metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Bis(2,2′-bi­pyridine-4,4′-di­carb­­oxy­lic acid-κ2N,N′)di­chlorido­ruthenium(III) perchlorate

CROSSMARK_Color_square_no_text.svg

aInstituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bl. A, Lab. 628a. CEP 21941-909, Rio de Janeiro, Brazil
*Correspondence e-mail: marciela@iq.ufrj.br

Edited by C. Massera, Università di Parma, Italy (Received 15 October 2018; accepted 1 November 2018; online 10 November 2018)

In the crystal structure of the ruthenium(III) complex, trans-[RuIII(dcbpy)2Cl2]ClO4 (dcbpy = 2,2′-bi­pyridine-4,4′-di­carb­oxy­lic acid, C12H8N2O4), the RuIII atom lies on an inversion centre, showing a small distortion in its octa­hedral environment. The Ru—Cl bond lengths are shorter than those present in the analogous trans-ruthenium(II) compound containing the bi­pyridine ligand. The C—O distances in the two symmetry-independent carb­oxy­lic acid moieties of the ligand are similar in one group, but different in the other. This is probably due to the different inter­molecular inter­actions they experience with neighbouring cationic complexes. The hydrogen-bonding inter­actions in which they are involved form a three-dimensional structure, similar to those found in coordination polymers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Complexes of ruthenium(III) have been described in the literature for several purposes, such as: anti­cancer agents (Shoair et al., 2015[Shoair, A. G. F., Toson, E. A. & El-mezayen, H. A. (2015). Appl. Organomet. Chem. 29, 412-418.]; Zeng et al., 2017[Zeng, L., Gupta, P., Chen, Y., Wang, E., Ji, L., Chao, H. & Chen, Z.-S. (2017). Chem. Soc. Rev. 46, 5771-5804.]), water-oxidation catalysts (WOC) (Liu et al., 2018[Liu, Y., Chen, G., Yiu, S.-M., Wong, C.-Y. & Lau, T.-C. (2018). ChemCatChem, 10, 501-504.]), precursors for new oxidants (Seok et al., 2012[Seok, W. K., Ran Jo, M., Kim, N. & Yun, H. (2012). Z. Anorg. Allg. Chem. 638, 754-757.]) and for their catalytic and biological activity (Thangadurai & Natarajan, 2001[Thangadurai, T. D. & Natarajan, K. (2001). Synth. React. Inorg. Met.-Org. Chem. 31, 549-567.]). Ruthenium complexes with polypyridine ligands in a trans configuration have been mostly designed for dye-sensitized solar cells (DSSC) applications (Barolo et al., 2013[Barolo, C., Yum, J.-H., Artuso, E., Barbero, N., Di Censo, D., Lobello, M. G., Fantacci, S., De Angelis, F., Grätzel, M., Nazeeruddin, M. K. & Viscardi, G. (2013). ChemSusChem, 6, 2170-2180.]). In DSSC, ruthenium complexes are used as dyes, and are responsible for the electron injection into the conduction band of the semiconductor (usually TiO2). Ligands in these complexes may have different functions, such as ancillary or anchoring. Anchoring ligands may present functional groups able to covalently bond to the semiconductor surface. The most often synthetically employed are phospho­nic and carb­oxy­lic groups that guarantee the adsorption of the coordination compound on the desired surface (Pashaei et al., 2016[Pashaei, B., Shahroosvand, H., Grätzel, M. & Nazeeruddin, M. K. (2016). Chem. Rev. 116, 9485-9564.]). On the other hand, ancillary ligands are employed to finely modulate the redox potential of the central metal cation.

In this work, the mol­ecular and crystal structures of the complex trans-Bis(2,2′-bi­pyridine-4,4′-di­carb­oxy­lic acid-κ2N,N′)di­chlorido­ruthenium(III) perchlorate are described (Fig. 1[link]). The ruthenium(III) ion, which lies on an inversion centre, is coordinated by two mol­ecules of dcbpy and two chloride ions, showing a distorted N4Cl2 octa­hedral geometry. This mononuclear cationic complex was isolated with perchlorate as counter-ion.

[Figure 1]
Figure 1
The structures of the molecular entities in the title compound. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (i) [{1\over 2}] − x, −[{1\over 2}] − y, 1 − z; (ii) 1 − x, +y, [{3\over 2}] − z].

The Ru1—Cl1 bond length (Table 1[link]) is 2.2865 (13) Å, and is shorter than the value of 2.4123 (4) Å present in the cis-RuII analogue cis-[RuII(dcbpy)2Cl2] (Fujihara et al., 2004[Fujihara, T., Kobayashi, A., Iwai, M. & Nagasawa, A. (2004). Acta Cryst. E60, m1172-m1174.]). This difference may be due to either the oxidation state of the central metal cation, as has been reported before (Seok et al., 2012[Seok, W. K., Ran Jo, M., Kim, N. & Yun, H. (2012). Z. Anorg. Allg. Chem. 638, 754-757.]), or to the configuration around the metal (cis or trans). The Ru1—Cl1 distance in the complex trans-[RuII(bpy)2Cl2] [2.3893 (6) Å, Klüfers & Zangl, 2007[Klüfers, P. & Zangl, A. (2007). Acta Cryst. E63, m3088.]] shows a higher value than that of the title complex. This is observed because ruthenium(III) is a better Lewis acid than ruthenium(II), attracting the electrons and shortening the bond.

Table 1
Selected bond lengths (Å)

Ru1—Cl1 2.2865 (13) O1—C4 1.253 (6)
Ru1—N2 2.082 (3) O3—C12 1.195 (7)
Ru1—N1 2.090 (3) O2—C4 1.253 (6)
Cl2—O5 1.424 (7) O4—C12 1.316 (6)
Cl2—O6 1.295 (6)    

The Ru1—N1 and Ru1—N2 bond lengths are 2.090 (3) Å and 2.082 (3) Å, respectively, and are similar to the values reported for the analogous complex trans-[RuII(bpy)2Cl2] in which Ru1—N1 = 2.0632 (18) Å and Ru1—N2 = 2.0560 (19) Å (Klüfers & Zangl, 2007[Klüfers, P. & Zangl, A. (2007). Acta Cryst. E63, m3088.]). In general, Ru—N values are comparable with the average bond lengths in similar complexes with a cis configuration: cis-[RuII(dcbpy)2Cl2] (Fujihara et al., 2004[Fujihara, T., Kobayashi, A., Iwai, M. & Nagasawa, A. (2004). Acta Cryst. E60, m1172-m1174.]), cis-[RuIII(bpy)2Cl2]Cl·2H2O (Eggleston et al., 1985[Eggleston, D. S., Goldsby, K. A., Hodgson, D. J. & Meyer, T. J. (1985). Inorg. Chem. 24, 4573-4580.]) and cis-[RuIII(dmbpy)2Cl2](PF6) (dmbpy: 2,2′-bi­pyridine-4,4′-dimeth­yl) (Seok et al., 2012[Seok, W. K., Ran Jo, M., Kim, N. & Yun, H. (2012). Z. Anorg. Allg. Chem. 638, 754-757.]). The N2—Ru—N1 angle is 76.47 (13)°, which is a smaller bite angle than the ideal 90°, as expected for bi­pyridines, because of the chelate constraints (Schwalbe et al., 2008[Schwalbe, M., Schäfer, B., Görls, H., Rau, S., Tschierlei, S., Schmitt, M., Popp, J., Vaughan, G., Henry, W. & Vos, J. G. (2008). Eur. J. Inorg. Chem. pp. 3310-3319.]). The average Cl—Ru—N angle is close to 90°, similar to what is reported for the complex trans-[RuII(bpy)2Cl2] (Klüfers & Zangl, 2007[Klüfers, P. & Zangl, A. (2007). Acta Cryst. E63, m3088.]), showing a distortion in the octa­hedral coordination environment.

The angle between the mean planes of the two pyridine rings shows very different values depending on the configuration around the metal cation. In the title compound, this angle is 14.26 (16)°, which is higher than the average value of 9 (2)° in the cis complex, cis-[RuII(dcbpy)2Cl2] (Fujihara et al., 2004[Fujihara, T., Kobayashi, A., Iwai, M. & Nagasawa, A. (2004). Acta Cryst. E60, m1172-m1174.]), but lower than the value of 23.8 (1)° in trans-[RuII(bpy)2Cl2] (Klüfers & Zangl, 2007[Klüfers, P. & Zangl, A. (2007). Acta Cryst. E63, m3088.]).

The angle between the mean planes passing through Ru1—N1—N2—N1i—N2i [symmetry code: (i) [{1\over 2}] − x, −[{1\over 2}] − y, 1 − z) and N1—C6—C7—N2 (involved in the bite angle) is 18.9 (3)°, which is close to the value of 20.4997 (4)° reported for trans-[RuII(bpy)2Cl2] (Klüfers & Zangl, 2007[Klüfers, P. & Zangl, A. (2007). Acta Cryst. E63, m3088.]).

The carboxylic group C4O1O2H2 shows very similar C—O bond lengths: C4—O2: 1.253 (6) Å and C4—O1: 1.253 (6) Å. This fact can be explained considering that it forms two hydrogen bonds (one as donor with O2—H2 and one as acceptor with O1) with the same group of a neighbouring complex. This is not observed for C12O3O4H4, in which only O4—H4 acts as hydrogen-bond donor towards the O5 atom of one perchlorate anion, while O3 is not involved in any inter­actions. This explains the lengthening of the C12—O4 bond [1.316 (6) Å], with respect to C12—O3, which shows a value of 1.195 (7) Å.

The hydrogen-bonding inter­actions between the carboxylic C4O1O2H2 of two neighbouring complexes (Table 2[link]) form a linear ribbon aligned with the Ru1—N1 bond. On the other side, the carboxylic groups aligned with the Ru1—N2 bond (C12O3O4H4) and the perchlorate anions are also involved in hydrogen bonding; both the symmetry-related O5 atoms of the perchlorate anion inter­act with two cationic complexes in two different set of planes. These planes form an angle of 33.7 (3)° (Fig. 2[link]; the angle has been calculated considering the mean planes passing through sets of O1—C4—O1 atoms) and comprise two sets of ribbons formed by the H-bonded C4O1O2H2 carboxylic groups (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A D⋯A D—H⋯A
O2—H2⋯O1i 0.82 1.90 2.698 (5) 165.1
O4—H4⋯O5 0.82 1.93 2.752 (7) 175.5
(i) −x, 1 − y, 1 − z
[Figure 2]
Figure 2
View of the planes along which two sets of ribbons formed by the hydrogen-bonded carboxylic groups C4O1O2H2 propagate (hydrogen bonds are represented by blue dashed lines). Red dashed lines show the inter­actions between the perchlorate anion and the C12O3O4H4 carboxyl­ate group.
[Figure 3]
Figure 3
Crystal packing of [RuIII(dcbpy)2Cl2]ClO4 (top, middle), and perpendic­ular view of the layers in which the ribbons propagate (bottom).

The distance between the closest O2—C4—O1 centroids is 7.3833 (7) Å, while the distance between two adjacent ruthenium(III) atoms is 16.5316 (10) Å, and that of the closest ruthenium(III) atoms in the two different planes is of 13.0452 (10) Å.

Focusing on the dcbpy ligand, Fujihara et al. (2004[Fujihara, T., Kobayashi, A., Iwai, M. & Nagasawa, A. (2004). Acta Cryst. E60, m1172-m1174.]) described the analogous cis compound, cis-[RuII(dcbpy)2Cl2]. Analyzing ruthenium(III) complexes, only two similar compounds have been found in the literature: cis-[RuIII(bpy)2Cl2]Cl·2H2O (bpy: 2,2′-bi­pyridine) (Eggleston et al., 1985[Eggleston, D. S., Goldsby, K. A., Hodgson, D. J. & Meyer, T. J. (1985). Inorg. Chem. 24, 4573-4580.]) and cis-[RuIII(dmbpy)2Cl2](PF6) (Seok et al., 2012[Seok, W. K., Ran Jo, M., Kim, N. & Yun, H. (2012). Z. Anorg. Allg. Chem. 638, 754-757.]). In addition, Klüfers & Zangl (2007[Klüfers, P. & Zangl, A. (2007). Acta Cryst. E63, m3088.]) presented a ruthenium(III) complex in a trans configuration with 2,2′-bi­pyridine, trans-[RuIII(bpy)2Cl2]. To the best of our knowledge, these are the only few examples of crystal structures of trans-ruthenium(III) complexes comprising bi­pyridine and a monodentate halogenido group as ligands.

Synthesis and crystallization

While attempting to synthesize the complex cis-[RuII(dcbpy)2(4m4but)] (4m4but = N-butyl-4′-methyl-[2,2′-bi­pyridine]-4-methanamine), a mixture of cis-[RuII(dcbpy)2Cl2] and 4m4but (1:1) in MeOH/NaOH solution was refluxed for 3 h, in the dark, under an argon atmosphere. After this time, the solvent was removed under reduced pressure, and a red solid was obtained. Orange single crystals of the title trans complex were serendipitously obtained by recrystallization of this solid from a HClO4 solution (1.5 M) after several months.

IR (cm−1, CsI): 3449 (m), 2928 (w), 2855 (w), 1725 (m), 1697 (sh), 1619 (w), 1556 (w), 1448 (sh), 1408 (w), 1370 (w), 1318 (w), 1266 (w), 1233, 1105 (s), 1084 (sh), 1023 (w), 901 (w), 818 (w), 769 (w), 630 (s). Diffuse reflectance (nm, BaSO4): 248, 293, 467, 540 (sh), 679 (sh).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [RuCl2(C12H8N2O4)2]ClO4
Mr 759.83
Crystal system, space group Monoclinic, C2/c
Temperature (K) 273
a, b, c (Å) 22.3394 (19), 8.1249 (7), 14.7667 (14)
β (°) 93.162 (4)
V3) 2676.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.96
Crystal size (mm) 0.24 × 0.10 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.697, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18342, 2741, 2135
Rint 0.080
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.112, 1.07
No. of reflections 2741
No. of parameters 202
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.92, −0.63
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

trans-Bis(2,2'-bipyridine-4,4'-dicarboxylic acid-κ2N,N')dichloridoruthenium(III) perchlorate top
Crystal data top
[RuCl2(C12H8N2O4)2]ClO4F(000) = 1516
Mr = 759.83Dx = 1.886 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.3394 (19) ÅCell parameters from 4234 reflections
b = 8.1249 (7) Åθ = 2.7–26.0°
c = 14.7667 (14) ŵ = 0.96 mm1
β = 93.162 (4)°T = 273 K
V = 2676.2 (4) Å3Irregular, orange
Z = 40.24 × 0.10 × 0.06 mm
Data collection top
Bruker D8 Venture
diffractometer
2135 reflections with I > 2σ(I)
φ and ω scansRint = 0.080
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 26.4°, θmin = 2.7°
Tmin = 0.697, Tmax = 0.745h = 2727
18342 measured reflectionsk = 1010
2741 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0449P)2 + 15.531P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2741 reflectionsΔρmax = 0.92 e Å3
202 parametersΔρmin = 0.63 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.2500000.2500000.5000000.02162 (16)
Cl10.29145 (6)0.09129 (15)0.39197 (9)0.0401 (3)
Cl20.5000000.6986 (3)0.7500000.0497 (5)
N20.28196 (15)0.0850 (4)0.5991 (2)0.0246 (8)
N10.17958 (15)0.0825 (4)0.5090 (2)0.0233 (8)
O10.00398 (16)0.2932 (5)0.4656 (3)0.0535 (11)
C70.25357 (18)0.0625 (5)0.5975 (3)0.0216 (9)
C60.19433 (18)0.0614 (5)0.5491 (3)0.0224 (9)
O30.3334 (2)0.4578 (5)0.7421 (3)0.0662 (13)
O20.07193 (17)0.4483 (5)0.5417 (4)0.0696 (15)
H20.0471540.5208330.5301430.104*
C50.1549 (2)0.1923 (5)0.5500 (3)0.0270 (10)
H50.1663830.2912960.5774130.032*
C80.2776 (2)0.1957 (5)0.6436 (3)0.0272 (10)
H80.2576910.2961960.6414920.033*
C110.3307 (2)0.1043 (6)0.6549 (3)0.0338 (12)
H110.3469850.2090100.6628920.041*
C90.3318 (2)0.1797 (6)0.6932 (3)0.0291 (10)
O40.41452 (19)0.3021 (6)0.7693 (4)0.0716 (14)
H40.4316180.3901560.7789700.107*
C30.0978 (2)0.1736 (6)0.5094 (3)0.0290 (10)
C20.0818 (2)0.0235 (6)0.4735 (4)0.0334 (11)
H2A0.0433920.0068570.4475970.040*
C10.1231 (2)0.1027 (6)0.4759 (3)0.0325 (11)
H10.1112600.2055760.4538700.039*
C100.3574 (2)0.0258 (6)0.7008 (3)0.0373 (12)
H100.3925360.0100670.7365480.045*
C120.3593 (2)0.3296 (7)0.7372 (4)0.0418 (13)
C40.0543 (2)0.3163 (6)0.5054 (4)0.0372 (12)
O50.4698 (3)0.5970 (9)0.8115 (5)0.140 (3)
O60.5377 (4)0.7789 (11)0.8031 (6)0.181 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0194 (2)0.0161 (2)0.0290 (3)0.0071 (2)0.00141 (18)0.0053 (2)
Cl10.0533 (8)0.0254 (6)0.0429 (7)0.0029 (5)0.0158 (6)0.0004 (5)
Cl20.0304 (9)0.0567 (12)0.0608 (13)0.0000.0079 (9)0.000
N20.0227 (19)0.0222 (19)0.028 (2)0.0088 (15)0.0035 (16)0.0064 (15)
N10.0201 (18)0.0184 (18)0.031 (2)0.0059 (14)0.0016 (15)0.0044 (15)
O10.0272 (19)0.040 (2)0.091 (3)0.0158 (16)0.014 (2)0.008 (2)
C70.019 (2)0.018 (2)0.027 (2)0.0042 (17)0.0004 (18)0.0015 (17)
C60.020 (2)0.020 (2)0.027 (2)0.0056 (17)0.0014 (18)0.0033 (18)
O30.065 (3)0.037 (2)0.094 (3)0.000 (2)0.021 (3)0.022 (2)
O20.036 (2)0.028 (2)0.143 (4)0.0180 (17)0.018 (2)0.022 (2)
C50.027 (2)0.017 (2)0.038 (3)0.0061 (18)0.003 (2)0.0054 (18)
C80.030 (2)0.020 (2)0.032 (3)0.0054 (18)0.002 (2)0.0040 (18)
C110.034 (3)0.030 (3)0.036 (3)0.017 (2)0.010 (2)0.009 (2)
C90.027 (2)0.031 (2)0.029 (2)0.001 (2)0.002 (2)0.007 (2)
O40.046 (3)0.066 (3)0.100 (4)0.009 (2)0.022 (3)0.024 (3)
C30.022 (2)0.024 (2)0.041 (3)0.0083 (19)0.004 (2)0.000 (2)
C20.018 (2)0.033 (3)0.049 (3)0.0047 (19)0.002 (2)0.008 (2)
C10.025 (2)0.027 (3)0.046 (3)0.0035 (19)0.000 (2)0.011 (2)
C100.028 (3)0.047 (3)0.035 (3)0.012 (2)0.009 (2)0.014 (2)
C120.038 (3)0.046 (3)0.041 (3)0.005 (3)0.002 (2)0.013 (3)
C40.028 (3)0.025 (2)0.059 (3)0.009 (2)0.002 (2)0.000 (2)
O50.163 (7)0.147 (6)0.115 (5)0.105 (5)0.060 (5)0.055 (5)
O60.168 (7)0.224 (9)0.142 (7)0.132 (7)0.063 (6)0.025 (6)
Geometric parameters (Å, º) top
Ru1—Cl1i2.2865 (13)O2—H20.8200
Ru1—Cl12.2865 (13)O2—C41.253 (6)
Ru1—N2i2.082 (3)C5—H50.9300
Ru1—N22.082 (3)C5—C31.388 (6)
Ru1—N12.090 (3)C8—H80.9300
Ru1—N1i2.090 (3)C8—C91.385 (6)
Cl2—O5ii1.424 (6)C11—H110.9300
Cl2—O51.424 (7)C11—C101.374 (7)
Cl2—O61.295 (6)C9—C101.378 (7)
Cl2—O6ii1.295 (6)C9—C121.496 (7)
N2—C71.356 (5)O4—H40.8200
N2—C111.338 (5)O4—C121.316 (6)
N1—C61.344 (5)C3—C21.369 (7)
N1—C11.338 (5)C3—C41.511 (6)
O1—C41.253 (6)C2—H2A0.9300
C7—C61.469 (6)C2—C11.378 (6)
C7—C81.372 (6)C1—H10.9300
C6—C51.382 (6)C10—H100.9300
O3—C121.195 (7)
Cl1—Ru1—Cl1i180.00 (6)C4—O2—H2109.5
N2—Ru1—Cl189.48 (11)C6—C5—H5120.5
N2—Ru1—Cl1i90.51 (11)C6—C5—C3118.9 (4)
N2i—Ru1—Cl1i89.49 (11)C3—C5—H5120.5
N2i—Ru1—Cl190.51 (11)C7—C8—H8120.2
N2—Ru1—N2i180.0C7—C8—C9119.7 (4)
N2—Ru1—N1i103.53 (13)C9—C8—H8120.2
N2i—Ru1—N1i76.47 (13)N2—C11—H11119.0
N2i—Ru1—N1103.53 (13)N2—C11—C10122.0 (4)
N2—Ru1—N176.47 (13)C10—C11—H11119.0
N1i—Ru1—Cl1i90.70 (11)C8—C9—C12118.6 (4)
N1—Ru1—Cl190.70 (11)C10—C9—C8118.4 (4)
N1i—Ru1—Cl189.30 (11)C10—C9—C12123.0 (4)
N1—Ru1—Cl1i89.30 (11)C12—O4—H4109.5
N1i—Ru1—N1180.00 (12)C5—C3—C4120.4 (4)
O5—Cl2—O5ii109.1 (6)C2—C3—C5118.6 (4)
O6ii—Cl2—O5ii102.8 (4)C2—C3—C4121.0 (4)
O6ii—Cl2—O5111.3 (6)C3—C2—H2A120.2
O6—Cl2—O5ii111.3 (6)C3—C2—C1119.5 (4)
O6—Cl2—O5102.8 (4)C1—C2—H2A120.2
O6ii—Cl2—O6119.5 (9)N1—C1—C2122.3 (4)
C7—N2—Ru1114.5 (3)N1—C1—H1118.9
C11—N2—Ru1126.4 (3)C2—C1—H1118.9
C11—N2—C7118.6 (4)C11—C10—C9119.4 (4)
C6—N1—Ru1115.3 (3)C11—C10—H10120.3
C1—N1—Ru1126.5 (3)C9—C10—H10120.3
C1—N1—C6118.1 (4)O3—C12—C9123.2 (5)
N2—C7—C6114.3 (4)O3—C12—O4124.9 (5)
N2—C7—C8121.2 (4)O4—C12—C9111.9 (5)
C8—C7—C6124.3 (4)O1—C4—O2125.6 (4)
N1—C6—C7114.4 (4)O1—C4—C3117.5 (5)
N1—C6—C5122.2 (4)O2—C4—C3116.9 (4)
C5—C6—C7123.3 (4)
Ru1—N2—C7—C619.6 (5)C5—C3—C2—C12.0 (8)
Ru1—N2—C7—C8164.9 (3)C5—C3—C4—O1178.1 (5)
Ru1—N2—C11—C10162.3 (4)C5—C3—C4—O21.4 (8)
Ru1—N1—C6—C713.0 (5)C8—C7—C6—N1179.7 (4)
Ru1—N1—C6—C5171.6 (4)C8—C7—C6—C54.4 (7)
Ru1—N1—C1—C2170.4 (4)C8—C9—C10—C113.8 (8)
N2—C7—C6—N14.3 (6)C8—C9—C12—O310.4 (8)
N2—C7—C6—C5171.0 (4)C8—C9—C12—O4169.8 (5)
N2—C7—C8—C90.4 (7)C11—N2—C7—C6168.0 (4)
N2—C11—C10—C93.5 (8)C11—N2—C7—C87.6 (7)
N1—C6—C5—C31.1 (7)C3—C2—C1—N12.9 (8)
C7—N2—C11—C109.2 (7)C2—C3—C4—O12.1 (8)
C7—C6—C5—C3173.9 (4)C2—C3—C4—O2178.4 (6)
C7—C8—C9—C105.3 (7)C1—N1—C6—C7169.6 (4)
C7—C8—C9—C12175.5 (4)C1—N1—C6—C55.9 (7)
C6—N1—C1—C26.8 (7)C10—C9—C12—O3168.8 (6)
C6—C7—C8—C9174.7 (4)C10—C9—C12—O411.1 (8)
C6—C5—C3—C22.9 (7)C12—C9—C10—C11177.1 (5)
C6—C5—C3—C4177.3 (4)C4—C3—C2—C1178.2 (5)
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry () top
D—H···A
O1—H2···O2iii
O4—H4···O5
Symmetry code: (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, °) top
D-H···AD-HH···AD···AD-H···A
O2-H2···O1i0.821.902.698 (5)165.1
O4-H4···O50.821.932.752 (7)175.5
(i) -x, 1-y, 1-z
 

Acknowledgements

The authors thank Laboratório Multiusuário de Difração de Raios X da Universidade Federal Fluminense (LDRX/UFF) for the use of the laboratory facilities.

Funding information

Funding for this research was provided by: Conselho Nacional de Desenvolvimento Científico e Tecnológico (studentship No. 155671/2014-6 to L. Gonçalves Leida Soares; studentship No. 141606/2014-2 to D. Silva Padilha); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant No. 3100.101.7006 P6); Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (grant No. E-26/010.001499/2014).

References

First citationBarolo, C., Yum, J.-H., Artuso, E., Barbero, N., Di Censo, D., Lobello, M. G., Fantacci, S., De Angelis, F., Grätzel, M., Nazeeruddin, M. K. & Viscardi, G. (2013). ChemSusChem, 6, 2170–2180.  CrossRef PubMed Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEggleston, D. S., Goldsby, K. A., Hodgson, D. J. & Meyer, T. J. (1985). Inorg. Chem. 24, 4573–4580.  CrossRef CAS Web of Science Google Scholar
First citationFujihara, T., Kobayashi, A., Iwai, M. & Nagasawa, A. (2004). Acta Cryst. E60, m1172–m1174.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKlüfers, P. & Zangl, A. (2007). Acta Cryst. E63, m3088.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Chen, G., Yiu, S.-M., Wong, C.-Y. & Lau, T.-C. (2018). ChemCatChem, 10, 501–504.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPashaei, B., Shahroosvand, H., Grätzel, M. & Nazeeruddin, M. K. (2016). Chem. Rev. 116, 9485–9564.  CrossRef PubMed Google Scholar
First citationSchwalbe, M., Schäfer, B., Görls, H., Rau, S., Tschierlei, S., Schmitt, M., Popp, J., Vaughan, G., Henry, W. & Vos, J. G. (2008). Eur. J. Inorg. Chem. pp. 3310–3319.  Web of Science CrossRef Google Scholar
First citationSeok, W. K., Ran Jo, M., Kim, N. & Yun, H. (2012). Z. Anorg. Allg. Chem. 638, 754–757.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShoair, A. G. F., Toson, E. A. & El-mezayen, H. A. (2015). Appl. Organomet. Chem. 29, 412–418.  CrossRef Google Scholar
First citationThangadurai, T. D. & Natarajan, K. (2001). Synth. React. Inorg. Met.-Org. Chem. 31, 549–567.  CrossRef Google Scholar
First citationZeng, L., Gupta, P., Chen, Y., Wang, E., Ji, L., Chao, H. & Chen, Z.-S. (2017). Chem. Soc. Rev. 46, 5771–5804.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds