metal-organic compounds
μ2-Chlorido-chlorido(μ2-4-{[2-(diethylamino)ethyl]imino}pent-2-en-2-olato)bis(tetrahydrofuran-κO)cobalt(II)lithium
aCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 2060, San José, Costa Rica, and bEscuela de Química, Universidad de Costa Rica, 2060, San José, Costa Rica
*Correspondence e-mail: leslie.pineda@ucr.ac.cr
The 11H21N2O)Cl2(C4H8O)2], has monoclinic symmetry and comprises one heterometallic binuclear complex molecule in the The Co2+ cation is bonded to one oxygen and two nitrogen atoms of a β-ketoiminato ligand and to two chlorido ligands, leading to a distorted trigonal-bipyramidal coordination sphere. One of the Cl ligands and the oxygen atom of the β-ketoiminato ligand are bridging to a Li+ cation, which is further bonded to oxygen atoms of two THF molecules. The resulting coordination sphere is distorted tetrahedral. In the crystal, weak intermolecular C—H⋯Cl hydrogen bonds are identified that link the complex molecules into a three-dimensional network structure.
of the title compound, [CoLi(CKeywords: crystal structure; β-ketoiminato ligand; cobalt; coordination compound; lithium.
CCDC reference: 1877509
Structure description
Interest in cobalt complexes for solar harvesting devices such as dye-sensitized solar cells (DSSCs) stems from their application as alternative redox mediators to iodide/triiodide electrolytes (Hamann, 2012). Several synthetic approaches based on organic (Sauvage, 2014), inorganic (Bergeron et al., 2005; Burschka et al., 2012; Carli et al., 2013), or organometallic compounds (Carli et al., 2016; Spokoyny et al., 2010; Sun et al., 2015; Magni et al., 2016) have been reported with [Co(bpy)3]2+/3+ and [Co(phen)3]2+/3+ (where bpy = 2,2′-bipyridine and phen = 1,10-phenanthroline) as redox couples. Notably, DSSCs using cobalt redox pairs mostly tether to pyridine-type ligands with complex formal charge (2+/3+) (Ben Aribia et al., 2013; Lee et al., 2015; Bella et al., 2016; Kashif et al., 2013; Pashaei et al., 2015; Giribabu et al., 2015), displaying few structural deviations mainly by varying the ligand backbone with groups of different donating/withdrawing ability (Pashaei et al., 2015; Xu et al., 2013), and without non-neutral ligands in the coordination sphere.
As part of our work on the synthesis and properties of redox couples in DSSCs (Flores-Díaz et al., 2018; Vinocour, 2016), we herein report on the preparation and determination of a cobalt complex bearing a monoanionic β-ketoiminate scaffold of chemical composition [Co(C11H21ON2)Cl(μ-Cl)Li(THF)2]. The coordination chemistry of this ligand gives an electronic situation resembling that of a formal neutral/monocationic (0/+) charge in CoII/III complexes.
The molecular structure consists of a central Co2+ cation which is penta-coordinated by one oxygen and two nitrogen atoms from the 4-(2-diethylamino-ethylamino)-pent-3-en-2-one pendant arm, as well as two chlorido ligands. Bond lengths and angles are collated in Table 1. Calculation of the angular structural index for five-coordinate complexes (τ5) as a descriptor of trigonality (Addison et al., 1984) suggests that the Co2+ cation adopts a distorted trigonal–bipyramidal coordination sphere (τ5 = 0.69; τ5 = 0 for an ideal square pyramid and 1 for an ideal trigonal bipyramid). One of the chlorido ligand (Cl1) and the oxygen atom of the ligand backbone (O1) bridge the Co2+ cation to a Li+ cation, whose distorted tetrahedral coordination sphere is completed by two THF molecules (Fig. 1, Table 1). The corresponding τ4 and τ4′ geometric parameters for four-coordinated central atoms (Yang et al., 2007; Okuniewski et al., 2015; Rosiak et al., 2018) are 0.86 and 0.85, respectively. They indicate that Li1 has a distorted tetrahedral coordination sphere (τ4 = 0 for an ideal square and 1 for an ideal tetrahedron). As such, the title compound has six-, five-, and four-membered rings around the two metal cations. The resulting coordination environment of Co2+ in the title compound is associated with insufficient crowding that prevents the elimination of chloride as a lithium salt by-product. The tendency of forming metal–halogen–lithium fragments was previously reported in many cases where β-ketoiminate or β-diketiminate ligands have been employed (Yang et al., 2012; Eckert et al., 2004; Panda et al., 2002).
|
In the and Fig. 2), leading to the formation of a three-dimensional network structure.
weak C—H⋯Cl hydrogen-bonding contacts are observed between the molecules (Table 2The title compound is isostructural with other previously reported transition metal complexes, viz. the manganese(II) analogue (Lesikar et al., 2008) and the iron(II) analogue where Cl is additionally substituted by Br ligands [Lugo (neé Gushwa) & Richards, 2010].
Synthesis and crystallization
All manipulations were carried out using standard Schlenk techniques or in a glovebox (Lab MBraun workstation) under nitrogen atmosphere. All reagents and solvents were procured from commercial sources. Anhydrous solvents were dried using MBraun Solvent Purification Systems (MB-SPS).
The ligand 4-(2-diethylamino-ethylamino)-pent-3-en-2-one was synthesized according to a literature procedure (Neculai et al., 2002; Neculai, 2003) (Fig. 3). In short, a solution of N,N-diethylendiamine (42 ml, 0.29 mol) and acetylacetone (30 ml, 0.29 mol) was refluxed for 2 d in benzene (250 ml). Then, the solvent was removed, and the remaining crude product was purified by vacuum distillation to furnish a pale-yellow oil. 1H NMR (400 MHz, CDCl3, 25 °C): δ 10.63 (s, 1 H), 4.79 (s, 1H), 3.15 (q, 2 H), 2.45 (t, 2 H), 2.40 (q, 4 H), 1.83 (s, 3 H), 1.78 (s, 3 H), 0.88 (t, 6 H).
Synthesis of the title compound (Fig. 3): In a 100 ml Schlenk flask 5.06 g (25 mmol) of the ligand were dissolved in dry tetrahydrofuran and cooled to 195 K before a solution of methyl lithium (11 ml, 1.6 M, 18 mmol) was added dropwise. The reaction mixture was stirred for 2 h, until the evolution of methane ceased, then 2.22 g (17 mmol) of anhydrous cobalt chloride in tetrahydrofuran were transferred via a syringe; the reaction mixture was stirred overnight at ambient temperature, and kept at 258 K until a green precipitate formed. The product was filtered under nitrogen protection, washed with anhydrous diethyl ether, and dried under vacuum. Yield 6.26 g (77%). ICP-AES: Co (11.9 ± 0.3) % m/m (Theoretical 12.3%). FTIR (cm−1): 3386 (m, broad), 2968 (m), 2873 (m), 1607 (w), 1510 (m, sh) 1440 (m), 1402 (w), 1047 (s), 901 (s), 737(sh). UV–vis (MeCN): (304 nm, 1015 L mol−1 cm−1; 634 nm, 351 L mol−1 cm−1; 666 nm, 391 L mol−1 cm−1; 693 nm, 373 L mol−1 cm−1). Single crystals suitable for X-ray were grown from a saturated THF solution kept at 258 K.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 1877509
https://doi.org/10.1107/S2414314618015778/wm4089sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618015778/wm4089Isup3.hkl
Data collection: APEX3 (Bruker, 2015); cell
APEX3 (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[CoLi(C11H21N2O)Cl2(C4H8O)2] | F(000) = 1012 |
Mr = 478.27 | Dx = 1.371 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0535 (12) Å | Cell parameters from 141 reflections |
b = 12.3705 (14) Å | θ = 4.1–21.7° |
c = 19.236 (2) Å | µ = 0.99 mm−1 |
β = 104.476 (3)° | T = 100 K |
V = 2316.4 (5) Å3 | Block, translucent light green |
Z = 4 | 0.50 × 0.40 × 0.30 mm |
Bruker D8 Venture diffractometer | 6723 independent reflections |
Radiation source: Incoatec Microsource | 5903 reflections with I > 2σ(I) |
Mirrors monochromator | Rint = 0.051 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 30.1°, θmin = 2.6° |
ω scans | h = −14→14 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −17→16 |
Tmin = 0.669, Tmax = 0.746 | l = −26→27 |
165035 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.23 | w = 1/[σ2(Fo2) + (0.0222P)2 + 11.0438P] where P = (Fo2 + 2Fc2)/3 |
6723 reflections | (Δ/σ)max = 0.001 |
257 parameters | Δρmax = 1.46 e Å−3 |
0 restraints | Δρmin = −0.75 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.25048 (4) | 0.65764 (3) | 0.47738 (2) | 0.01112 (10) | |
N1 | 0.2825 (3) | 0.4991 (2) | 0.46436 (14) | 0.0121 (4) | |
O1 | 0.2577 (2) | 0.68095 (18) | 0.37162 (12) | 0.0162 (4) | |
Cl1 | 0.42565 (7) | 0.79101 (6) | 0.50801 (4) | 0.01488 (14) | |
Cl2 | 0.03316 (7) | 0.72744 (6) | 0.46380 (4) | 0.01811 (15) | |
N2 | 0.2776 (2) | 0.6011 (2) | 0.59167 (13) | 0.0121 (4) | |
O2 | 0.4784 (2) | 0.85707 (19) | 0.33491 (13) | 0.0170 (4) | |
O3 | 0.2200 (2) | 0.94302 (19) | 0.36576 (12) | 0.0169 (4) | |
C1 | 0.1864 (4) | 0.6494 (3) | 0.24640 (17) | 0.0228 (7) | |
H00T | 0.1747 | 0.5879 | 0.2133 | 0.034* | |
H00U | 0.2619 | 0.6951 | 0.2397 | 0.034* | |
H00V | 0.1014 | 0.6918 | 0.2367 | 0.034* | |
C2 | 0.2191 (3) | 0.6085 (3) | 0.32249 (16) | 0.0145 (5) | |
C3 | 0.2061 (3) | 0.4996 (3) | 0.33519 (17) | 0.0157 (6) | |
H00E | 0.1711 | 0.4552 | 0.2944 | 0.019* | |
C4 | 0.2399 (3) | 0.4471 (2) | 0.40325 (17) | 0.0139 (5) | |
C5 | 0.2270 (3) | 0.3254 (3) | 0.40296 (19) | 0.0194 (6) | |
H00F | 0.1871 | 0.3003 | 0.3538 | 0.029* | |
H00G | 0.1674 | 0.3038 | 0.4338 | 0.029* | |
H00H | 0.3181 | 0.2931 | 0.421 | 0.029* | |
C6 | 0.3299 (3) | 0.4361 (2) | 0.53076 (17) | 0.0161 (6) | |
H6 | 0.4052 | 0.3868 | 0.5267 | 0.019* | |
H00B | 0.2536 | 0.3921 | 0.5397 | 0.019* | |
C7 | 0.3804 (3) | 0.5155 (3) | 0.59168 (16) | 0.0143 (5) | |
H00C | 0.3998 | 0.4764 | 0.638 | 0.017* | |
H00D | 0.467 | 0.5491 | 0.5869 | 0.017* | |
C8 | 0.1461 (3) | 0.5544 (3) | 0.60083 (17) | 0.0153 (5) | |
H00K | 0.1099 | 0.5042 | 0.5605 | 0.018* | |
H00L | 0.0788 | 0.6139 | 0.5971 | 0.018* | |
C9 | 0.1543 (3) | 0.4939 (3) | 0.67086 (18) | 0.0216 (6) | |
H014 | 0.0649 | 0.4613 | 0.6696 | 0.032* | |
H015 | 0.179 | 0.5446 | 0.7112 | 0.032* | |
H016 | 0.2242 | 0.4372 | 0.6768 | 0.032* | |
C10 | 0.3376 (3) | 0.6792 (2) | 0.64914 (16) | 0.0147 (5) | |
H00I | 0.4269 | 0.7044 | 0.6424 | 0.018* | |
H00J | 0.3554 | 0.6417 | 0.696 | 0.018* | |
C11 | 0.2476 (4) | 0.7762 (3) | 0.65123 (19) | 0.0209 (6) | |
H00M | 0.2241 | 0.8112 | 0.604 | 0.031* | |
H00N | 0.297 | 0.8275 | 0.6874 | 0.031* | |
H00O | 0.1632 | 0.7529 | 0.6636 | 0.031* | |
C12 | 0.5612 (3) | 0.7755 (3) | 0.3118 (2) | 0.0233 (7) | |
H012 | 0.5412 | 0.774 | 0.2587 | 0.028* | |
H013 | 0.5412 | 0.7033 | 0.3288 | 0.028* | |
C13 | 0.7108 (3) | 0.8055 (3) | 0.34383 (19) | 0.0224 (7) | |
H017 | 0.7656 | 0.7412 | 0.3641 | 0.027* | |
H018 | 0.7519 | 0.8391 | 0.3074 | 0.027* | |
C14 | 0.7028 (4) | 0.8858 (3) | 0.4025 (2) | 0.0259 (7) | |
H00R | 0.7014 | 0.8485 | 0.4479 | 0.031* | |
H00S | 0.7806 | 0.9373 | 0.4116 | 0.031* | |
C15 | 0.5679 (4) | 0.9420 (3) | 0.3705 (2) | 0.0234 (7) | |
H019 | 0.5312 | 0.976 | 0.4085 | 0.028* | |
H01A | 0.5791 | 0.9984 | 0.3359 | 0.028* | |
C16 | 0.0872 (3) | 0.9337 (3) | 0.31570 (18) | 0.0204 (6) | |
H00P | 0.0431 | 0.8642 | 0.3222 | 0.024* | |
H00Q | 0.0957 | 0.9384 | 0.2656 | 0.024* | |
C17 | 0.0046 (3) | 1.0280 (3) | 0.33303 (19) | 0.0214 (6) | |
H010 | −0.0951 | 1.0124 | 0.3194 | 0.026* | |
H011 | 0.0226 | 1.095 | 0.3087 | 0.026* | |
C18 | 0.0590 (4) | 1.0365 (3) | 0.41409 (19) | 0.0215 (6) | |
H00Y | 0.0431 | 1.1095 | 0.4316 | 0.026* | |
H00Z | 0.016 | 0.9819 | 0.4392 | 0.026* | |
C19 | 0.2101 (3) | 1.0146 (3) | 0.42389 (19) | 0.0209 (6) | |
H00W | 0.2604 | 1.0827 | 0.4215 | 0.025* | |
H00X | 0.2493 | 0.9798 | 0.4709 | 0.025* | |
Li1 | 0.3372 (6) | 0.8193 (5) | 0.3830 (3) | 0.0172 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.01081 (17) | 0.00929 (18) | 0.01389 (19) | 0.00048 (13) | 0.00425 (13) | −0.00067 (14) |
N1 | 0.0124 (11) | 0.0099 (11) | 0.0153 (11) | 0.0018 (8) | 0.0058 (9) | 0.0001 (9) |
O1 | 0.0209 (11) | 0.0145 (10) | 0.0147 (10) | −0.0025 (8) | 0.0070 (8) | −0.0014 (8) |
Cl1 | 0.0135 (3) | 0.0135 (3) | 0.0171 (3) | −0.0019 (2) | 0.0027 (2) | 0.0010 (2) |
Cl2 | 0.0127 (3) | 0.0193 (3) | 0.0215 (3) | 0.0045 (3) | 0.0028 (3) | 0.0024 (3) |
N2 | 0.0097 (10) | 0.0127 (11) | 0.0141 (11) | 0.0005 (9) | 0.0035 (8) | −0.0018 (9) |
O2 | 0.0144 (10) | 0.0159 (11) | 0.0222 (11) | −0.0004 (8) | 0.0076 (8) | −0.0011 (9) |
O3 | 0.0136 (10) | 0.0164 (10) | 0.0199 (11) | 0.0036 (8) | 0.0027 (8) | −0.0030 (8) |
C1 | 0.0263 (16) | 0.0270 (17) | 0.0141 (14) | −0.0006 (14) | 0.0034 (12) | −0.0010 (13) |
C2 | 0.0103 (12) | 0.0185 (14) | 0.0158 (13) | −0.0007 (10) | 0.0053 (10) | −0.0013 (11) |
C3 | 0.0152 (13) | 0.0167 (14) | 0.0156 (14) | −0.0011 (11) | 0.0042 (10) | −0.0036 (11) |
C4 | 0.0102 (12) | 0.0144 (13) | 0.0182 (14) | 0.0013 (10) | 0.0058 (10) | −0.0032 (11) |
C5 | 0.0197 (15) | 0.0134 (14) | 0.0243 (16) | −0.0003 (11) | 0.0040 (12) | −0.0042 (12) |
C6 | 0.0201 (14) | 0.0119 (13) | 0.0171 (14) | 0.0042 (11) | 0.0059 (11) | 0.0015 (11) |
C7 | 0.0112 (12) | 0.0156 (14) | 0.0164 (13) | 0.0045 (10) | 0.0042 (10) | 0.0005 (11) |
C8 | 0.0115 (12) | 0.0172 (14) | 0.0182 (14) | 0.0006 (10) | 0.0053 (10) | 0.0004 (11) |
C9 | 0.0187 (15) | 0.0266 (17) | 0.0211 (15) | −0.0030 (13) | 0.0080 (12) | 0.0025 (13) |
C10 | 0.0151 (13) | 0.0142 (13) | 0.0144 (13) | −0.0015 (10) | 0.0031 (10) | −0.0029 (10) |
C11 | 0.0273 (16) | 0.0150 (14) | 0.0217 (15) | 0.0043 (12) | 0.0084 (13) | −0.0036 (12) |
C12 | 0.0187 (15) | 0.0230 (16) | 0.0295 (17) | 0.0016 (12) | 0.0083 (13) | −0.0075 (14) |
C13 | 0.0161 (14) | 0.0308 (18) | 0.0200 (15) | 0.0057 (13) | 0.0043 (12) | 0.0021 (13) |
C14 | 0.0193 (15) | 0.0328 (19) | 0.0261 (17) | −0.0063 (14) | 0.0065 (13) | −0.0062 (15) |
C15 | 0.0233 (16) | 0.0142 (14) | 0.0359 (19) | −0.0049 (12) | 0.0134 (14) | −0.0057 (13) |
C16 | 0.0163 (14) | 0.0232 (16) | 0.0202 (15) | 0.0026 (12) | 0.0018 (11) | −0.0018 (12) |
C17 | 0.0179 (14) | 0.0210 (16) | 0.0252 (16) | 0.0064 (12) | 0.0051 (12) | 0.0022 (13) |
C18 | 0.0213 (15) | 0.0189 (15) | 0.0266 (17) | 0.0032 (12) | 0.0103 (13) | −0.0018 (13) |
C19 | 0.0212 (15) | 0.0167 (15) | 0.0228 (16) | 0.0050 (12) | 0.0018 (12) | −0.0068 (12) |
Li1 | 0.018 (2) | 0.015 (3) | 0.020 (3) | 0.002 (2) | 0.008 (2) | 0.003 (2) |
Co1—N1 | 2.013 (3) | C7—H00D | 0.99 |
Co1—O1 | 2.074 (2) | C8—C9 | 1.525 (4) |
Co1—N2 | 2.258 (3) | C8—H00K | 0.99 |
Co1—Cl2 | 2.3026 (8) | C8—H00L | 0.99 |
Co1—Cl1 | 2.3773 (8) | C9—H014 | 0.98 |
Co1—Li1 | 2.974 (6) | C9—H015 | 0.98 |
N1—C4 | 1.314 (4) | C9—H016 | 0.98 |
N1—C6 | 1.470 (4) | C10—C11 | 1.510 (4) |
O1—C2 | 1.290 (4) | C10—H00I | 0.99 |
O1—Li1 | 1.879 (6) | C10—H00J | 0.99 |
Cl1—Li1 | 2.371 (6) | C11—H00M | 0.98 |
N2—C10 | 1.478 (4) | C11—H00N | 0.98 |
N2—C7 | 1.479 (4) | C11—H00O | 0.98 |
N2—C8 | 1.493 (4) | C12—C13 | 1.522 (5) |
O2—C15 | 1.441 (4) | C12—H012 | 0.99 |
O2—C12 | 1.447 (4) | C12—H013 | 0.99 |
O2—Li1 | 1.936 (6) | C13—C14 | 1.522 (5) |
O3—C16 | 1.442 (4) | C13—H017 | 0.99 |
O3—C19 | 1.449 (4) | C13—H018 | 0.99 |
O3—Li1 | 1.909 (6) | C14—C15 | 1.512 (5) |
C1—C2 | 1.505 (4) | C14—H00R | 0.99 |
C1—H00T | 0.98 | C14—H00S | 0.99 |
C1—H00U | 0.98 | C15—H019 | 0.99 |
C1—H00V | 0.98 | C15—H01A | 0.99 |
C2—C3 | 1.381 (4) | C16—C17 | 1.516 (5) |
C3—C4 | 1.424 (4) | C16—H00P | 0.99 |
C3—H00E | 0.95 | C16—H00Q | 0.99 |
C4—C5 | 1.511 (4) | C17—C18 | 1.522 (5) |
C5—H00F | 0.98 | C17—H010 | 0.99 |
C5—H00G | 0.98 | C17—H011 | 0.99 |
C5—H00H | 0.98 | C18—C19 | 1.508 (5) |
C6—C7 | 1.517 (4) | C18—H00Y | 0.99 |
C6—H6 | 0.99 | C18—H00Z | 0.99 |
C6—H00B | 0.99 | C19—H00W | 0.99 |
C7—H00C | 0.99 | C19—H00X | 0.99 |
N1—Co1—O1 | 88.14 (10) | H014—C9—H015 | 109.5 |
N1—Co1—N2 | 80.51 (10) | C8—C9—H016 | 109.5 |
O1—Co1—N2 | 166.65 (9) | H014—C9—H016 | 109.5 |
N1—Co1—Cl2 | 121.87 (8) | H015—C9—H016 | 109.5 |
O1—Co1—Cl2 | 95.82 (7) | N2—C10—C11 | 113.9 (3) |
N2—Co1—Cl2 | 96.14 (7) | N2—C10—H00I | 108.8 |
N1—Co1—Cl1 | 125.12 (8) | C11—C10—H00I | 108.8 |
O1—Co1—Cl1 | 86.63 (7) | N2—C10—H00J | 108.8 |
N2—Co1—Cl1 | 94.13 (7) | C11—C10—H00J | 108.8 |
Cl2—Co1—Cl1 | 113.01 (3) | H00I—C10—H00J | 107.7 |
N1—Co1—Li1 | 119.92 (13) | C10—C11—H00M | 109.5 |
O1—Co1—Li1 | 38.78 (13) | C10—C11—H00N | 109.5 |
N2—Co1—Li1 | 145.09 (13) | H00M—C11—H00N | 109.5 |
Cl2—Co1—Li1 | 95.35 (11) | C10—C11—H00O | 109.5 |
Cl1—Co1—Li1 | 51.13 (11) | H00M—C11—H00O | 109.5 |
C4—N1—C6 | 118.7 (3) | H00N—C11—H00O | 109.5 |
C4—N1—Co1 | 124.2 (2) | O2—C12—C13 | 107.0 (3) |
C6—N1—Co1 | 115.84 (19) | O2—C12—H012 | 110.3 |
C2—O1—Li1 | 139.5 (3) | C13—C12—H012 | 110.3 |
C2—O1—Co1 | 123.0 (2) | O2—C12—H013 | 110.3 |
Li1—O1—Co1 | 97.5 (2) | C13—C12—H013 | 110.3 |
Li1—Cl1—Co1 | 77.56 (14) | H012—C12—H013 | 108.6 |
C10—N2—C7 | 108.3 (2) | C14—C13—C12 | 103.3 (3) |
C10—N2—C8 | 111.8 (2) | C14—C13—H017 | 111.1 |
C7—N2—C8 | 111.2 (2) | C12—C13—H017 | 111.1 |
C10—N2—Co1 | 116.94 (19) | C14—C13—H018 | 111.1 |
C7—N2—Co1 | 97.83 (17) | C12—C13—H018 | 111.1 |
C8—N2—Co1 | 109.87 (18) | H017—C13—H018 | 109.1 |
C15—O2—C12 | 108.4 (2) | C15—C14—C13 | 101.9 (3) |
C15—O2—Li1 | 113.2 (3) | C15—C14—H00R | 111.4 |
C12—O2—Li1 | 121.7 (3) | C13—C14—H00R | 111.4 |
C16—O3—C19 | 109.5 (2) | C15—C14—H00S | 111.4 |
C16—O3—Li1 | 118.7 (3) | C13—C14—H00S | 111.4 |
C19—O3—Li1 | 120.9 (3) | H00R—C14—H00S | 109.2 |
C2—C1—H00T | 109.5 | O2—C15—C14 | 104.4 (3) |
C2—C1—H00U | 109.5 | O2—C15—H019 | 110.9 |
H00T—C1—H00U | 109.5 | C14—C15—H019 | 110.9 |
C2—C1—H00V | 109.5 | O2—C15—H01A | 110.9 |
H00T—C1—H00V | 109.5 | C14—C15—H01A | 110.9 |
H00U—C1—H00V | 109.5 | H019—C15—H01A | 108.9 |
O1—C2—C3 | 124.9 (3) | O3—C16—C17 | 104.9 (3) |
O1—C2—C1 | 115.6 (3) | O3—C16—H00P | 110.8 |
C3—C2—C1 | 119.5 (3) | C17—C16—H00P | 110.8 |
C2—C3—C4 | 126.6 (3) | O3—C16—H00Q | 110.8 |
C2—C3—H00E | 116.7 | C17—C16—H00Q | 110.8 |
C4—C3—H00E | 116.7 | H00P—C16—H00Q | 108.8 |
N1—C4—C3 | 123.3 (3) | C16—C17—C18 | 101.7 (3) |
N1—C4—C5 | 120.0 (3) | C16—C17—H010 | 111.4 |
C3—C4—C5 | 116.8 (3) | C18—C17—H010 | 111.4 |
C4—C5—H00F | 109.5 | C16—C17—H011 | 111.4 |
C4—C5—H00G | 109.5 | C18—C17—H011 | 111.4 |
H00F—C5—H00G | 109.5 | H010—C17—H011 | 109.3 |
C4—C5—H00H | 109.5 | C19—C18—C17 | 102.0 (3) |
H00F—C5—H00H | 109.5 | C19—C18—H00Y | 111.4 |
H00G—C5—H00H | 109.5 | C17—C18—H00Y | 111.4 |
N1—C6—C7 | 107.5 (2) | C19—C18—H00Z | 111.4 |
N1—C6—H6 | 110.2 | C17—C18—H00Z | 111.4 |
C7—C6—H6 | 110.2 | H00Y—C18—H00Z | 109.2 |
N1—C6—H00B | 110.2 | O3—C19—C18 | 106.0 (3) |
C7—C6—H00B | 110.2 | O3—C19—H00W | 110.5 |
H6—C6—H00B | 108.5 | C18—C19—H00W | 110.5 |
N2—C7—C6 | 111.4 (2) | O3—C19—H00X | 110.5 |
N2—C7—H00C | 109.3 | C18—C19—H00X | 110.5 |
C6—C7—H00C | 109.3 | H00W—C19—H00X | 108.7 |
N2—C7—H00D | 109.3 | O1—Li1—O3 | 118.9 (3) |
C6—C7—H00D | 109.3 | O1—Li1—O2 | 120.4 (3) |
H00C—C7—H00D | 108.0 | O3—Li1—O2 | 102.6 (3) |
N2—C8—C9 | 116.1 (3) | O1—Li1—Cl1 | 91.4 (2) |
N2—C8—H00K | 108.3 | O3—Li1—Cl1 | 110.7 (3) |
C9—C8—H00K | 108.3 | O2—Li1—Cl1 | 112.7 (3) |
N2—C8—H00L | 108.3 | O1—Li1—Co1 | 43.74 (13) |
C9—C8—H00L | 108.3 | O3—Li1—Co1 | 112.5 (2) |
H00K—C8—H00L | 107.4 | O2—Li1—Co1 | 144.7 (3) |
C8—C9—H014 | 109.5 | Cl1—Li1—Co1 | 51.31 (11) |
C8—C9—H015 | 109.5 | ||
Li1—O1—C2—C3 | 156.6 (4) | Co1—N2—C10—C11 | 66.0 (3) |
Co1—O1—C2—C3 | −19.4 (4) | C15—O2—C12—C13 | 7.8 (4) |
Li1—O1—C2—C1 | −23.5 (5) | Li1—O2—C12—C13 | −126.2 (3) |
Co1—O1—C2—C1 | 160.4 (2) | O2—C12—C13—C14 | 16.6 (4) |
O1—C2—C3—C4 | −3.9 (5) | C12—C13—C14—C15 | −33.3 (4) |
C1—C2—C3—C4 | 176.3 (3) | C12—O2—C15—C14 | −29.5 (4) |
C6—N1—C4—C3 | −172.9 (3) | Li1—O2—C15—C14 | 108.8 (3) |
Co1—N1—C4—C3 | 20.9 (4) | C13—C14—C15—O2 | 38.8 (3) |
C6—N1—C4—C5 | 6.0 (4) | C19—O3—C16—C17 | 16.7 (4) |
Co1—N1—C4—C5 | −160.2 (2) | Li1—O3—C16—C17 | 161.3 (3) |
C2—C3—C4—N1 | 3.6 (5) | O3—C16—C17—C18 | −34.8 (3) |
C2—C3—C4—C5 | −175.4 (3) | C16—C17—C18—C19 | 39.2 (3) |
C4—N1—C6—C7 | 176.8 (3) | C16—O3—C19—C18 | 8.6 (4) |
Co1—N1—C6—C7 | −15.9 (3) | Li1—O3—C19—C18 | −135.0 (3) |
C10—N2—C7—C6 | −176.2 (2) | C17—C18—C19—O3 | −30.1 (3) |
C8—N2—C7—C6 | 60.5 (3) | C2—O1—Li1—O3 | 90.2 (5) |
Co1—N2—C7—C6 | −54.4 (2) | Co1—O1—Li1—O3 | −93.2 (3) |
N1—C6—C7—N2 | 50.6 (3) | C2—O1—Li1—O2 | −37.6 (6) |
C10—N2—C8—C9 | −59.3 (3) | Co1—O1—Li1—O2 | 139.1 (3) |
C7—N2—C8—C9 | 61.9 (3) | C2—O1—Li1—Cl1 | −155.1 (3) |
Co1—N2—C8—C9 | 169.1 (2) | Co1—O1—Li1—Cl1 | 21.53 (18) |
C7—N2—C10—C11 | 175.2 (3) | C2—O1—Li1—Co1 | −176.6 (4) |
C8—N2—C10—C11 | −61.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H00H···Cl1i | 0.98 | 2.80 | 3.770 (3) | 172 |
C6—H6···Cl1i | 0.99 | 2.96 | 3.924 (3) | 166 |
C8—H00L···Cl2 | 0.99 | 2.86 | 3.365 (3) | 113 |
C10—H00I···Cl1 | 0.99 | 2.80 | 3.357 (3) | 117 |
C13—H017···Cl2ii | 0.99 | 2.89 | 3.608 (3) | 130 |
C19—H00X···Cl1 | 0.99 | 2.91 | 3.635 (3) | 131 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z. |
Acknowledgements
Rectoría and Vicerrectoría de Investigación, Universidad de Costa Rica are acknowledged for funding the purchase of a D8 Venture SC XRD. CELEQ is thanked for supplying liquid nitrogen for X-ray measurements.
Funding information
Funding for this research was provided by: Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica (scholarship to Felipe A. Vinocour); Vicerrectoría de Investigación, Universidad de Costa Rica (grant No. 804-B5-190).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CrossRef Web of Science Google Scholar
Ben Aribia, K., Moehl, T., Zakeeruddin, S. M. & Grätzel, M. (2013). Chem. Sci. 4, 454–459. Google Scholar
Bella, F., Galliano, S., Gerbaldi, C. & Viscardi, G. (2016). Energies, 9, 384. CrossRef Google Scholar
Bergeron, B. V., Marton, A., Oskam, G. & Meyer, G. J. (2005). J. Phys. Chem. B, 109, 937–943. CrossRef PubMed Google Scholar
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burschka, J., Brault, V., Ahmad, S., Breau, L., Nazeeruddin, M. K., Marsan, B., Zakeeruddin, S. M. & Grätzel, M. (2012). Energy Environ. Sci. 5, 6089–6097. CrossRef Google Scholar
Carli, S., Benazzi, E., Casarin, L., Bernardi, T., Bertolasi, V., Argazzi, R., Caramori, S. & Bignozzi, C. A. (2016). Phys. Chem. Chem. Phys. 18, 5949–5956. CrossRef PubMed Google Scholar
Carli, S., Busatto, E., Caramori, S., Boaretto, R., Argazzi, R., Timpson, C. J. & Bignozzi, C. A. (2013). J. Phys. Chem. C, 117, 5142–5153. CrossRef Google Scholar
Eckert, N. A., Smith, J. M., Lachicotte, R. J. & Holland, P. L. (2004). Inorg. Chem. 43, 3306–3321. CrossRef PubMed Google Scholar
Flores-Díaz, N., Soto-Navarro, A., Freitag, M., Lamoureux, G. & Pineda, L. W. (2018). Solar Energy, 167, 76–83. Google Scholar
Giribabu, L., Bolligarla, R. & Panigrahi, M. (2015). Chem. Rec. 15, 760–788. CrossRef PubMed Google Scholar
Hamann, T. W. (2012). Dalton Trans. 41, 3111–3115. CrossRef PubMed Google Scholar
Kashif, M. K., Nippe, M., Duffy, N. W., Forsyth, C. M., Chang, C. J., Long, J. R., Spiccia, L. & Bach, U. (2013). Angew. Chem. Int. Ed. 52, 5527–5531. CrossRef Google Scholar
Lee, N. A., Frenzel, B. A., Rochford, J. & Hightower, S. E. (2015). Eur. J. Inorg. Chem. pp. 3843–3849. CrossRef Google Scholar
Lesikar, L. A., Gushwa, A. F. & Richards, A. F. (2008). J. Organomet. Chem. 693, 3245–3255. CrossRef Google Scholar
Lugo (neé Gushwa), A. F. & Richards, A. F. (2010). Inorg. Chim. Acta, 363, 2104–2112. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Magni, M., Biagini, P., Colombo, A., Dragonetti, C., Roberto, D. & Valore, A. (2016). Coord. Chem. Rev. 322, 69–93. CrossRef Google Scholar
Neculai, D. (2003). PhD thesis, Göttingen University, Göttingen, Germany. Google Scholar
Neculai, D., Roesky, H. W., Neculai, A. M., Magull, J., Schmidt, H.-G. & Noltemeyer, M. (2002). J. Organomet. Chem. 643–644, 47–52. CrossRef Google Scholar
Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57. Web of Science CrossRef CAS Google Scholar
Panda, A., Stender, M., Wright, R. J., Olmstead, M. M., Klavins, P. & Power, P. P. (2002). Inorg. Chem. 41, 3909–3916. Web of Science CrossRef PubMed CAS Google Scholar
Pashaei, B., Shahroosvand, H. & Abbasi, P. (2015). RSC Adv. 5, 94814–94848. CrossRef Google Scholar
Rosiak, D., Okuniewski, A. & Chojnacki, J. (2018). Polyhedron, 146, 35–41. CrossRef Google Scholar
Sauvage, F. (2014). Adv. Chem. pp. 1–23. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spokoyny, A. M., Li, T. C., Farha, O. K., Machan, C. W., She, C., Stern, C. L., Marks, T. J., Hupp, J. T. & Mirkin, C. A. (2010). Angew. Chem. Int. Ed. 49, 5339–5343. CrossRef Google Scholar
Sun, Z., Liang, M. & Chen, J. (2015). Acc. Chem. Res. 48, 1541–1550. CrossRef PubMed Google Scholar
Vinocour, F. A. (2016). MS thesis, University of Costa Rica, San José, Costa Rica. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, D., Zhang, H., Chen, X. & Yan, F. (2013). J. Mater. Chem. A, 1, 11933–11941. CrossRef Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CrossRef PubMed CAS Google Scholar
Yang, Y., Zhao, N., Wu, Y., Zhu, H. & Roesky, H. W. (2012). Inorg. Chem. 51, 2425–2431. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.