organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Methyl-1H-imidazol-3-ium methane­sulfonate

aDepartment of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida, 33965, USA, and bDepartment of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
*Correspondence e-mail: amirjafari@fgcu.edu

Edited by R. J. Butcher, Howard University, USA (Received 18 November 2018; accepted 17 December 2018; online 21 December 2018)

The structure of the title salt, C4H7N2+·CH3O3S, has monoclinic (P21/n) symmetry. The 1-methyl­imidazolium cation and the methyl­sulfonate anion in the asymmetric unit are held together by a strong N—H⋯O hydrogen bond.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ionic liquids (ILs) with fluoride anions possess high electrochemical stability and electrical conductivity (Hmissa et al., 2018[Hmissa, T., Zhang, X., Dhumal, N. R., McManus, G. J., Zhou, X., Nulwala, H. B. & Mirjafari, A. (2018). Angew. Chem. Int. Ed., 57, 16005-16009.]). Fluoride ionic liquids were produced to serve as potential non-volatile replacements of VOCs for the development of IL electrolytes.

Electrolytes with stable solvents can be utilized for the production of innocuous rechargeable Al-ion and Li-ion batteries. The reported strategy for the synthesis of ILs with fluoride anions is autocatalytic, HF-free, and does not require chromatographic purification. HF-free synthesis of fluoride ionic liquids eradicates the need for corrosive acids. The exposure of the ionic liquid to water may serve as a technique to increase electrical conductivity (Li et al., 2007[Li, W., Zhang, Z., Han, B., Hu, S., Xie, Y. & Yang, G. (2007). J. Phys. Chem. B, 111, 6452-6456.]). Chemical stability studies indicate that water attacks the SVI atom, which leads to the formation of a sulfate-based salt (Fig. 1[link]).

[Figure 1]
Figure 1
Synthetic scheme for the synthesis of imidazolium-based salts, paired with sulfate anion via SuFEx click chemistry

Sulfur(VI) fluoride-exchange (SuFEx) chemistry possesses characteristics of click chemistry. Many of its potential applications have been investigated recently, including post-polymerization modification (Yatvin et al., 2015[Yatvin, J., Brooks, K. & Locklin, J. (2015). Angew. Chem. Int. Ed. 54, 13370-13373.]) and sulfonimidoyl fluorides synthesis (Gao et al., 2018[Gao, B., Li, S., Wu, P., Moses, J. E. & Sharpless, K. B. (2018). Angew. Chem. Int. Ed. 57, 1939-1943.]). Fluoride salts have been reported to function as catalysts for the SuFEx reaction (Gao et al., 2017[Gao, B., Zhang, L., Zheng, Q., Zhou, F., Klivansky, L. M., Lu, J., Liu, J., Dong, J., Wu, P. & Sharpless, K. B. (2017). Nat. Chem. 9, 1083-1088.]). The autocatalytic property of the sulfonyl-based ionic liquids allows the reaction to proceed in a time-efficient manner, opening the doors for potential industrial scale application. The chemical stability of these ionic liquids towards the hydrolysis reaction was studied in this work.

The title compound crystallizes in the monoclinic P21/n space group. The 1-methyl­imidazolium cation and the methyl­sulfonate anion in the asymmetric unit are linked by a strong O⋯H—N hydrogen bond [O⋯N distance = 2.775 (2) Å; Table 1[link] and (Fig. 2[link])] between the proton on N and one of the sulfonate oxygen atoms. The packing is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.87 1.96 2.775 (2) 156
[Figure 2]
Figure 2
The asymmetric unit with displacement ellipsoids shown at the 35% probability level. The N—H⋯O hydrogen bond (Table 1[link]) is indicated by a dashed line.
[Figure 3]
Figure 3
A view of the crystal packing of the title compound.

1-MeIm is a common cation found in as many as 48 crystal structures in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The planar cation often displays ππ inter­actions with neighboring 1-MeIm cations (Wilkes & Zaworotko, 1993[Wilkes, J. S. & Zaworotko, M. J. (1993). Supramol. Chem. 1, 191-193.]). Such inter­actions are not seen in the title compound. One of the methyl­sulfonate O atoms displays some degree of inter­action with the π-cation [O–centroid distance = 3.382 (1) Å].

Synthesis and crystallization

One molar equivalent of 1-methyl­imidazole and methane­sulfonyl fluoride were dissolved separately using 10 ml extra dry toluene. The two solutions were combined and stirred vigorously for 8 h at reflux temperature. Subsequent to reflux, 1 ml of deionized water was added to the reaction mixture dropwise and then stirred for 4 h at 60°C to allow for hydrolysis to occur. The solid phase of the reaction mixture was filtered. Colourless plate-like crystals formed after 29 days upon slow evaporation of the reaction solvent (toluene).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C4H7N2+·CH3O3S
Mr 178.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 230
a, b, c (Å) 10.1891 (5), 7.4627 (4), 11.4884 (6)
β (°) 111.635 (1)
V3) 812.02 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.58 × 0.4 × 0.36
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Wisconsin, Madison, USA.])
Tmin, Tmax 0.707, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11035, 2011, 1827
Rint 0.015
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.08
No. of reflections 2011
No. of parameters 102
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.33
Computer programs: SAINT (Bruker, 2015[Bruker (2015). SAINT. Bruker AXS Inc., Wisconsin, Madison, USA]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SAINT (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-Methyl-1H-imidazol-3-ium methanesulfonate top
Crystal data top
C4H7N2+·CH3O3SF(000) = 376
Mr = 178.21Dx = 1.458 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.1891 (5) ÅCell parameters from 9900 reflections
b = 7.4627 (4) Åθ = 3.3–28.3°
c = 11.4884 (6) ŵ = 0.36 mm1
β = 111.635 (1)°T = 230 K
V = 812.02 (7) Å3Block, colourless
Z = 40.58 × 0.4 × 0.36 mm
Data collection top
Bruker D8 Quest CMOS
diffractometer
2011 independent reflections
Radiation source: sealed tube1827 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 10.42 pixels mm-1θmax = 28.4°, θmin = 3.3°
φ and ω shutterless scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 99
Tmin = 0.707, Tmax = 0.746l = 1515
11035 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.3268P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2011 reflectionsΔρmax = 0.23 e Å3
102 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.67678 (3)0.74219 (4)0.90924 (3)0.02711 (11)
O10.72814 (12)0.64890 (15)0.82397 (10)0.0424 (3)
O20.58946 (10)0.62642 (13)0.95480 (8)0.0354 (2)
O30.78655 (11)0.83115 (16)1.01095 (10)0.0468 (3)
N10.38601 (11)0.26564 (14)0.59635 (10)0.0283 (2)
N20.43894 (12)0.37124 (16)0.78128 (11)0.0384 (3)
H20.4834520.4279250.8509000.046*
C10.47811 (14)0.36423 (18)0.68438 (13)0.0349 (3)
H10.5582450.4200350.6786990.042*
C20.28337 (14)0.2092 (2)0.63836 (13)0.0347 (3)
H2A0.2045600.1379870.5942560.042*
C30.31699 (16)0.2752 (2)0.75517 (14)0.0408 (3)
H30.2664790.2584430.8082460.049*
C40.38835 (18)0.2315 (2)0.47203 (14)0.0456 (4)
H4A0.3625910.1077850.4489250.068*
H4B0.4824600.2539170.4728370.068*
H4C0.3215500.3102600.4116950.068*
C50.56302 (18)0.9098 (3)0.81923 (19)0.0552 (4)
H5A0.4845690.8546030.7528520.083*
H5B0.6143040.9871980.7829420.083*
H5C0.5274450.9801520.8722760.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02786 (17)0.02531 (17)0.02782 (17)0.00194 (10)0.00987 (13)0.00137 (11)
O10.0502 (6)0.0444 (6)0.0383 (5)0.0050 (5)0.0228 (5)0.0008 (4)
O20.0419 (5)0.0357 (5)0.0285 (4)0.0136 (4)0.0128 (4)0.0001 (4)
O30.0407 (6)0.0527 (7)0.0441 (6)0.0190 (5)0.0121 (5)0.0124 (5)
N10.0306 (5)0.0254 (5)0.0270 (5)0.0018 (4)0.0083 (4)0.0002 (4)
N20.0388 (6)0.0354 (6)0.0303 (5)0.0046 (5)0.0003 (5)0.0091 (5)
C10.0307 (6)0.0276 (6)0.0396 (7)0.0027 (5)0.0051 (5)0.0006 (5)
C20.0318 (6)0.0393 (7)0.0323 (7)0.0074 (5)0.0109 (5)0.0032 (6)
C30.0397 (7)0.0510 (9)0.0325 (7)0.0027 (6)0.0142 (6)0.0034 (6)
C40.0545 (9)0.0541 (9)0.0333 (7)0.0080 (7)0.0220 (7)0.0044 (6)
C50.0492 (9)0.0469 (9)0.0735 (11)0.0159 (7)0.0271 (8)0.0264 (9)
Geometric parameters (Å, º) top
S1—O11.4478 (10)C1—H10.9400
S1—O21.4680 (9)C2—H2A0.9400
S1—O31.4468 (10)C2—C31.350 (2)
S1—C51.7590 (16)C3—H30.9400
N1—C11.3210 (17)C4—H4A0.9700
N1—C21.3699 (17)C4—H4B0.9700
N1—C41.4596 (17)C4—H4C0.9700
N2—H20.8700C5—H5A0.9700
N2—C11.3149 (19)C5—H5B0.9700
N2—C31.369 (2)C5—H5C0.9700
O1—S1—O2112.08 (6)C3—C2—H2A126.5
O1—S1—C5105.57 (8)N2—C3—H3126.7
O2—S1—C5105.88 (7)C2—C3—N2106.63 (13)
O3—S1—O1113.73 (7)C2—C3—H3126.7
O3—S1—O2111.83 (6)N1—C4—H4A109.5
O3—S1—C5107.10 (9)N1—C4—H4B109.5
C1—N1—C2108.71 (11)N1—C4—H4C109.5
C1—N1—C4125.66 (12)H4A—C4—H4B109.5
C2—N1—C4125.53 (12)H4A—C4—H4C109.5
C1—N2—H2125.4H4B—C4—H4C109.5
C1—N2—C3109.15 (12)S1—C5—H5A109.5
C3—N2—H2125.4S1—C5—H5B109.5
N1—C1—H1125.7S1—C5—H5C109.5
N2—C1—N1108.58 (12)H5A—C5—H5B109.5
N2—C1—H1125.7H5A—C5—H5C109.5
N1—C2—H2A126.5H5B—C5—H5C109.5
C3—C2—N1106.92 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.871.962.775 (2)156
 

Acknowledgements

We are grateful to Professor Raphael G. Raptis (FIU) for the access to the X-ray diffractometer facility.

Funding information

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund (PRF# 58975-UR4) for support of this research.

References

First citationBruker (2015). SAINT. Bruker AXS Inc., Wisconsin, Madison, USA  Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Wisconsin, Madison, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, B., Li, S., Wu, P., Moses, J. E. & Sharpless, K. B. (2018). Angew. Chem. Int. Ed. 57, 1939–1943.  CrossRef Google Scholar
First citationGao, B., Zhang, L., Zheng, Q., Zhou, F., Klivansky, L. M., Lu, J., Liu, J., Dong, J., Wu, P. & Sharpless, K. B. (2017). Nat. Chem. 9, 1083–1088.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHmissa, T., Zhang, X., Dhumal, N. R., McManus, G. J., Zhou, X., Nulwala, H. B. & Mirjafari, A. (2018). Angew. Chem. Int. Ed., 57, 16005–16009.  CrossRef Google Scholar
First citationLi, W., Zhang, Z., Han, B., Hu, S., Xie, Y. & Yang, G. (2007). J. Phys. Chem. B, 111, 6452–6456.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWilkes, J. S. & Zaworotko, M. J. (1993). Supramol. Chem. 1, 191–193.  CrossRef CAS Google Scholar
First citationYatvin, J., Brooks, K. & Locklin, J. (2015). Angew. Chem. Int. Ed. 54, 13370–13373.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds