organic compounds
3-Hydroxy-3-methylisochroman-1-one–2-(carboxymethyl)benzoic acid (1/1)
aUnité Mixte de Recherche et d'Innovation en Electronique et d'Electricité, Appliqueés (UMRI EEA), Equipe de Recherche Instrumentation Image et Spectroscopie (L2IS), DFR–GEE, Institut National Polytechnique Félix Houphouët-Boigny (INPHB), BP 1093 Yamoussoukro, Côte d'Ivoire, bLaboratoire de Physique Fondamentale et Appliquée, UFR SFA, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire, and cLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët-Boigny de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire
*Correspondence e-mail: abouakoun@gmail.com
The title co-crystalline compound, C10H10O3·C9H8O4, has been synthesized and characterized in a single-crystal X-ray diffraction study. In the 3-hydroxy-3-methylisochroman-1-one molecule, the six-membered heterocyclic ring lies between an envelope and a screw-boat conformation. In the 2-carboxymethylbenzoic acid, molecule, the 2-carboxymethyl substituent is almost planar (r.m.s deviation = 0.048 Å) and makes a dihedral angle of 79.59 (7)° with the planar benzene ring. In this molecule, intramolecular C—H⋯O contacts generate five- and six-membered rings, forming a tricyclic ring system. In the crystal, classical O—H⋯O and C—H⋯O hydrogen bonds combine with C—H⋯π(ring) and unusual C=O⋯π(ring) contacts to generate a three-dimensional network.
Keywords: crystal structure; 1:1 co-crystal of 3-hydroxy-3-methylisochroman-1-one–2-(carboxymethyl)benzoic acid; hydrogen bonding; C—H⋯π(ring) interactions; C=O⋯π(ring) interactions.
CCDC reference: 1879994
Structure description
Isochromanone derivatives are generally known as regulators of plant growth (Bianchi et al., 2004). Depending on their chemical structure and concentration, they can act either as inhibitors or stimulators in these processes. Some substituted isochromanones isolated from myxobacteria strains have been introduced as anti-fungal agents (Buntin et al., 2008). In view of their importance and as a continuation of our work on the analysis of isochromanone derivatives (Abou et al., 2009, 2011, 2012), we report herein the synthesis and of the title compound (Fig. 1), a (1/1) of 3-hydoxy-3-methyl-isochroman-1-one (A), and 2-carboxymethyl-benzoic acid (B).
In molecule A, the six-membered heterocyclic ring system O1A/C2A–C6A displays a conformation between that of an envelope and a screw-boat as judged from the puckering parameters [QT = 0.4319 (14) Å, θ = 120.60 (18)° and φ = 109.5 (2)°] with atom O8A in an axial position. In this molecule, the bond lengths and angles of the isochroman-1-one ring are within normal ranges and comparable to those found in related structures (Brockway et al., 2011; Bredenkamp et al., 1989).
In molecule B, S(5) and S(6) ring motifs arise from intramolecular C10B—H10B⋯O18B and C2B—H2B⋯O17B hydrogen bonds (Table 1), and generate a pseudo tricyclic ring system (Fig. 1). The planar benzoic acid (r.m.s deviation = 0.028 Å) group is almost perpendicular to the least-squares plane of the 2-carboxymethyl substituent (r.m.s deviation = 0.004), making a dihedral angle of 79.14 (7)°. The bond lengths and angles of this molecule are also generally in good agreement with those observed in related structures (Tai et al., 2014; Bolte, 2009).
In the A—H8A⋯O9A hydrogen bonds (Table 1) link molecules of type A into centrosymmetric R22(12) dimers lying nearly parallel to the bc plane. These are connected by C7A—H73A⋯O9A hydrogen bonds along the c-axis direction and by inversion-related C5A—H51A⋯π(ring) contacts to the benzene ring of another A molecule (Fig. 2). B molecules form unusual inversion-related C14B=O17B⋯Cg4 contacts and classical centrosymmetric head-to-head carboxylic acid–carboxyl hydrogen-bonding interactions (O15B—H15B⋯O17B and O18B—H18B⋯O16B) each generating R22(8) ring motifs. These contacts link the B molecules into an extensive X-shaped array along the c-axis direction, Fig. 3. The two sets of co-crystallized molecules are further interconnected by weak C11A—H11A⋯Cg4 and C2B—H22B⋯Cg2 hydrogen bonds (Table 1) to give a three-dimensional network (Fig. 4) (Cg2 and Cg4 are the centroids of the C3A/C4A/C10A–C13A and C3B/C4B/C10B–C13B benzene rings, respectively).
structure, O8Synthesis and crystallization
300 ml of dried diethyl ether, 0.125 mol of acetic anhydride and 4 ml of dried pyridine were placed in a 500 ml flask fitted with water condenser. The mixture was stirred and 0.12 mol of homophthalic anhydride was added in small portions of 0.03 mol over 30 min. After this addition, the mixture was stirred at room temperature for 3 h. The precipitate was filtered, washed with petroleum ether to remove the pyridine and recrystallized from chloroform–pentane (1/1; v/v) solution. Colourless crystals of the title compound were obtained in a good yield (98%; m.p. 435–436 K).
Refinement
Crystal data, data collection and structure . Two outlier reflections (08, 17) were omitted from the final refinement.
details are summarized in Table 2
|
Structural data
CCDC reference: 1879994
https://doi.org/10.1107/S241431461801653X/sj4196sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461801653X/sj4196Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431461801653X/sj4196Isup3.cml
Data collection: COLLECT (Hooft, 1998); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).C10H10O3·C9H8O4 | Dx = 1.410 Mg m−3 |
Mr = 358.33 | Melting point = 435–436 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.1143 (4) Å | Cell parameters from 16894 reflections |
b = 9.8134 (1) Å | θ = 3.0–29.1° |
c = 14.2602 (2) Å | µ = 0.11 mm−1 |
β = 95.116 (1)° | T = 298 K |
V = 1688.53 (6) Å3 | Prism, colourless |
Z = 4 | 0.50 × 0.30 × 0.30 mm |
F(000) = 752 |
Nonius KappaCCD diffractometer | Rint = 0.025 |
Radiation source: fine-focus sealed tube | θmax = 29.1°, θmin = 3.0° |
φ & ω scans | h = −16→16 |
16894 measured reflections | k = −12→12 |
4368 independent reflections | l = −19→19 |
3717 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0494P)2 + 0.4813P] where P = (Fo2 + 2Fc2)/3 |
4368 reflections | (Δ/σ)max < 0.001 |
238 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1A | −0.54160 (7) | −0.16519 (9) | −0.02214 (6) | 0.0373 (2) | |
O9A | −0.50696 (9) | −0.15285 (9) | 0.13071 (6) | 0.0454 (2) | |
O8A | −0.40645 (7) | −0.11526 (9) | −0.12192 (7) | 0.0408 (2) | |
H8A | −0.4248 | −0.0348 | −0.1239 | 0.061* | |
O15B | 0.00113 (8) | 0.38147 (10) | 0.16774 (7) | 0.0471 (2) | |
H15B | 0.0107 | 0.4299 | 0.2146 | 0.071* | |
O17B | −0.01082 (9) | 0.04983 (10) | 0.18244 (6) | 0.0468 (2) | |
C3A | −0.40072 (9) | −0.31387 (11) | 0.05345 (8) | 0.0325 (2) | |
O18B | −0.17355 (9) | −0.03915 (12) | 0.13005 (8) | 0.0614 (3) | |
H18B | −0.1638 | −0.0801 | 0.1803 | 0.092* | |
C4B | −0.09752 (9) | 0.12336 (11) | 0.03329 (8) | 0.0306 (2) | |
C2B | 0.09587 (10) | 0.23078 (13) | 0.06993 (9) | 0.0373 (3) | |
H21B | 0.1250 | 0.1420 | 0.0890 | 0.045* | |
H22B | 0.1485 | 0.2727 | 0.0314 | 0.045* | |
C5A | −0.46413 (11) | −0.34373 (12) | −0.11663 (9) | 0.0377 (3) | |
H51A | −0.5297 | −0.4010 | −0.1216 | 0.045* | |
H52A | −0.4249 | −0.3592 | −0.1721 | 0.045* | |
C14B | −0.09202 (10) | 0.04148 (12) | 0.12152 (8) | 0.0329 (2) | |
C6A | −0.49905 (10) | −0.19569 (12) | −0.11399 (8) | 0.0338 (2) | |
C1B | 0.08979 (10) | 0.31608 (12) | 0.15668 (8) | 0.0354 (2) | |
C10B | −0.19361 (10) | 0.10970 (12) | −0.02765 (9) | 0.0366 (3) | |
H10B | −0.2504 | 0.0531 | −0.0113 | 0.044* | |
O16B | 0.17422 (9) | 0.32251 (14) | 0.21356 (8) | 0.0657 (4) | |
C4A | −0.39103 (9) | −0.38359 (11) | −0.03078 (8) | 0.0331 (2) | |
C13B | −0.02670 (12) | 0.27947 (14) | −0.07543 (9) | 0.0424 (3) | |
H13B | 0.0289 | 0.3374 | −0.0924 | 0.051* | |
C11A | −0.25009 (12) | −0.52470 (14) | 0.04999 (12) | 0.0498 (3) | |
H11A | −0.1996 | −0.5960 | 0.0488 | 0.060* | |
C12B | −0.12191 (13) | 0.26454 (15) | −0.13581 (9) | 0.0473 (3) | |
H12B | −0.1295 | 0.3121 | −0.1924 | 0.057* | |
C11B | −0.20523 (11) | 0.17956 (14) | −0.11222 (9) | 0.0431 (3) | |
H11B | −0.2691 | 0.1691 | −0.1529 | 0.052* | |
C3B | −0.01182 (10) | 0.21028 (11) | 0.00992 (8) | 0.0324 (2) | |
C13A | −0.33505 (11) | −0.34890 (13) | 0.13500 (9) | 0.0406 (3) | |
H13A | −0.3420 | −0.3018 | 0.1908 | 0.049* | |
C2A | −0.48439 (10) | −0.20496 (11) | 0.05745 (8) | 0.0331 (2) | |
C10A | −0.31536 (11) | −0.49014 (13) | −0.03101 (10) | 0.0433 (3) | |
H10A | −0.3086 | −0.5387 | −0.0862 | 0.052* | |
C7A | −0.59486 (12) | −0.16094 (16) | −0.18498 (10) | 0.0483 (3) | |
H71A | −0.6147 | −0.0670 | −0.1781 | 0.072* | |
H72A | −0.6572 | −0.2176 | −0.1745 | 0.072* | |
H73A | −0.5736 | −0.1761 | −0.2474 | 0.072* | |
C12A | −0.25926 (12) | −0.45421 (15) | 0.13264 (11) | 0.0481 (3) | |
H12A | −0.2146 | −0.4774 | 0.1867 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.0383 (4) | 0.0387 (5) | 0.0353 (4) | 0.0089 (3) | 0.0059 (3) | −0.0026 (3) |
O9A | 0.0633 (6) | 0.0381 (5) | 0.0361 (5) | 0.0094 (4) | 0.0125 (4) | −0.0028 (4) |
O8A | 0.0427 (5) | 0.0321 (4) | 0.0487 (5) | 0.0000 (3) | 0.0093 (4) | 0.0005 (4) |
O15B | 0.0446 (5) | 0.0467 (5) | 0.0482 (5) | 0.0124 (4) | −0.0047 (4) | −0.0156 (4) |
O17B | 0.0585 (6) | 0.0419 (5) | 0.0378 (5) | −0.0058 (4) | −0.0084 (4) | 0.0062 (4) |
C3A | 0.0325 (5) | 0.0267 (5) | 0.0382 (6) | −0.0018 (4) | 0.0040 (4) | −0.0014 (4) |
O18B | 0.0465 (6) | 0.0747 (8) | 0.0623 (7) | −0.0108 (5) | 0.0012 (5) | 0.0329 (6) |
C4B | 0.0345 (5) | 0.0276 (5) | 0.0299 (5) | 0.0056 (4) | 0.0048 (4) | −0.0013 (4) |
C2B | 0.0355 (6) | 0.0381 (6) | 0.0386 (6) | 0.0000 (5) | 0.0056 (5) | −0.0062 (5) |
C5A | 0.0446 (7) | 0.0314 (6) | 0.0371 (6) | 0.0010 (5) | 0.0027 (5) | −0.0072 (4) |
C14B | 0.0344 (6) | 0.0313 (5) | 0.0331 (5) | 0.0034 (4) | 0.0045 (4) | 0.0004 (4) |
C6A | 0.0368 (6) | 0.0331 (6) | 0.0317 (5) | 0.0019 (4) | 0.0037 (4) | −0.0037 (4) |
C1B | 0.0378 (6) | 0.0327 (6) | 0.0353 (6) | 0.0026 (5) | 0.0007 (5) | −0.0007 (4) |
C10B | 0.0355 (6) | 0.0358 (6) | 0.0385 (6) | 0.0031 (5) | 0.0029 (5) | −0.0003 (5) |
O16B | 0.0518 (6) | 0.0896 (9) | 0.0521 (6) | 0.0245 (6) | −0.0164 (5) | −0.0269 (6) |
C4A | 0.0336 (5) | 0.0253 (5) | 0.0408 (6) | −0.0015 (4) | 0.0062 (5) | −0.0026 (4) |
C13B | 0.0488 (7) | 0.0403 (6) | 0.0392 (6) | −0.0017 (5) | 0.0103 (5) | 0.0053 (5) |
C11A | 0.0415 (7) | 0.0377 (7) | 0.0701 (9) | 0.0095 (5) | 0.0044 (6) | 0.0046 (6) |
C12B | 0.0569 (8) | 0.0506 (8) | 0.0345 (6) | 0.0068 (6) | 0.0041 (6) | 0.0104 (5) |
C11B | 0.0436 (7) | 0.0483 (7) | 0.0363 (6) | 0.0074 (5) | −0.0032 (5) | 0.0013 (5) |
C3B | 0.0367 (6) | 0.0289 (5) | 0.0322 (5) | 0.0029 (4) | 0.0066 (4) | −0.0040 (4) |
C13A | 0.0413 (6) | 0.0386 (6) | 0.0413 (6) | −0.0026 (5) | −0.0009 (5) | −0.0012 (5) |
C2A | 0.0380 (6) | 0.0271 (5) | 0.0348 (6) | −0.0011 (4) | 0.0065 (4) | −0.0013 (4) |
C10A | 0.0448 (7) | 0.0315 (6) | 0.0546 (8) | 0.0052 (5) | 0.0090 (6) | −0.0051 (5) |
C7A | 0.0503 (8) | 0.0512 (8) | 0.0412 (7) | 0.0084 (6) | −0.0071 (6) | −0.0048 (6) |
C12A | 0.0401 (7) | 0.0462 (7) | 0.0561 (8) | 0.0026 (6) | −0.0054 (6) | 0.0076 (6) |
O1A—C2A | 1.3343 (14) | C5A—H52A | 0.9700 |
O1A—C6A | 1.4803 (14) | C6A—C7A | 1.5095 (17) |
O9A—C2A | 1.2160 (14) | C1B—O16B | 1.2491 (16) |
O8A—C6A | 1.3845 (15) | C10B—C11B | 1.3834 (18) |
O8A—H8A | 0.8200 | C10B—H10B | 0.9300 |
O15B—C1B | 1.2729 (15) | C4A—C10A | 1.3907 (16) |
O15B—H15B | 0.8200 | C13B—C12B | 1.384 (2) |
O17B—C14B | 1.2556 (14) | C13B—C3B | 1.3914 (17) |
C3A—C13A | 1.3922 (17) | C13B—H13B | 0.9300 |
C3A—C4A | 1.3964 (16) | C11A—C12A | 1.379 (2) |
C3A—C2A | 1.4776 (16) | C11A—C10A | 1.383 (2) |
O18B—C14B | 1.2798 (15) | C11A—H11A | 0.9300 |
O18B—H18B | 0.8200 | C12B—C11B | 1.374 (2) |
C4B—C10B | 1.3956 (16) | C12B—H12B | 0.9300 |
C4B—C3B | 1.4064 (16) | C11B—H11B | 0.9300 |
C4B—C14B | 1.4894 (15) | C13A—C12A | 1.3848 (19) |
C2B—C1B | 1.5009 (16) | C13A—H13A | 0.9300 |
C2B—C3B | 1.5085 (17) | C10A—H10A | 0.9300 |
C2B—H21B | 0.9700 | C7A—H71A | 0.9600 |
C2B—H22B | 0.9700 | C7A—H72A | 0.9600 |
C5A—C4A | 1.4975 (17) | C7A—H73A | 0.9600 |
C5A—C6A | 1.5145 (16) | C12A—H12A | 0.9300 |
C5A—H51A | 0.9700 | ||
C2A—O1A—C6A | 119.87 (9) | C10A—C4A—C3A | 118.45 (12) |
C6A—O8A—H8A | 109.5 | C10A—C4A—C5A | 122.43 (11) |
C1B—O15B—H15B | 109.5 | C3A—C4A—C5A | 119.10 (10) |
C13A—C3A—C4A | 120.79 (11) | C12B—C13B—C3B | 121.88 (12) |
C13A—C3A—C2A | 119.29 (11) | C12B—C13B—H13B | 119.1 |
C4A—C3A—C2A | 119.88 (10) | C3B—C13B—H13B | 119.1 |
C14B—O18B—H18B | 109.5 | C12A—C11A—C10A | 120.47 (12) |
C10B—C4B—C3B | 120.20 (10) | C12A—C11A—H11A | 119.8 |
C10B—C4B—C14B | 116.50 (10) | C10A—C11A—H11A | 119.8 |
C3B—C4B—C14B | 123.30 (10) | C11B—C12B—C13B | 120.11 (12) |
C1B—C2B—C3B | 116.00 (10) | C11B—C12B—H12B | 119.9 |
C1B—C2B—H21B | 108.3 | C13B—C12B—H12B | 119.9 |
C3B—C2B—H21B | 108.3 | C12B—C11B—C10B | 119.62 (12) |
C1B—C2B—H22B | 108.3 | C12B—C11B—H11B | 120.2 |
C3B—C2B—H22B | 108.3 | C10B—C11B—H11B | 120.2 |
H21B—C2B—H22B | 107.4 | C13B—C3B—C4B | 117.54 (11) |
C4A—C5A—C6A | 112.11 (9) | C13B—C3B—C2B | 117.98 (11) |
C4A—C5A—H51A | 109.2 | C4B—C3B—C2B | 124.46 (10) |
C6A—C5A—H51A | 109.2 | C12A—C13A—C3A | 119.65 (12) |
C4A—C5A—H52A | 109.2 | C12A—C13A—H13A | 120.2 |
C6A—C5A—H52A | 109.2 | C3A—C13A—H13A | 120.2 |
H51A—C5A—H52A | 107.9 | O9A—C2A—O1A | 117.92 (11) |
O17B—C14B—O18B | 122.56 (11) | O9A—C2A—C3A | 123.02 (11) |
O17B—C14B—C4B | 121.50 (11) | O1A—C2A—C3A | 119.00 (10) |
O18B—C14B—C4B | 115.92 (10) | C11A—C10A—C4A | 120.69 (13) |
O8A—C6A—O1A | 107.79 (9) | C11A—C10A—H10A | 119.7 |
O8A—C6A—C7A | 113.37 (11) | C4A—C10A—H10A | 119.7 |
O1A—C6A—C7A | 103.89 (10) | C6A—C7A—H71A | 109.5 |
O8A—C6A—C5A | 108.34 (10) | C6A—C7A—H72A | 109.5 |
O1A—C6A—C5A | 109.63 (10) | H71A—C7A—H72A | 109.5 |
C7A—C6A—C5A | 113.57 (10) | C6A—C7A—H73A | 109.5 |
O16B—C1B—O15B | 123.04 (11) | H71A—C7A—H73A | 109.5 |
O16B—C1B—C2B | 117.76 (11) | H72A—C7A—H73A | 109.5 |
O15B—C1B—C2B | 119.16 (11) | C11A—C12A—C13A | 119.94 (13) |
C11B—C10B—C4B | 120.64 (12) | C11A—C12A—H12A | 120.0 |
C11B—C10B—H10B | 119.7 | C13A—C12A—H12A | 120.0 |
C4B—C10B—H10B | 119.7 | ||
C10B—C4B—C14B—O17B | −177.63 (11) | C4B—C10B—C11B—C12B | −0.8 (2) |
C3B—C4B—C14B—O17B | 2.75 (17) | C12B—C13B—C3B—C4B | 0.09 (18) |
C10B—C4B—C14B—O18B | 3.79 (16) | C12B—C13B—C3B—C2B | 178.65 (12) |
C3B—C4B—C14B—O18B | −175.83 (11) | C10B—C4B—C3B—C13B | −0.59 (16) |
C2A—O1A—C6A—O8A | −70.24 (13) | C14B—C4B—C3B—C13B | 179.02 (11) |
C2A—O1A—C6A—C7A | 169.20 (10) | C10B—C4B—C3B—C2B | −179.05 (11) |
C2A—O1A—C6A—C5A | 47.50 (14) | C14B—C4B—C3B—C2B | 0.56 (17) |
C4A—C5A—C6A—O8A | 68.15 (13) | C1B—C2B—C3B—C13B | 106.92 (13) |
C4A—C5A—C6A—O1A | −49.23 (13) | C1B—C2B—C3B—C4B | −74.62 (15) |
C4A—C5A—C6A—C7A | −164.94 (11) | C4A—C3A—C13A—C12A | −0.07 (19) |
C3B—C2B—C1B—O16B | 172.01 (13) | C2A—C3A—C13A—C12A | 177.65 (12) |
C3B—C2B—C1B—O15B | −10.13 (17) | C6A—O1A—C2A—O9A | 163.52 (11) |
C3B—C4B—C10B—C11B | 0.98 (17) | C6A—O1A—C2A—C3A | −19.25 (15) |
C14B—C4B—C10B—C11B | −178.66 (11) | C13A—C3A—C2A—O9A | −7.62 (18) |
C13A—C3A—C4A—C10A | 0.92 (17) | C4A—C3A—C2A—O9A | 170.12 (11) |
C2A—C3A—C4A—C10A | −176.79 (11) | C13A—C3A—C2A—O1A | 175.30 (11) |
C13A—C3A—C4A—C5A | 179.32 (11) | C4A—C3A—C2A—O1A | −6.97 (16) |
C2A—C3A—C4A—C5A | 1.62 (16) | C12A—C11A—C10A—C4A | 0.2 (2) |
C6A—C5A—C4A—C10A | −154.37 (11) | C3A—C4A—C10A—C11A | −1.00 (19) |
C6A—C5A—C4A—C3A | 27.29 (15) | C5A—C4A—C10A—C11A | −179.35 (12) |
C3B—C13B—C12B—C11B | 0.0 (2) | C10A—C11A—C12A—C13A | 0.6 (2) |
C13B—C12B—C11B—C10B | 0.3 (2) | C3A—C13A—C12A—C11A | −0.7 (2) |
Cg2 is the centroid of the C3A/C4A/C10A–C13A benzene ring (molecule A) and Cg4 is the centroid of the C3B/C4B/C10B–C13B benzene ring (molecule B). |
D—H···A | D—H | H···A | D···A | D—H···A |
C10B—H10B···O18B | 0.93 | 2.33 | 2.6745 (16) | 102 |
C2B—H21B···O17B | 0.97 | 2.39 | 2.7870 (16) | 104 |
C7A—H73A···O9Ai | 0.96 | 2.60 | 3.4469 (17) | 148 |
O8A—H8A···O9Aii | 0.82 | 2.02 | 2.8311 (12) | 172 |
O15B—H15B···O17Biii | 0.82 | 1.88 | 2.6950 (13) | 171 |
O18B—H18B···O16Biv | 0.82 | 1.80 | 2.6115 (15) | 168 |
C2B—H22B···Cg2iii | 0.97 | 2.92 | 3.8725 (15) | 169 |
C5A—H51A···Cg2v | 0.97 | 2.74 | 3.6346 (15) | 153 |
C11A—H11A···Cg4vi | 0.93 | 2.78 | 3.6075 (17) | 149 |
C14B—O17B···Cg4vii | 1.26 (1) | 3.44 (1) | 3.5714 (13) | 86 (1) |
Symmetry codes: (i) x, −y−1/2, z−1/2; (ii) −x−1, −y, −z; (iii) −x, y+1/2, −z+1/2; (iv) −x, y−1/2, −z+1/2; (v) −x+1, −y+1, −z; (vi) x, −y+1/2, z−3/2; (vii) −x, −y+1, −z+1. |
Acknowledgements
The authors are grateful to the Spectropôle Service (Aix-Marseille University, France) for use of the diffractometer.
References
Abou, A., Djandé, A., Saba, A., Chiavassa, T. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3. CrossRef IUCr Journals Google Scholar
Abou, A., Djandé, A., Sessouma, B., Saba, A. & Kakou-Yao, R. (2011). Acta Cryst. E67, o3349. CrossRef IUCr Journals Google Scholar
Abou, A., Goulizan Bi, S. D., Kaboré, L., Djandé, A., Saba, A. & Kakou-Yao, R. (2009). Z. Naturforsch. Teil B, 64, 328–330. CrossRef Google Scholar
Bianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufman, T. S. (2004). J. Agric. Food Chem. 52, 1923–1927. CrossRef Google Scholar
Bolte, M. (2009). Private Communication (refcode HOPHAL11, deposition No. 757871). CCDC, Cambridge, England. Google Scholar
Bredenkamp, M. W., Dillen, J. L. M., van Rooyen, P. H. & Steyn, P. S. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1835–1839. CrossRef Google Scholar
Brockway, A. J., González-López, M., Fettinger, J. C. & Shaw, J. T. (2011). J. Org. Chem. 76, 3515–3518. CrossRef Google Scholar
Buntin, K., Rachid, S., Scharfe, M., Blöcker, H., Weissman, K. J. & Müller, R. (2008). Angew. Chem. Int. Ed. 47, 4595–4599. Web of Science CrossRef CAS Google Scholar
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology , Vol. 276, Macromolecular Crystallography , Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tai, X. S. & Liu, L. L. (2014). J. Chem. Pharm. Res. 6, 905–909. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.