metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[[(acetato-κ2O,O′)aqua­cadmium(II)]-μ-L-threoninato-κ3N,O:O′] monohydrate]

aDepartment of Physics, Holy Cross College (Autonomous), Nagercoil-629004, Tamil Nadu, India, and bDepartment of Physics, St. John's College, Anchal-691306, Kerala, India
*Correspondence e-mail: jeba.abi@gmail.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 6 September 2018; accepted 14 December 2018; online 21 December 2018)

The title compound, {[Cd(C2H3O2)(C4H8NO3)(H2O)]·H2O}n, was synthesized from the reaction between L-threonine and cadmium acetate dihydrate. The complex consists of the CdII metal ion bonded to bidentate threonine and acetate anions, and one water mol­ecule. The carboxyl­ate group of L-threonine bridges two metal cations related by the crystallographic screw axis parallel to [010], to form a one-dimensional polymeric structure in the crystal. The asymmetric unit is completed by one lattice water mol­ecule, which is involved in hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

L-threonine [IUPAC name: (2S,3R)-2-amino-3-hy­droxy­butanoic acid] has wide applications in industry, for example as an additive, or as a precursor for the biosynthesis of other chemicals (Dong et al., 2012[Dong, X., Quinn, P. J. & Wang, X. (2012). Subcell. Biochem. 64, 283-302.]). On the other hand, cadmium acetate is used for glazing ceramics and pottery, in electroplating baths, in dyeing and printing textiles, and as an analytic reagent (Patnaik, 2003[Patnaik, P. (2003). Editor. Handbook of Inorganic Chemical Compounds, 1st ed., pp. 143-144. New York: McGraw-Hill.]).

In the asymmetric unit of the title compound (Fig. 1[link]) the Cd1—O1 bond length, 2.306 (4) Å, is in agreement with the distances reported in other cadmium acetate compounds (Vickers et al., 2011[Vickers, S. M., Frischmann, P. D. & MacLachlan, M. J. (2011). Inorg. Chem. 50, 2957-2965.]). In the threonine ligand, C2—C3 [1.537 (7) Å] and C2—N1 [1.472 (6) Å] bond lengths are consistent with those reported for free L-threonine [1.532 (2) and 1.491 (2) Å, respectively; Janczak et al., 1997[Janczak, J., Zobel, D. & Luger, P. (1997). Acta Cryst. C53, 1901-1904.]; X-ray data at 12 K].

[Figure 1]
Figure 1
The asymmetric unit of the title complex, with displacement ellipsoids for non-H atoms at the 50% probability level.

In the complex mol­ecule, the CdII ion is found to be in a six-coordination environment: the metal cation is coordinated by one carboxyl­ate O atom and one amine N atom of the bidentate threonine ligand, two O atoms from the bidentate acetate ligand and one water mol­ecule. Finally, one carboxyl­ate O atom of the threonine ligand forms a bridge with a symmetry-related metal ion, completing the coordination sphere of the metal, and giving a polymeric crystal structure along the [010] direction (Fig. 2[link]). The O—Cd—O bond angles range from 53.95 (14) to 162.36 (14)°.

[Figure 2]
Figure 2
The polymeric structure of the title compound.

In the crystal structure, hydrogen bonds are formed, with all N—H and O—H groups from the L-threonine and water mol­ecules serving as donor groups (Table 1[link]), affording a layered supra­molecular structure extending parallel to the [010] plane (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O7i 0.82 1.90 2.701 (6) 164
N1—H1A⋯O4ii 0.89 (3) 2.21 (3) 3.083 (5) 170 (5)
N1—H1B⋯O3iii 0.89 (3) 2.28 (4) 2.983 (5) 136 (4)
O6—H6D⋯O5i 0.89 (3) 1.86 (3) 2.753 (5) 175 (6)
O6—H6E⋯O2iv 0.88 (3) 1.80 (3) 2.676 (6) 174 (7)
O7—H7A⋯O1 0.89 (3) 1.84 (4) 2.707 (6) 163 (9)
O7—H7B⋯O6v 0.88 (3) 2.46 (5) 3.290 (7) 157 (9)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z]; (ii) [-x+1, y-{\script{1\over 2}}, -z]; (iii) [-x, y-{\script{1\over 2}}, -z]; (iv) x-1, y, z; (v) [-x, y-{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
Packing diagram of the title complex viewed down the a axis, showing one polymeric chain forming hydrogen bonds (dashed blue lines) with lattice water mol­ecules.

Synthesis and crystallization

Crystals of the title compound were prepared by adding L-threonine to an aqueous solution of cadmium acetate dihydrate in a stoichiometric ratio. Good quality single crystals were grown by repeated crystallization of an aqueous solution of the complex, at room temperature, over several weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C2H3O2)(C4H8NO3)(H2O)]·H2O
Mr 325.59
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 5.8199 (12), 8.8017 (16), 10.710 (2)
β (°) 91.916 (6)
V3) 548.30 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.01
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.593, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 4756, 2373, 2215
Rint 0.027
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.048, 1.06
No. of reflections 2373
No. of parameters 162
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.44
Absolute structure Flack x determined using 960 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (2)
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

catena-Poly[[[(acetato-κ2O,O')aquacadmium(II)]-µ-L-threoninato-κ3N,O:O'] monohydrate] top
Crystal data top
[Cd(C2H3O2)(C4H8NO3)(H2O)]·H2OF(000) = 324
Mr = 325.59Dx = 1.972 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.8199 (12) ÅCell parameters from 2960 reflections
b = 8.8017 (16) Åθ = 3.0–30.4°
c = 10.710 (2) ŵ = 2.01 mm1
β = 91.916 (6)°T = 293 K
V = 548.30 (18) Å3Block, colourless
Z = 20.20 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2373 independent reflections
Radiation source: fine-focus sealed tube2215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scanθmax = 27.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 47
Tmin = 0.593, Tmax = 0.746k = 1011
4756 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0151P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2373 reflectionsΔρmax = 0.29 e Å3
162 parametersΔρmin = 0.43 e Å3
7 restraintsAbsolute structure: Flack x determined using 960 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.02 (2)
Special details top

Refinement. The atomic positions of H atoms bonded to C atoms and hydroxyl atom O5 were calculated, and these H atoms were refined as riding to their parent atoms, with an isotropic displacement parameter calculated as Uiso = 1.2–1.5Ueq(carrier atom). Water and amine H atoms were located in difference maps and refined freely. For these H atoms, N—H and O—H bond lengths were restrained to 0.90 (2) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1873 (8)0.6187 (5)0.0589 (4)0.0198 (10)
C20.3744 (8)0.4946 (5)0.0609 (4)0.0195 (10)
H20.51470.53780.02220.023*
C30.4290 (8)0.4515 (5)0.1958 (5)0.0259 (13)
H30.45450.54380.24460.031*
C40.6394 (9)0.3493 (7)0.2005 (5)0.0341 (13)
H4A0.60580.25290.16330.051*
H4B0.76570.39620.15520.051*
H4C0.67940.33440.28590.051*
C50.3471 (10)0.3480 (7)0.3548 (5)0.0285 (12)
C60.5144 (12)0.2946 (8)0.4545 (6)0.0476 (16)
H6A0.43980.22380.50800.071*
H6B0.56880.37990.50280.071*
H6C0.64200.24570.41660.071*
N10.3104 (7)0.3621 (4)0.0142 (4)0.0198 (9)
O10.1723 (8)0.2697 (5)0.3282 (4)0.0481 (12)
O20.3858 (7)0.4672 (5)0.2946 (4)0.0353 (10)
O30.0128 (6)0.5995 (4)0.0047 (4)0.0272 (8)
O40.2300 (6)0.7358 (4)0.1214 (3)0.0265 (8)
O50.2331 (6)0.3716 (3)0.2470 (3)0.0285 (9)
H50.18960.41210.31250.043*
O60.1803 (7)0.5625 (5)0.2746 (4)0.0394 (10)
O70.0219 (9)0.0255 (6)0.4365 (4)0.0514 (12)
Cd10.04345 (4)0.41168 (6)0.15898 (3)0.02231 (10)
H1A0.432 (6)0.316 (6)0.048 (4)0.022 (14)*
H1B0.253 (8)0.286 (4)0.031 (4)0.007 (12)*
H6D0.189 (11)0.663 (3)0.264 (6)0.05 (2)*
H6E0.326 (6)0.537 (8)0.278 (6)0.06 (2)*
H7A0.052 (16)0.110 (7)0.416 (8)0.10 (3)*
H7B0.009 (18)0.045 (10)0.517 (3)0.09 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (2)0.015 (2)0.021 (2)0.0010 (19)0.0055 (19)0.0012 (19)
C20.018 (2)0.017 (2)0.023 (2)0.0004 (19)0.0003 (19)0.002 (2)
C30.025 (2)0.029 (4)0.024 (2)0.0021 (18)0.0003 (18)0.0040 (19)
C40.028 (3)0.048 (3)0.027 (3)0.009 (2)0.003 (2)0.006 (2)
C50.034 (3)0.034 (3)0.018 (3)0.006 (2)0.001 (2)0.001 (3)
C60.049 (4)0.053 (4)0.039 (3)0.001 (3)0.015 (3)0.004 (3)
N10.023 (2)0.012 (2)0.024 (2)0.0013 (15)0.0024 (17)0.0017 (16)
O10.044 (2)0.053 (3)0.046 (2)0.020 (2)0.017 (2)0.025 (2)
O20.036 (2)0.033 (2)0.036 (2)0.0059 (17)0.006 (2)0.0043 (19)
O30.0255 (17)0.0204 (17)0.0359 (19)0.0047 (16)0.0052 (15)0.0076 (16)
O40.0274 (18)0.0158 (17)0.036 (2)0.0014 (14)0.0011 (16)0.0077 (15)
O50.0328 (17)0.025 (3)0.0270 (17)0.0011 (14)0.0069 (14)0.0011 (13)
O60.034 (2)0.027 (2)0.058 (3)0.0007 (18)0.017 (2)0.006 (2)
O70.069 (3)0.043 (3)0.041 (3)0.021 (2)0.014 (2)0.006 (2)
Cd10.02215 (14)0.02029 (16)0.02456 (16)0.0006 (2)0.00159 (10)0.0020 (2)
Geometric parameters (Å, º) top
C1—O31.252 (6)C6—H6B0.9600
C1—O41.259 (6)C6—H6C0.9600
C1—C21.543 (6)N1—Cd12.274 (4)
C2—N11.472 (6)N1—H1A0.89 (3)
C2—C31.537 (7)N1—H1B0.89 (3)
C2—H20.9800O1—Cd12.306 (4)
C3—O51.432 (6)O2—Cd12.475 (4)
C3—C41.521 (7)O3—Cd12.340 (3)
C3—H30.9800O4—Cd1i2.247 (3)
C4—H4A0.9600O5—H50.8200
C4—H4B0.9600O6—Cd12.258 (4)
C4—H4C0.9600O6—H6D0.89 (3)
C5—O11.254 (7)O6—H6E0.88 (3)
C5—O21.255 (6)O7—H7A0.89 (3)
C5—C61.497 (8)O7—H7B0.88 (3)
C5—Cd12.755 (6)Cd1—O4ii2.247 (3)
C6—H6A0.9600
O3—C1—O4125.3 (4)Cd1—N1—H1A111 (3)
O3—C1—C2119.9 (4)C2—N1—H1B113 (3)
O4—C1—C2114.8 (4)Cd1—N1—H1B105 (3)
N1—C2—C3112.4 (4)H1A—N1—H1B99 (4)
N1—C2—C1111.2 (4)C5—O1—Cd196.9 (3)
C3—C2—C1110.9 (4)C5—O2—Cd188.9 (4)
N1—C2—H2107.4C1—O3—Cd1115.8 (3)
C3—C2—H2107.4C1—O4—Cd1i120.6 (3)
C1—C2—H2107.4C3—O5—H5109.5
O5—C3—C4109.2 (4)Cd1—O6—H6D123 (4)
O5—C3—C2107.1 (4)Cd1—O6—H6E117 (5)
C4—C3—C2111.6 (4)H6D—O6—H6E102 (6)
O5—C3—H3109.6H7A—O7—H7B93 (8)
C4—C3—H3109.6O4ii—Cd1—O694.90 (13)
C2—C3—H3109.6O4ii—Cd1—N1103.98 (13)
C3—C4—H4A109.5O6—Cd1—N1155.03 (14)
C3—C4—H4B109.5O4ii—Cd1—O188.69 (14)
H4A—C4—H4B109.5O6—Cd1—O193.77 (18)
C3—C4—H4C109.5N1—Cd1—O1102.74 (15)
H4A—C4—H4C109.5O4ii—Cd1—O3108.86 (13)
H4B—C4—H4C109.5O6—Cd1—O386.58 (15)
O1—C5—O2120.1 (5)N1—Cd1—O372.03 (13)
O1—C5—C6119.5 (5)O1—Cd1—O3162.36 (14)
O2—C5—C6120.4 (6)O4ii—Cd1—O2142.44 (13)
O1—C5—Cd156.2 (3)O6—Cd1—O291.69 (16)
O2—C5—Cd164.0 (3)N1—Cd1—O283.30 (14)
C6—C5—Cd1173.0 (4)O1—Cd1—O253.95 (14)
C5—C6—H6A109.5O3—Cd1—O2108.42 (13)
C5—C6—H6B109.5O4ii—Cd1—C5115.40 (16)
H6A—C6—H6B109.5O6—Cd1—C593.96 (18)
C5—C6—H6C109.5N1—Cd1—C592.56 (15)
H6A—C6—H6C109.5O1—Cd1—C526.87 (15)
H6B—C6—H6C109.5O3—Cd1—C5135.49 (16)
C2—N1—Cd1114.3 (3)O2—Cd1—C527.10 (14)
C2—N1—H1A112 (3)
O3—C1—C2—N11.9 (6)C1—C2—N1—Cd121.0 (5)
O4—C1—C2—N1179.9 (4)O2—C5—O1—Cd13.6 (5)
O3—C1—C2—C3127.8 (5)C6—C5—O1—Cd1173.5 (5)
O4—C1—C2—C354.1 (5)O1—C5—O2—Cd13.3 (5)
N1—C2—C3—O555.2 (5)C6—C5—O2—Cd1173.8 (5)
C1—C2—C3—O570.0 (5)O4—C1—O3—Cd1160.1 (4)
N1—C2—C3—C464.3 (5)C2—C1—O3—Cd117.8 (5)
C1—C2—C3—C4170.5 (4)O3—C1—O4—Cd1i12.8 (7)
C3—C2—N1—Cd1146.0 (3)C2—C1—O4—Cd1i169.2 (3)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O7i0.821.902.701 (6)164
N1—H1A···O4iii0.89 (3)2.21 (3)3.083 (5)170 (5)
N1—H1B···O3ii0.89 (3)2.28 (4)2.983 (5)136 (4)
O6—H6D···O5i0.89 (3)1.86 (3)2.753 (5)175 (6)
O6—H6E···O2iv0.88 (3)1.80 (3)2.676 (6)174 (7)
O7—H7A···O10.89 (3)1.84 (4)2.707 (6)163 (9)
O7—H7B···O6v0.88 (3)2.46 (5)3.290 (7)157 (9)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y1/2, z; (iii) x+1, y1/2, z; (iv) x1, y, z; (v) x, y1/2, z+1.
 

Footnotes

Research scholar at Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India.

Acknowledgements

We are grateful to the SAIF, IIT Madras, for use of the X-ray data collection facility.

References

First citationBruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, X., Quinn, P. J. & Wang, X. (2012). Subcell. Biochem. 64, 283–302.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J., Zobel, D. & Luger, P. (1997). Acta Cryst. C53, 1901–1904.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatnaik, P. (2003). Editor. Handbook of Inorganic Chemical Compounds, 1st ed., pp. 143–144. New York: McGraw-Hill.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVickers, S. M., Frischmann, P. D. & MacLachlan, M. J. (2011). Inorg. Chem. 50, 2957–2965.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds