogen bonds (C5—H5B⋯O3 and C5—H5A⋯O3 of neighbouring mol­ecules).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 2.05 2.910 (4) 167
O3—H3⋯O1 0.96 (3) 2.15 (7) 2.672 (4) 113 (5)
C6—H6⋯O3ii 0.95 2.54 3.391 (5) 149
O3—H3⋯O2iii 0.96 (3) 1.90 (4) 2.771 (4) 149 (6)
C5—H5B⋯O3iv 0.99 2.60 3.374 (5) 135
C5—H5A⋯O3v 0.99 2.70 3.676 (5) 167
Symmetry codes: (i) x-1, y, z; (ii) x-1, y-1, z-1; (iii) x, y+1, z+1; (iv) x, y, z-1; (v) x-1, y, z-1.
[Figure 3]
Figure 3
(a) Main hydrogen bonds and dipole–dipole inter­actions inside the polar sheets of vanillylformamide (II). (b) Stacking of the polar sheets along the a axis. (c) Weak inter­actions between the polar sheets.

A search of the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated that 11 vanillyl­amide derivatives have been reported [FABVAF and FABVEJ (Oliver et al., 1985[Oliver, J. D. (1985). ACA Abstr. Papers (Winter) 13, 57.]); FABVAF01 (David et al., 1998[David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931-932.]); FOSXOB (Winkler et al., 2009[Winkler, M., Moraux, T., Khairy, H. A., Scott, R. H., Slawin, A. M. & O'Hagan, D. (2009). ChemBioChem, 10, 823-828.]); FOWTUH (Xia et al., 2009[Xia, L.-Y., Wang, W.-L., Wang, S.-H., Huang, Y.-L. & Shan, S. (2009). Acta Cryst. E65, o1899.]); FOWTUH01 and KUTMAO01 (Wang et al., 2010[Wang, W.-L., Huang, Y.-L., Hu, W.-X. & Shan, S. (2010). Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chin. Univ.) 31, 2400-2406.]); KUTMAO (Huang et al., 2010[Huang, Y.-L., Wang, W.-L. & Shan, S. (2010). Acta Cryst. E66, o877.]); QUZKOM (Xia et al., 2010[Xia, L.-Y., Wang, W.-L., Huang, Y.-L. & Shan, S. (2010). Acta Cryst. E66, o1700.]); SOFTEN (Zhang et al., 2008[Zhang, M.-L., Gao, X.-M., Wang, D.-J., Guo, L. & Wang, J.-W. (2008). Z. Kristallogr. New Cryst. Struct. 223, 173-174.]); SOFTEN01 (Zhang & Cai, 2008[Zhang, M.-L. & Cai, H.-M. (2008). Jiangxi Shifan Daxue Xuebao Ziran Kexueban, 32, 657-661])]. However, there was no structural report on vanillyl­amide analogues containing small amide units (such as a formamide) that could be considered as true isosteres of eugenol.

Synthesis and crystallization

Vanillylformamide (II) was already characterized in the literature through NMR spectroscopy (Baldessari et al., 1987[Baldessari, A. & Gros, E. G. (1987). Magn. Reson. Chem. 25, 1012-1018.]). However, this mol­ecule has no known crystal structure.

Compound (II): To a solution of 4-nitro­phenyl­formate (575 mg, 3.44 mmol) in ethyl acetate (10 ml) at room temperature was added potassium carbonate (715 mg, 5.17 mmol) and vanillyl­amine hydro­chloride (717 mg, 3.78 mmol) under an argon atmosphere. After 1 h of stirring at room temperature, a catalytic amount of water (30 µl) was added, the resulting mixture was stirred for an additional 3 h. The reaction was followed by TLC (30/70 acetone/DCM). The reaction mixture was poured in HCl 0.1M (15 ml) and then extracted twice with ethyl acetate (2 × 15 ml). Hexane (50 ml) was added to the combined organic layers and the resulting organic phase was then filtrated directly through a silica gel pad, eluting with 100 ml of acetone/DCM (5:95) and 100 ml of acetone/DCM (30:70), to yield compound (II) as a yellowish white crystalline powder (485 mg, 78%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of an ether/acetone/hexane (70:5:25) solution of (II) at room temperature.

Rf = 0.37 (acetone/DCM 30:70); 1H NMR (400 MHz, CDCl3, p.p.m.): 8.20 (s, 1H), 6.86–6.71 (m, 3H), 6.03 (m, 1H), 5.86 (s, 1H), 4.37 (d, J = 5.84 Hz, 2H), 3.85 (s, 3H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The absolute structure could not be determined reliably from the collected diffraction data.

Table 2
Experimental details

Crystal data
Chemical formula C9H11NO3
Mr 181.19
Crystal system, space group Triclinic, P1
Temperature (K) 173
a, b, c (Å) 4.8011 (2), 6.5522 (3), 7.5052 (3)
α, β, γ (°) 93.618 (2), 107.044 (2), 95.658 (2)
V3) 223.58 (2)
Z 1
Radiation type Cu Kα
μ (mm−1) 0.85
Crystal size (mm) 0.32 × 0.16 × 0.12
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.])
Tmin, Tmax 0.574, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 2726, 1206, 1139
Rint 0.051
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.154, 1.12
No. of reflections 1206
No. of parameters 123
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.23
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]), SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: ORTEP for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

(II) top
Crystal data top
C9H11NO3Z = 1
Mr = 181.19F(000) = 96
Triclinic, P1Dx = 1.346 Mg m3
Hall symbol: P 1Cu Kα radiation, λ = 1.54178 Å
a = 4.8011 (2) ÅCell parameters from 2759 reflections
b = 6.5522 (3) Åθ = 6.2–70.7°
c = 7.5052 (3) ŵ = 0.85 mm1
α = 93.618 (2)°T = 173 K
β = 107.044 (2)°Prism, colorless
γ = 95.658 (2)°0.32 × 0.16 × 0.12 mm
V = 223.58 (2) Å3
Data collection top
Bruker APEXII
diffractometer
1206 independent reflections
Radiation source: sealed x-ray tube1139 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ or ω oscillation scansθmax = 69.8°, θmin = 6.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 55
Tmin = 0.574, Tmax = 0.753k = 77
2726 measured reflectionsl = 98
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0912P)2 + 0.0525P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1206 reflectionsΔρmax = 0.25 e Å3
123 parametersΔρmin = 0.23 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms bound to carbon atoms were positioned with idealized geometry and refined isotropically using a riding model, with Uiso(H) = 1.2 Ueq(C) and C—H = 0.95 Å for aromatic, Uiso(H) = 1.2 Ueq(C) and C—H = 0.99 Å for methylene and Uiso(H) = 1.5 Ueq(C) and C—H = 0.98 Å for methyl groups. The N-bound H atom was placed in idealized position with N—H = 0.88 Å and refined in riding mode with Uiso(H) = 1.2 Ueq(N). The hydroxyl H atom was refined independently in isotropic mode, with an O—H distance restraint of 0.96 (2) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7872 (8)0.7526 (5)0.5754 (4)0.0436 (9)
O21.0943 (7)0.0646 (5)0.0270 (5)0.0376 (8)
O31.2189 (6)0.5811 (5)0.8054 (4)0.0346 (8)
N10.6936 (8)0.0863 (6)0.0091 (5)0.0313 (8)
H10.5066460.06190.0168870.038*
C10.5812 (13)0.8622 (8)0.4558 (8)0.0457 (12)
H1A0.6738110.9345120.3735090.069*
H1B0.5136230.9625130.5312590.069*
H1C0.4132770.7655280.3798190.069*
C20.8948 (9)0.6005 (6)0.4953 (6)0.0300 (10)
C30.8016 (9)0.5279 (6)0.3069 (6)0.0313 (9)
H3A0.6481530.5865890.2228420.038*
C40.9284 (9)0.3719 (6)0.2397 (6)0.0296 (9)
C50.8312 (9)0.2985 (7)0.0327 (6)0.0330 (10)
H5A0.6907740.3888240.0353720.04*
H5B1.0040570.3123620.0140270.04*
C60.8314 (9)0.0728 (6)0.0364 (6)0.0318 (9)
H60.7188730.2048140.0655980.038*
C71.1468 (11)0.2848 (7)0.3628 (6)0.0387 (11)
H71.2357620.1777330.3178460.046*
C81.2385 (10)0.3531 (6)0.5538 (6)0.0382 (11)
H81.3858380.2897430.6381790.046*
C91.1167 (9)0.5113 (6)0.6200 (5)0.0295 (10)
H31.144 (16)0.711 (7)0.817 (10)0.061 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.054 (2)0.0452 (19)0.0316 (18)0.0282 (16)0.0062 (14)0.0004 (14)
O20.0287 (17)0.0393 (17)0.0418 (19)0.0016 (12)0.0094 (13)0.0082 (14)
O30.0383 (17)0.0347 (16)0.0260 (15)0.0064 (12)0.0027 (12)0.0021 (12)
N10.0234 (16)0.0360 (18)0.0309 (19)0.0017 (13)0.0047 (14)0.0041 (14)
C10.054 (3)0.047 (3)0.038 (3)0.024 (2)0.011 (2)0.009 (2)
C20.033 (2)0.027 (2)0.030 (2)0.0017 (17)0.0105 (19)0.0021 (17)
C30.032 (2)0.032 (2)0.026 (2)0.0069 (17)0.0025 (17)0.0053 (16)
C40.028 (2)0.030 (2)0.029 (2)0.0017 (16)0.0052 (17)0.0032 (17)
C50.038 (2)0.035 (2)0.024 (2)0.0041 (17)0.0066 (18)0.0056 (16)
C60.035 (2)0.033 (2)0.025 (2)0.0045 (17)0.0096 (17)0.0031 (16)
C70.047 (3)0.037 (2)0.028 (2)0.015 (2)0.0018 (19)0.0023 (18)
C80.040 (3)0.036 (3)0.032 (3)0.014 (2)0.002 (2)0.0008 (19)
C90.031 (2)0.029 (2)0.025 (2)0.0005 (17)0.0059 (18)0.0017 (17)
Geometric parameters (Å, º) top
O1—C21.352 (6)C2—C91.400 (6)
O1—C11.415 (6)C3—C41.382 (6)
O2—C61.239 (5)C3—H3A0.95
O3—C91.364 (5)C4—C71.376 (6)
O3—H30.96 (3)C4—C51.516 (6)
N1—C61.325 (6)C5—H5A0.99
N1—C51.453 (6)C5—H5B0.99
N1—H10.88C6—H60.95
C1—H1A0.98C7—C81.400 (6)
C1—H1B0.98C7—H70.95
C1—H1C0.98C8—C91.374 (6)
C2—C31.389 (6)C8—H80.95
C2—O1—C1117.7 (3)C3—C4—C5120.6 (4)
C9—O3—H3106 (4)N1—C5—C4113.5 (3)
C6—N1—C5124.2 (3)N1—C5—H5A108.9
C6—N1—H1117.9C4—C5—H5A108.9
C5—N1—H1117.9N1—C5—H5B108.9
O1—C1—H1A109.5C4—C5—H5B108.9
O1—C1—H1B109.5H5A—C5—H5B107.7
H1A—C1—H1B109.5O2—C6—N1125.7 (4)
O1—C1—H1C109.5O2—C6—H6117.1
H1A—C1—H1C109.5N1—C6—H6117.1
H1B—C1—H1C109.5C4—C7—C8120.4 (4)
O1—C2—C3125.9 (4)C4—C7—H7119.8
O1—C2—C9114.6 (4)C8—C7—H7119.8
C3—C2—C9119.5 (4)C9—C8—C7120.4 (4)
C4—C3—C2121.1 (4)C9—C8—H8119.8
C4—C3—H3A119.5C7—C8—H8119.8
C2—C3—H3A119.5O3—C9—C8119.3 (4)
C7—C4—C3119.2 (4)O3—C9—C2121.3 (4)
C7—C4—C5120.3 (4)C8—C9—C2119.4 (4)
C1—O1—C2—C36.5 (6)C3—C4—C7—C80.2 (7)
C1—O1—C2—C9174.5 (4)C5—C4—C7—C8179.6 (4)
O1—C2—C3—C4179.7 (4)C4—C7—C8—C91.6 (7)
C9—C2—C3—C41.3 (6)C7—C8—C9—O3177.1 (4)
C2—C3—C4—C71.2 (6)C7—C8—C9—C21.5 (7)
C2—C3—C4—C5178.1 (3)O1—C2—C9—O32.3 (5)
C6—N1—C5—C497.8 (5)C3—C2—C9—O3178.5 (4)
C7—C4—C5—N165.2 (5)O1—C2—C9—C8179.0 (4)
C3—C4—C5—N1115.5 (4)C3—C2—C9—C80.1 (6)
C5—N1—C6—O21.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.052.910 (4)167
O3—H3···O10.96 (3)2.15 (7)2.672 (4)113 (5)
C6—H6···O3ii0.952.543.391 (5)149
O3—H3···O2iii0.96 (3)1.90 (4)2.771 (4)149 (6)
C5—H5B···O3iv0.992.603.374 (5)135
C5—H5A···O3v0.992.703.676 (5)167
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z1; (iii) x, y+1, z+1; (iv) x, y, z1; (v) x1, y, z1.
 

Funding information

Funding for this research was provided by: Fonds de Recherche du Québec - Nature et Technologies (grant No. 2016-CO-194882; grant No. 2019-CO-254502).

References

First citationBaldessari, A. & Gros, E. G. (1987). Magn. Reson. Chem. 25, 1012–1018.  CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBurger, A. (1991). Prog. Drug Res. 37, 287–371.  PubMed CAS Google Scholar
First citationCentore, R., Fusco, S., Capone, F. & Causà, M. (2016). Cryst. Growth Des. 16, 2260–2265.  CrossRef Google Scholar
First citationCentore, R., Jazbinsek, M., Tuzi, A., Roviello, A., Capobianco, A. & Peluso, A. (2012). CrystEngComm, 14, 2645–2653.  Web of Science CrossRef CAS Google Scholar
First citationChen, G., Feng, J., Qiu, W. & Zhao, Y. (2017). RSC Adv. 7, 55967–55976.  CrossRef Google Scholar
First citationChoudhary, A. & Raines, R. T. (2011). ChemBioChem, 12, 1801–1807.  CrossRef Google Scholar
First citationDavid, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931–932.  Web of Science CrossRef Google Scholar
First citationDeng, J., Yang, B., Chen, C. & Liang, J. (2015). ACS Sustainable Chem. Eng. 3, 599-605.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuzmán, D., Ramis, X., Fernández-Francos, X., De la Flor, S. & Serra, A. (2017). Eur. Polym. J. 93, 530–544.  Google Scholar
First citationHuang, Y.-L., Wang, W.-L. & Shan, S. (2010). Acta Cryst. E66, o877.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHunt, N. T., Turner, A. R. & Wynne, K. (2005). J. Phys. Chem. B, 109, 19008–19017.  CrossRef Google Scholar
First citationKhalil, A. A., Rahman, U. U., Khan, M. R., Sahar, A., Mehmood, T. & Khan, M. (2017). RSC Adv. 7, 32669–32681.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiao, J.-T., Yuan, L., Guan, Q., Liang, G. & Gu, A. (2017). ACS Sustainable Chem. Eng. 5, 7003–7011.  CrossRef Google Scholar
First citationModjinou, T., Versace, D.-L., Abbad-Andallousi, S., Bousserrhine, N., Dubot, P., Langlois, V. & Renard, E. (2016). React. Funct. Polym. 101, 47–53.  CrossRef Google Scholar
First citationOliver, J. D. (1985). ACA Abstr. Papers (Winter) 13, 57.  Google Scholar
First citationPatani, G. A. & LaVoie, E. J. (1996). Chem. Rev. 96, 3147–3176.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRaja, M. R. C., Srinivasan, V., Selvaraj, S. & Mahapatra, S. K. (2015). Pharm. Anal. Acta 6, 367.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakahashi, K., Hoshino, N., Takeda, T., Satomi, K., Suzuki, Y., Noro, S.-I., Nakamura, T., Kawamata, J. & Akutagawa, T. (2016). Dalton Trans. 45, 3398–3406.  CrossRef Google Scholar
First citationWan, J., Gan, B., Li, C., Molina-Aldareguia, J., Kalali, E. N., Wang, X. & Wang, D.-Y. (2016a). Chem. Eng. J. 284, 1080–1093.  CrossRef Google Scholar
First citationWan, J., Zhao, J., Gan, B., Li, C., Molina-Aldareguia, J., Zhao, Y., Pan, Y.-T. & Wang, D.-Y. (2016b). ACS Sustainable Chem. Eng. 4, 2869-2880.  CrossRef Google Scholar
First citationWang, W.-L., Huang, Y.-L., Hu, W.-X. & Shan, S. (2010). Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chin. Univ.) 31, 2400-2406.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinkler, M., Moraux, T., Khairy, H. A., Scott, R. H., Slawin, A. M. & O'Hagan, D. (2009). ChemBioChem, 10, 823–828.  CrossRef Google Scholar
First citationXia, L.-Y., Wang, W.-L., Huang, Y.-L. & Shan, S. (2010). Acta Cryst. E66, o1700.  CrossRef IUCr Journals Google Scholar
First citationXia, L.-Y., Wang, W.-L., Wang, S.-H., Huang, Y.-L. & Shan, S. (2009). Acta Cryst. E65, o1899.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, M.-L. & Cai, H.-M. (2008). Jiangxi Shifan Daxue Xuebao Ziran Kexueban, 32, 657-661  Google Scholar
First citationZhang, M.-L., Gao, X.-M., Wang, D.-J., Guo, L. & Wang, J.-W. (2008). Z. Kristallogr. New Cryst. Struct. 223, 173–174.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds