organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Methyl­anilinium 2-carboxyacetate

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, Panimalar Engineering College, Chennai 600 123, India, cDepartment of Physics, Aksheyaa College of Engineering, Kancheepuram 603 314, India, and dDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: mohan66@hotmail.com, chakkaravarthi_2005@yahoo.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 26 November 2018; accepted 3 December 2018; online 14 December 2018)

In the crystal of the title salt, C7H10N+·C3H3O4, the cations are linked to the anions via N—H⋯O and trifurcated N—H⋯(O,O,O) hydrogen bonds. The anions are linked into [010] chains by O—H⋯O hydrogen bonds. Taken together, these interactions generate (100) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Organic salts containing strong inter­molecular hydrogen bonds have attracted attention as materials that may display ferroelectric–paraelectric phase transitions (Huang et al. 1999[Huang, S. D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95-98.]; Zhang et al. 2001[Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118-4121.]). We report herein the synthesis and the crystal structure of the title salt (Fig. 1[link]). Its geometric parameters are comparable with those of reported similar structures (Benali-Cherif et al., 2007[Benali-Cherif, N., Kateb, A., Boussekine, H., Boutobba, Z. & Messai, A. (2007). Acta Cryst. E63, o3251.], 2009[Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744.]; Kalaiyarasi et al., 2017[Kalaiyarasi, S., Suresh, S., Akilan, R., Kumar, R. M. & Chakkaravarthi, G. (2017). IUCrData, 2, x170254.]; Suresh et al., 2017[Suresh, S., Pandi, P., Kumar, R. M. & Chakkaravarthi, G. (2017). IUCrData, 2, x171767.]; Wang, 2012[Wang, Y.-C. (2012). Acta Cryst. E68, o1984.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with the atom labelling and 30% probability displacement ellipsoids.

The asymmetric unit of the title salt (Fig. 1[link]) contains a 4-methyl­anilinium cation and a carb­oxy­acetate anion linked by an N1—H1C⋯O1 hydrogen bond (Table 1[link]). In the crystal, the cations are linked to the anions via N—H⋯O and trifurcated N—H⋯(O,O,O) hydrogen bonds (Fig. 2[link], Table 1[link]). The anions are linked into [010] chains by O—H⋯O hydrogen bonds. Taken together, these interactions generate (100) sheets.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.89 1.96 2.846 (2) 172
N1—H1B⋯O1ii 0.89 1.91 2.789 (2) 169
N1—H1C⋯O1 0.89 2.40 3.041 (2) 130
N1—H1C⋯O2iii 0.89 2.47 2.980 (2) 117
N1—H1C⋯O3iii 0.89 2.21 2.871 (2) 131
O3—H3A⋯O2iv 0.87 (1) 1.67 (1) 2.5350 (19) 175 (2)
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+2; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title mol­ecular salt viewed along the a axis. The hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Synthesis and crystallization

p-Toluidine (1.33 g) and malonic acid (1.30 g) were taken in a 1:1 ratio and dissolved in water at room temperature. The aqueous solution was stirred continuously for 6 h to obtain a transparent solution which was filtered and kept for slow evaporation. Crystals suitable for X-ray diffraction analysis were obtained after a period of one month.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H10N+·C3H3O4
Mr 211.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 12.996 (3), 9.2813 (19), 8.665 (2)
β (°) 105.503 (7)
V3) 1007.1 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.24 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.678, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7352, 1766, 1282
Rint 0.031
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.05
No. of reflections 1766
No. of parameters 141
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

4-Methylanilinium 2-carboxyacetate top
Crystal data top
C7H10N+·C3H3O4F(000) = 448
Mr = 211.21Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.996 (3) ÅCell parameters from 2586 reflections
b = 9.2813 (19) Åθ = 2.7–27.1°
c = 8.665 (2) ŵ = 0.11 mm1
β = 105.503 (7)°T = 295 K
V = 1007.1 (4) Å3Block, colourless
Z = 40.24 × 0.22 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1282 reflections with I > 2σ(I)
ω and φ scanRint = 0.031
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 2.7°
Tmin = 0.678, Tmax = 0.746h = 1515
7352 measured reflectionsk = 1110
1766 independent reflectionsl = 1010
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.3929P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1766 reflectionsΔρmax = 0.21 e Å3
141 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were located in a difference map. The coordinates of the H atom bonded to O were refined with U(H) set to 1.5Ueq(O). H atoms bonded to C and N were refined using a riding model with U(H) set to 1.2Ueq(C) for the methylene group and 1.5Ueq(C,N) for the methyl and the NH3 group. Both of them were allowed to rotate but not to tip.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02784 (18)0.2864 (3)0.8804 (3)0.0459 (6)
C20.05733 (19)0.1495 (3)0.9312 (3)0.0575 (8)
H20.0091070.0746660.8965100.069*
C30.15679 (18)0.1185 (2)1.0327 (3)0.0526 (7)
H30.1744530.0243331.0659460.063*
C40.22828 (15)0.2265 (2)1.0833 (2)0.0279 (5)
C50.20331 (19)0.3638 (2)1.0313 (3)0.0527 (7)
H50.2529620.4375361.0630480.063*
C60.1029 (2)0.3927 (3)0.9305 (3)0.0654 (9)
H60.0859920.4866880.8958490.078*
C70.0826 (2)0.3149 (3)0.7724 (4)0.0721 (9)
H7A0.0837960.2930720.6636610.108*
H7B0.1006850.4144180.7803520.108*
H7C0.1335700.2552540.8046940.108*
C80.40281 (15)0.05466 (19)0.8494 (2)0.0235 (5)
C90.38105 (16)0.1849 (2)0.9427 (2)0.0268 (5)
H9A0.4243950.1766101.0524320.032*
H9B0.3068070.1822130.9446910.032*
C100.40283 (16)0.32853 (19)0.8784 (2)0.0253 (5)
N10.33326 (13)0.19495 (17)1.1900 (2)0.0309 (4)
H1A0.3315460.1099001.2366790.046*
H1B0.3508790.2631461.2646320.046*
H1C0.3814130.1925671.1337960.046*
O10.37677 (11)0.06550 (14)0.89126 (17)0.0345 (4)
O20.44594 (12)0.07617 (13)0.73668 (17)0.0327 (4)
O30.50449 (11)0.35675 (14)0.90227 (17)0.0325 (4)
H3A0.5173 (18)0.4328 (17)0.852 (2)0.049*
O40.33156 (11)0.41000 (15)0.81073 (19)0.0395 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0363 (13)0.0460 (14)0.0477 (15)0.0015 (11)0.0024 (11)0.0024 (11)
C20.0397 (14)0.0407 (15)0.080 (2)0.0133 (11)0.0052 (14)0.0067 (13)
C30.0361 (13)0.0300 (12)0.081 (2)0.0041 (10)0.0025 (13)0.0090 (12)
C40.0252 (11)0.0264 (11)0.0320 (11)0.0024 (8)0.0073 (9)0.0001 (9)
C50.0493 (15)0.0311 (13)0.0623 (17)0.0078 (11)0.0119 (13)0.0033 (12)
C60.0616 (17)0.0336 (14)0.078 (2)0.0027 (12)0.0207 (16)0.0105 (13)
C70.0498 (17)0.0668 (19)0.081 (2)0.0030 (14)0.0155 (16)0.0079 (16)
C80.0224 (10)0.0206 (10)0.0247 (10)0.0008 (8)0.0011 (9)0.0013 (8)
C90.0299 (11)0.0232 (10)0.0291 (11)0.0002 (8)0.0111 (9)0.0007 (8)
C100.0309 (11)0.0205 (10)0.0255 (11)0.0024 (9)0.0094 (9)0.0054 (8)
N10.0274 (9)0.0244 (9)0.0410 (11)0.0006 (7)0.0090 (8)0.0020 (8)
O10.0441 (9)0.0204 (7)0.0398 (9)0.0065 (6)0.0122 (7)0.0011 (6)
O20.0465 (9)0.0232 (7)0.0331 (8)0.0009 (6)0.0187 (7)0.0001 (6)
O30.0338 (8)0.0205 (7)0.0441 (9)0.0009 (6)0.0121 (7)0.0032 (6)
O40.0361 (9)0.0257 (8)0.0530 (10)0.0061 (7)0.0056 (8)0.0073 (7)
Geometric parameters (Å, º) top
C1—C21.366 (3)C7—H7C0.9600
C1—C61.373 (3)C8—O11.247 (2)
C1—C71.513 (3)C8—O21.265 (2)
C2—C31.385 (3)C8—C91.522 (3)
C2—H20.9300C9—C101.501 (3)
C3—C41.357 (3)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C51.362 (3)C10—O41.218 (2)
C4—N11.459 (2)C10—O31.308 (2)
C5—C61.389 (3)N1—H1A0.8900
C5—H50.9300N1—H1B0.8900
C6—H60.9300N1—H1C0.8900
C7—H7A0.9600O3—H3A0.868 (10)
C7—H7B0.9600
C2—C1—C6116.8 (2)H7A—C7—H7C109.5
C2—C1—C7120.0 (2)H7B—C7—H7C109.5
C6—C1—C7123.1 (2)O1—C8—O2125.19 (18)
C1—C2—C3122.1 (2)O1—C8—C9116.89 (18)
C1—C2—H2118.9O2—C8—C9117.92 (16)
C3—C2—H2118.9C10—C9—C8115.34 (16)
C4—C3—C2119.6 (2)C10—C9—H9A108.4
C4—C3—H3120.2C8—C9—H9A108.4
C2—C3—H3120.2C10—C9—H9B108.4
C3—C4—C5120.2 (2)C8—C9—H9B108.4
C3—C4—N1120.01 (18)H9A—C9—H9B107.5
C5—C4—N1119.81 (18)O4—C10—O3123.91 (18)
C4—C5—C6119.3 (2)O4—C10—C9122.39 (18)
C4—C5—H5120.4O3—C10—C9113.70 (16)
C6—C5—H5120.4C4—N1—H1A109.5
C1—C6—C5122.0 (2)C4—N1—H1B109.5
C1—C6—H6119.0H1A—N1—H1B109.5
C5—C6—H6119.0C4—N1—H1C109.5
C1—C7—H7A109.5H1A—N1—H1C109.5
C1—C7—H7B109.5H1B—N1—H1C109.5
H7A—C7—H7B109.5C10—O3—H3A113.8 (16)
C1—C7—H7C109.5
C6—C1—C2—C32.1 (4)C2—C1—C6—C51.6 (5)
C7—C1—C2—C3178.7 (3)C7—C1—C6—C5179.2 (3)
C1—C2—C3—C40.5 (5)C4—C5—C6—C10.4 (5)
C2—C3—C4—C51.6 (4)O1—C8—C9—C10173.92 (16)
C2—C3—C4—N1179.9 (2)O2—C8—C9—C106.4 (2)
C3—C4—C5—C62.1 (4)C8—C9—C10—O4107.8 (2)
N1—C4—C5—C6179.6 (2)C8—C9—C10—O372.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.891.962.846 (2)172
N1—H1B···O1ii0.891.912.789 (2)169
N1—H1C···O10.892.403.041 (2)130
N1—H1C···O2iii0.892.472.980 (2)117
N1—H1C···O3iii0.892.212.871 (2)131
O3—H3A···O2iv0.87 (1)1.67 (1)2.5350 (19)175 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+2; (iv) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBenali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBenali-Cherif, N., Kateb, A., Boussekine, H., Boutobba, Z. & Messai, A. (2007). Acta Cryst. E63, o3251.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, S. D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95–98.  CrossRef Google Scholar
First citationKalaiyarasi, S., Suresh, S., Akilan, R., Kumar, R. M. & Chakkaravarthi, G. (2017). IUCrData, 2, x170254.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, S., Pandi, P., Kumar, R. M. & Chakkaravarthi, G. (2017). IUCrData, 2, x171767.  Google Scholar
First citationWang, Y.-C. (2012). Acta Cryst. E68, o1984.  CrossRef IUCr Journals Google Scholar
First citationZhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds