metal-organic compounds
trans-Bis(2,2′-bipyridine-4,4′-dicarboxylic acid-κ2N,N′)dichloridoruthenium(III) perchlorate
aInstituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bl. A, Lab. 628a. CEP 21941-909, Rio de Janeiro, Brazil
*Correspondence e-mail: marciela@iq.ufrj.br
In the trans-[RuIII(dcbpy)2Cl2]ClO4 (dcbpy = 2,2′-bipyridine-4,4′-dicarboxylic acid, C12H8N2O4), the RuIII atom lies on an inversion centre, showing a small distortion in its octahedral environment. The Ru—Cl bond lengths are shorter than those present in the analogous trans-ruthenium(II) compound containing the bipyridine ligand. The C—O distances in the two symmetry-independent carboxylic acid moieties of the ligand are similar in one group, but different in the other. This is probably due to the different intermolecular interactions they experience with neighbouring cationic complexes. The hydrogen-bonding interactions in which they are involved form a three-dimensional structure, similar to those found in coordination polymers.
of the ruthenium(III) complex,Keywords: crystal structure; ruthenium; dcbpy ligand; trans configuration.
CCDC reference: 1865871
Structure description
Complexes of ruthenium(III) have been described in the literature for several purposes, such as: anticancer agents (Shoair et al., 2015; Zeng et al., 2017), water-oxidation catalysts (WOC) (Liu et al., 2018), precursors for new oxidants (Seok et al., 2012) and for their catalytic and biological activity (Thangadurai & Natarajan, 2001). Ruthenium complexes with polypyridine ligands in a trans configuration have been mostly designed for dye-sensitized solar cells (DSSC) applications (Barolo et al., 2013). In DSSC, ruthenium complexes are used as dyes, and are responsible for the electron injection into the of the semiconductor (usually TiO2). Ligands in these complexes may have different functions, such as ancillary or anchoring. Anchoring ligands may present functional groups able to covalently bond to the semiconductor surface. The most often synthetically employed are phosphonic and carboxylic groups that guarantee the adsorption of the coordination compound on the desired surface (Pashaei et al., 2016). On the other hand, ancillary ligands are employed to finely modulate the of the central metal cation.
In this work, the molecular and crystal structures of the complex trans-Bis(2,2′-bipyridine-4,4′-dicarboxylic acid-κ2N,N′)dichloridoruthenium(III) perchlorate are described (Fig. 1). The ruthenium(III) ion, which lies on an inversion centre, is coordinated by two molecules of dcbpy and two chloride ions, showing a distorted N4Cl2 octahedral geometry. This mononuclear cationic complex was isolated with perchlorate as counter-ion.
The Ru1—Cl1 bond length (Table 1) is 2.2865 (13) Å, and is shorter than the value of 2.4123 (4) Å present in the cis-RuII analogue cis-[RuII(dcbpy)2Cl2] (Fujihara et al., 2004). This difference may be due to either the of the central metal cation, as has been reported before (Seok et al., 2012), or to the configuration around the metal (cis or trans). The Ru1—Cl1 distance in the complex trans-[RuII(bpy)2Cl2] [2.3893 (6) Å, Klüfers & Zangl, 2007] shows a higher value than that of the title complex. This is observed because ruthenium(III) is a better than ruthenium(II), attracting the electrons and shortening the bond.
|
The Ru1—N1 and Ru1—N2 bond lengths are 2.090 (3) Å and 2.082 (3) Å, respectively, and are similar to the values reported for the analogous complex trans-[RuII(bpy)2Cl2] in which Ru1—N1 = 2.0632 (18) Å and Ru1—N2 = 2.0560 (19) Å (Klüfers & Zangl, 2007). In general, Ru—N values are comparable with the average bond lengths in similar complexes with a cis configuration: cis-[RuII(dcbpy)2Cl2] (Fujihara et al., 2004), cis-[RuIII(bpy)2Cl2]Cl·2H2O (Eggleston et al., 1985) and cis-[RuIII(dmbpy)2Cl2](PF6) (dmbpy: 2,2′-bipyridine-4,4′-dimethyl) (Seok et al., 2012). The N2—Ru—N1 angle is 76.47 (13)°, which is a smaller bite angle than the ideal 90°, as expected for bipyridines, because of the chelate constraints (Schwalbe et al., 2008). The average Cl—Ru—N angle is close to 90°, similar to what is reported for the complex trans-[RuII(bpy)2Cl2] (Klüfers & Zangl, 2007), showing a distortion in the octahedral coordination environment.
The angle between the mean planes of the two pyridine rings shows very different values depending on the configuration around the metal cation. In the title compound, this angle is 14.26 (16)°, which is higher than the average value of 9 (2)° in the cis complex, cis-[RuII(dcbpy)2Cl2] (Fujihara et al., 2004), but lower than the value of 23.8 (1)° in trans-[RuII(bpy)2Cl2] (Klüfers & Zangl, 2007).
The angle between the mean planes passing through Ru1—N1—N2—N1i—N2i [symmetry code: (i) − x, − − y, 1 − z) and N1—C6—C7—N2 (involved in the bite angle) is 18.9 (3)°, which is close to the value of 20.4997 (4)° reported for trans-[RuII(bpy)2Cl2] (Klüfers & Zangl, 2007).
The carboxylic group C4O1O2H2 shows very similar C—O bond lengths: C4—O2: 1.253 (6) Å and C4—O1: 1.253 (6) Å. This fact can be explained considering that it forms two hydrogen bonds (one as donor with O2—H2 and one as acceptor with O1) with the same group of a neighbouring complex. This is not observed for C12O3O4H4, in which only O4—H4 acts as hydrogen-bond donor towards the O5 atom of one perchlorate anion, while O3 is not involved in any interactions. This explains the lengthening of the C12—O4 bond [1.316 (6) Å], with respect to C12—O3, which shows a value of 1.195 (7) Å.
The hydrogen-bonding interactions between the carboxylic C4O1O2H2 of two neighbouring complexes (Table 2) form a linear ribbon aligned with the Ru1—N1 bond. On the other side, the carboxylic groups aligned with the Ru1—N2 bond (C12O3O4H4) and the perchlorate anions are also involved in hydrogen bonding; both the symmetry-related O5 atoms of the perchlorate anion interact with two cationic complexes in two different set of planes. These planes form an angle of 33.7 (3)° (Fig. 2; the angle has been calculated considering the mean planes passing through sets of O1—C4—O1 atoms) and comprise two sets of ribbons formed by the H-bonded C4O1O2H2 carboxylic groups (Fig. 3).
|
The distance between the closest O2—C4—O1 centroids is 7.3833 (7) Å, while the distance between two adjacent ruthenium(III) atoms is 16.5316 (10) Å, and that of the closest ruthenium(III) atoms in the two different planes is of 13.0452 (10) Å.
Focusing on the dcbpy ligand, Fujihara et al. (2004) described the analogous cis compound, cis-[RuII(dcbpy)2Cl2]. Analyzing ruthenium(III) complexes, only two similar compounds have been found in the literature: cis-[RuIII(bpy)2Cl2]Cl·2H2O (bpy: 2,2′-bipyridine) (Eggleston et al., 1985) and cis-[RuIII(dmbpy)2Cl2](PF6) (Seok et al., 2012). In addition, Klüfers & Zangl (2007) presented a ruthenium(III) complex in a trans configuration with 2,2′-bipyridine, trans-[RuIII(bpy)2Cl2]. To the best of our knowledge, these are the only few examples of crystal structures of trans-ruthenium(III) complexes comprising bipyridine and a monodentate halogenido group as ligands.
Synthesis and crystallization
While attempting to synthesize the complex cis-[RuII(dcbpy)2(4m4but)] (4m4but = N-butyl-4′-methyl-[2,2′-bipyridine]-4-methanamine), a mixture of cis-[RuII(dcbpy)2Cl2] and 4m4but (1:1) in MeOH/NaOH solution was refluxed for 3 h, in the dark, under an argon atmosphere. After this time, the solvent was removed under reduced pressure, and a red solid was obtained. Orange single crystals of the title trans complex were serendipitously obtained by recrystallization of this solid from a HClO4 solution (1.5 M) after several months.
IR (cm−1, CsI): 3449 (m), 2928 (w), 2855 (w), 1725 (m), 1697 (sh), 1619 (w), 1556 (w), 1448 (sh), 1408 (w), 1370 (w), 1318 (w), 1266 (w), 1233, 1105 (s), 1084 (sh), 1023 (w), 901 (w), 818 (w), 769 (w), 630 (s). Diffuse reflectance (nm, BaSO4): 248, 293, 467, 540 (sh), 679 (sh).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3Structural data
CCDC reference: 1865871
https://doi.org/10.1107/S241431461801547X/xi4002sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461801547X/xi4002Isup2.hkl
Letter to the referees. DOI: https://doi.org/10.1107/S241431461801547X/xi4002sup3.pdf
Data collection: APEX2 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[RuCl2(C12H8N2O4)2]ClO4 | F(000) = 1516 |
Mr = 759.83 | Dx = 1.886 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 22.3394 (19) Å | Cell parameters from 4234 reflections |
b = 8.1249 (7) Å | θ = 2.7–26.0° |
c = 14.7667 (14) Å | µ = 0.96 mm−1 |
β = 93.162 (4)° | T = 273 K |
V = 2676.2 (4) Å3 | Irregular, orange |
Z = 4 | 0.24 × 0.10 × 0.06 mm |
Bruker D8 Venture diffractometer | 2135 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.080 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | θmax = 26.4°, θmin = 2.7° |
Tmin = 0.697, Tmax = 0.745 | h = −27→27 |
18342 measured reflections | k = −10→10 |
2741 independent reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.0449P)2 + 15.531P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2741 reflections | Δρmax = 0.92 e Å−3 |
202 parameters | Δρmin = −0.63 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.250000 | −0.250000 | 0.500000 | 0.02162 (16) | |
Cl1 | 0.29145 (6) | −0.09129 (15) | 0.39197 (9) | 0.0401 (3) | |
Cl2 | 0.500000 | 0.6986 (3) | 0.750000 | 0.0497 (5) | |
N2 | 0.28196 (15) | −0.0850 (4) | 0.5991 (2) | 0.0246 (8) | |
N1 | 0.17958 (15) | −0.0825 (4) | 0.5090 (2) | 0.0233 (8) | |
O1 | 0.00398 (16) | 0.2932 (5) | 0.4656 (3) | 0.0535 (11) | |
C7 | 0.25357 (18) | 0.0625 (5) | 0.5975 (3) | 0.0216 (9) | |
C6 | 0.19433 (18) | 0.0614 (5) | 0.5491 (3) | 0.0224 (9) | |
O3 | 0.3334 (2) | 0.4578 (5) | 0.7421 (3) | 0.0662 (13) | |
O2 | 0.07193 (17) | 0.4483 (5) | 0.5417 (4) | 0.0696 (15) | |
H2 | 0.047154 | 0.520833 | 0.530143 | 0.104* | |
C5 | 0.1549 (2) | 0.1923 (5) | 0.5500 (3) | 0.0270 (10) | |
H5 | 0.166383 | 0.291296 | 0.577413 | 0.032* | |
C8 | 0.2776 (2) | 0.1957 (5) | 0.6436 (3) | 0.0272 (10) | |
H8 | 0.257691 | 0.296196 | 0.641492 | 0.033* | |
C11 | 0.3307 (2) | −0.1043 (6) | 0.6549 (3) | 0.0338 (12) | |
H11 | 0.346985 | −0.209010 | 0.662892 | 0.041* | |
C9 | 0.3318 (2) | 0.1797 (6) | 0.6932 (3) | 0.0291 (10) | |
O4 | 0.41452 (19) | 0.3021 (6) | 0.7693 (4) | 0.0716 (14) | |
H4 | 0.431618 | 0.390156 | 0.778970 | 0.107* | |
C3 | 0.0978 (2) | 0.1736 (6) | 0.5094 (3) | 0.0290 (10) | |
C2 | 0.0818 (2) | 0.0235 (6) | 0.4735 (4) | 0.0334 (11) | |
H2A | 0.043392 | 0.006857 | 0.447597 | 0.040* | |
C1 | 0.1231 (2) | −0.1027 (6) | 0.4759 (3) | 0.0325 (11) | |
H1 | 0.111260 | −0.205576 | 0.453870 | 0.039* | |
C10 | 0.3574 (2) | 0.0258 (6) | 0.7008 (3) | 0.0373 (12) | |
H10 | 0.392536 | 0.010067 | 0.736548 | 0.045* | |
C12 | 0.3593 (2) | 0.3296 (7) | 0.7372 (4) | 0.0418 (13) | |
C4 | 0.0543 (2) | 0.3163 (6) | 0.5054 (4) | 0.0372 (12) | |
O5 | 0.4698 (3) | 0.5970 (9) | 0.8115 (5) | 0.140 (3) | |
O6 | 0.5377 (4) | 0.7789 (11) | 0.8031 (6) | 0.181 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.0194 (2) | 0.0161 (2) | 0.0290 (3) | 0.0071 (2) | −0.00141 (18) | −0.0053 (2) |
Cl1 | 0.0533 (8) | 0.0254 (6) | 0.0429 (7) | 0.0029 (5) | 0.0158 (6) | −0.0004 (5) |
Cl2 | 0.0304 (9) | 0.0567 (12) | 0.0608 (13) | 0.000 | −0.0079 (9) | 0.000 |
N2 | 0.0227 (19) | 0.0222 (19) | 0.028 (2) | 0.0088 (15) | −0.0035 (16) | −0.0064 (15) |
N1 | 0.0201 (18) | 0.0184 (18) | 0.031 (2) | 0.0059 (14) | −0.0016 (15) | −0.0044 (15) |
O1 | 0.0272 (19) | 0.040 (2) | 0.091 (3) | 0.0158 (16) | −0.014 (2) | −0.008 (2) |
C7 | 0.019 (2) | 0.018 (2) | 0.027 (2) | 0.0042 (17) | 0.0004 (18) | −0.0015 (17) |
C6 | 0.020 (2) | 0.020 (2) | 0.027 (2) | 0.0056 (17) | 0.0014 (18) | −0.0033 (18) |
O3 | 0.065 (3) | 0.037 (2) | 0.094 (3) | 0.000 (2) | −0.021 (3) | −0.022 (2) |
O2 | 0.036 (2) | 0.028 (2) | 0.143 (4) | 0.0180 (17) | −0.018 (2) | −0.022 (2) |
C5 | 0.027 (2) | 0.017 (2) | 0.038 (3) | 0.0061 (18) | 0.003 (2) | −0.0054 (18) |
C8 | 0.030 (2) | 0.020 (2) | 0.032 (3) | 0.0054 (18) | 0.002 (2) | −0.0040 (18) |
C11 | 0.034 (3) | 0.030 (3) | 0.036 (3) | 0.017 (2) | −0.010 (2) | −0.009 (2) |
C9 | 0.027 (2) | 0.031 (2) | 0.029 (2) | 0.001 (2) | 0.002 (2) | −0.007 (2) |
O4 | 0.046 (3) | 0.066 (3) | 0.100 (4) | −0.009 (2) | −0.022 (3) | −0.024 (3) |
C3 | 0.022 (2) | 0.024 (2) | 0.041 (3) | 0.0083 (19) | 0.004 (2) | 0.000 (2) |
C2 | 0.018 (2) | 0.033 (3) | 0.049 (3) | 0.0047 (19) | −0.002 (2) | −0.008 (2) |
C1 | 0.025 (2) | 0.027 (3) | 0.046 (3) | 0.0035 (19) | 0.000 (2) | −0.011 (2) |
C10 | 0.028 (3) | 0.047 (3) | 0.035 (3) | 0.012 (2) | −0.009 (2) | −0.014 (2) |
C12 | 0.038 (3) | 0.046 (3) | 0.041 (3) | −0.005 (3) | −0.002 (2) | −0.013 (3) |
C4 | 0.028 (3) | 0.025 (2) | 0.059 (3) | 0.009 (2) | 0.002 (2) | 0.000 (2) |
O5 | 0.163 (7) | 0.147 (6) | 0.115 (5) | −0.105 (5) | 0.060 (5) | −0.055 (5) |
O6 | 0.168 (7) | 0.224 (9) | 0.142 (7) | −0.132 (7) | −0.063 (6) | 0.025 (6) |
Ru1—Cl1i | 2.2865 (13) | O2—H2 | 0.8200 |
Ru1—Cl1 | 2.2865 (13) | O2—C4 | 1.253 (6) |
Ru1—N2i | 2.082 (3) | C5—H5 | 0.9300 |
Ru1—N2 | 2.082 (3) | C5—C3 | 1.388 (6) |
Ru1—N1 | 2.090 (3) | C8—H8 | 0.9300 |
Ru1—N1i | 2.090 (3) | C8—C9 | 1.385 (6) |
Cl2—O5ii | 1.424 (6) | C11—H11 | 0.9300 |
Cl2—O5 | 1.424 (7) | C11—C10 | 1.374 (7) |
Cl2—O6 | 1.295 (6) | C9—C10 | 1.378 (7) |
Cl2—O6ii | 1.295 (6) | C9—C12 | 1.496 (7) |
N2—C7 | 1.356 (5) | O4—H4 | 0.8200 |
N2—C11 | 1.338 (5) | O4—C12 | 1.316 (6) |
N1—C6 | 1.344 (5) | C3—C2 | 1.369 (7) |
N1—C1 | 1.338 (5) | C3—C4 | 1.511 (6) |
O1—C4 | 1.253 (6) | C2—H2A | 0.9300 |
C7—C6 | 1.469 (6) | C2—C1 | 1.378 (6) |
C7—C8 | 1.372 (6) | C1—H1 | 0.9300 |
C6—C5 | 1.382 (6) | C10—H10 | 0.9300 |
O3—C12 | 1.195 (7) | ||
Cl1—Ru1—Cl1i | 180.00 (6) | C4—O2—H2 | 109.5 |
N2—Ru1—Cl1 | 89.48 (11) | C6—C5—H5 | 120.5 |
N2—Ru1—Cl1i | 90.51 (11) | C6—C5—C3 | 118.9 (4) |
N2i—Ru1—Cl1i | 89.49 (11) | C3—C5—H5 | 120.5 |
N2i—Ru1—Cl1 | 90.51 (11) | C7—C8—H8 | 120.2 |
N2—Ru1—N2i | 180.0 | C7—C8—C9 | 119.7 (4) |
N2—Ru1—N1i | 103.53 (13) | C9—C8—H8 | 120.2 |
N2i—Ru1—N1i | 76.47 (13) | N2—C11—H11 | 119.0 |
N2i—Ru1—N1 | 103.53 (13) | N2—C11—C10 | 122.0 (4) |
N2—Ru1—N1 | 76.47 (13) | C10—C11—H11 | 119.0 |
N1i—Ru1—Cl1i | 90.70 (11) | C8—C9—C12 | 118.6 (4) |
N1—Ru1—Cl1 | 90.70 (11) | C10—C9—C8 | 118.4 (4) |
N1i—Ru1—Cl1 | 89.30 (11) | C10—C9—C12 | 123.0 (4) |
N1—Ru1—Cl1i | 89.30 (11) | C12—O4—H4 | 109.5 |
N1i—Ru1—N1 | 180.00 (12) | C5—C3—C4 | 120.4 (4) |
O5—Cl2—O5ii | 109.1 (6) | C2—C3—C5 | 118.6 (4) |
O6ii—Cl2—O5ii | 102.8 (4) | C2—C3—C4 | 121.0 (4) |
O6ii—Cl2—O5 | 111.3 (6) | C3—C2—H2A | 120.2 |
O6—Cl2—O5ii | 111.3 (6) | C3—C2—C1 | 119.5 (4) |
O6—Cl2—O5 | 102.8 (4) | C1—C2—H2A | 120.2 |
O6ii—Cl2—O6 | 119.5 (9) | N1—C1—C2 | 122.3 (4) |
C7—N2—Ru1 | 114.5 (3) | N1—C1—H1 | 118.9 |
C11—N2—Ru1 | 126.4 (3) | C2—C1—H1 | 118.9 |
C11—N2—C7 | 118.6 (4) | C11—C10—C9 | 119.4 (4) |
C6—N1—Ru1 | 115.3 (3) | C11—C10—H10 | 120.3 |
C1—N1—Ru1 | 126.5 (3) | C9—C10—H10 | 120.3 |
C1—N1—C6 | 118.1 (4) | O3—C12—C9 | 123.2 (5) |
N2—C7—C6 | 114.3 (4) | O3—C12—O4 | 124.9 (5) |
N2—C7—C8 | 121.2 (4) | O4—C12—C9 | 111.9 (5) |
C8—C7—C6 | 124.3 (4) | O1—C4—O2 | 125.6 (4) |
N1—C6—C7 | 114.4 (4) | O1—C4—C3 | 117.5 (5) |
N1—C6—C5 | 122.2 (4) | O2—C4—C3 | 116.9 (4) |
C5—C6—C7 | 123.3 (4) | ||
Ru1—N2—C7—C6 | 19.6 (5) | C5—C3—C2—C1 | −2.0 (8) |
Ru1—N2—C7—C8 | −164.9 (3) | C5—C3—C4—O1 | 178.1 (5) |
Ru1—N2—C11—C10 | 162.3 (4) | C5—C3—C4—O2 | −1.4 (8) |
Ru1—N1—C6—C7 | −13.0 (5) | C8—C7—C6—N1 | −179.7 (4) |
Ru1—N1—C6—C5 | 171.6 (4) | C8—C7—C6—C5 | −4.4 (7) |
Ru1—N1—C1—C2 | −170.4 (4) | C8—C9—C10—C11 | 3.8 (8) |
N2—C7—C6—N1 | −4.3 (6) | C8—C9—C12—O3 | 10.4 (8) |
N2—C7—C6—C5 | 171.0 (4) | C8—C9—C12—O4 | −169.8 (5) |
N2—C7—C8—C9 | −0.4 (7) | C11—N2—C7—C6 | −168.0 (4) |
N2—C11—C10—C9 | 3.5 (8) | C11—N2—C7—C8 | 7.6 (7) |
N1—C6—C5—C3 | 1.1 (7) | C3—C2—C1—N1 | −2.9 (8) |
C7—N2—C11—C10 | −9.2 (7) | C2—C3—C4—O1 | −2.1 (8) |
C7—C6—C5—C3 | −173.9 (4) | C2—C3—C4—O2 | 178.4 (6) |
C7—C8—C9—C10 | −5.3 (7) | C1—N1—C6—C7 | 169.6 (4) |
C7—C8—C9—C12 | 175.5 (4) | C1—N1—C6—C5 | −5.9 (7) |
C6—N1—C1—C2 | 6.8 (7) | C10—C9—C12—O3 | −168.8 (6) |
C6—C7—C8—C9 | 174.7 (4) | C10—C9—C12—O4 | 11.1 (8) |
C6—C5—C3—C2 | 2.9 (7) | C12—C9—C10—C11 | −177.1 (5) |
C6—C5—C3—C4 | −177.3 (4) | C4—C3—C2—C1 | 178.2 (5) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1; (ii) −x+1, y, −z+3/2. |
D-H···A | D-H | H···A | D···A | D-H···A |
O2-H2···O1i | 0.82 | 1.90 | 2.698 (5) | 165.1 |
O4-H4···O5 | 0.82 | 1.93 | 2.752 (7) | 175.5 |
(i) -x, 1-y, 1-z |
Acknowledgements
The authors thank Laboratório Multiusuário de Difração de Raios X da Universidade Federal Fluminense (LDRX/UFF) for the use of the laboratory facilities.
Funding information
Funding for this research was provided by: Conselho Nacional de Desenvolvimento Científico e Tecnológico (studentship No. 155671/2014-6 to L. Gonçalves Leida Soares; studentship No. 141606/2014-2 to D. Silva Padilha); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant No. 3100.101.7006 P6); Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (grant No. E-26/010.001499/2014).
References
Barolo, C., Yum, J.-H., Artuso, E., Barbero, N., Di Censo, D., Lobello, M. G., Fantacci, S., De Angelis, F., Grätzel, M., Nazeeruddin, M. K. & Viscardi, G. (2013). ChemSusChem, 6, 2170–2180. CrossRef PubMed Google Scholar
Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eggleston, D. S., Goldsby, K. A., Hodgson, D. J. & Meyer, T. J. (1985). Inorg. Chem. 24, 4573–4580. CrossRef CAS Web of Science Google Scholar
Fujihara, T., Kobayashi, A., Iwai, M. & Nagasawa, A. (2004). Acta Cryst. E60, m1172–m1174. Web of Science CrossRef IUCr Journals Google Scholar
Klüfers, P. & Zangl, A. (2007). Acta Cryst. E63, m3088. Web of Science CrossRef IUCr Journals Google Scholar
Liu, Y., Chen, G., Yiu, S.-M., Wong, C.-Y. & Lau, T.-C. (2018). ChemCatChem, 10, 501–504. CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pashaei, B., Shahroosvand, H., Grätzel, M. & Nazeeruddin, M. K. (2016). Chem. Rev. 116, 9485–9564. CrossRef PubMed Google Scholar
Schwalbe, M., Schäfer, B., Görls, H., Rau, S., Tschierlei, S., Schmitt, M., Popp, J., Vaughan, G., Henry, W. & Vos, J. G. (2008). Eur. J. Inorg. Chem. pp. 3310–3319. Web of Science CrossRef Google Scholar
Seok, W. K., Ran Jo, M., Kim, N. & Yun, H. (2012). Z. Anorg. Allg. Chem. 638, 754–757. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shoair, A. G. F., Toson, E. A. & El-mezayen, H. A. (2015). Appl. Organomet. Chem. 29, 412–418. CrossRef Google Scholar
Thangadurai, T. D. & Natarajan, K. (2001). Synth. React. Inorg. Met.-Org. Chem. 31, 549–567. CrossRef Google Scholar
Zeng, L., Gupta, P., Chen, Y., Wang, E., Ji, L., Chao, H. & Chen, Z.-S. (2017). Chem. Soc. Rev. 46, 5771–5804. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.