organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Hy­dr­oxy-3-methyl­isochroman-1-one–2-(carb­­oxy­meth­yl)benzoic acid (1/1)

CROSSMARK_Color_square_no_text.svg

aUnité Mixte de Recherche et d'Innovation en Electronique et d'Electricité, Appliqueés (UMRI EEA), Equipe de Recherche Instrumentation Image et Spectroscopie (L2IS), DFR–GEE, Institut National Polytechnique Félix Houphouët-Boigny (INPHB), BP 1093 Yamoussoukro, Côte d'Ivoire, bLaboratoire de Physique Fondamentale et Appliquée, UFR SFA, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire, and cLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët-Boigny de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire
*Correspondence e-mail: abouakoun@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 9 November 2018; accepted 20 November 2018; online 22 November 2018)

The title co-crystalline compound, C10H10O3·C9H8O4, has been synthesized and characterized in a single-crystal X-ray diffraction study. In the 3-hy­droxy-3-methyl­isochroman-1-one mol­ecule, the six-membered heterocyclic ring lies between an envelope and a screw-boat conformation. In the 2-carb­oxy­methyl­benzoic acid, mol­ecule, the 2-carb­oxy­methyl substituent is almost planar (r.m.s deviation = 0.048 Å) and makes a dihedral angle of 79.59 (7)° with the planar benzene ring. In this mol­ecule, intra­molecular C—H⋯O contacts generate five- and six-membered rings, forming a tricyclic ring system. In the crystal, classical O—H⋯O and C—H⋯O hydrogen bonds combine with C—H⋯π(ring) and unusual C=O⋯π(ring) contacts to generate a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isochromanone derivatives are generally known as regulators of plant growth (Bianchi et al., 2004[Bianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufman, T. S. (2004). J. Agric. Food Chem. 52, 1923-1927.]). Depending on their chemical structure and concentration, they can act either as inhibitors or stimulators in these processes. Some substituted isochromanones isolated from myxobacteria strains have been introduced as anti-fungal agents (Buntin et al., 2008[Buntin, K., Rachid, S., Scharfe, M., Blöcker, H., Weissman, K. J. & Müller, R. (2008). Angew. Chem. Int. Ed. 47, 4595-4599.]). In view of their importance and as a continuation of our work on the crystal structure analysis of isochromanone derivatives (Abou et al., 2009[Abou, A., Goulizan Bi, S. D., Kaboré, L., Djandé, A., Saba, A. & Kakou-Yao, R. (2009). Z. Naturforsch. Teil B, 64, 328-330.], 2011[Abou, A., Djandé, A., Sessouma, B., Saba, A. & Kakou-Yao, R. (2011). Acta Cryst. E67, o3349.], 2012[Abou, A., Djandé, A., Saba, A., Chiavassa, T. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3.]), we report herein the synthesis and crystal structure of the title compound (Fig. 1[link]), a (1/1) co-crystal of 3-hyd­oxy-3-methyl-isochroman-1-one (A), and 2-carb­oxy­methyl-benzoic acid (B).

[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. The dashed lines indicate intra­molecular hydrogen bonds.

In mol­ecule A, the six-membered heterocyclic ring system O1A/C2A–C6A displays a conformation between that of an envelope and a screw-boat as judged from the puckering parameters [QT = 0.4319 (14) Å, θ = 120.60 (18)° and φ = 109.5 (2)°] with atom O8A in an axial position. In this mol­ecule, the bond lengths and angles of the isochroman-1-one ring are within normal ranges and comparable to those found in related structures (Brockway et al., 2011[Brockway, A. J., González-López, M., Fettinger, J. C. & Shaw, J. T. (2011). J. Org. Chem. 76, 3515-3518.]; Bredenkamp et al., 1989[Bredenkamp, M. W., Dillen, J. L. M., van Rooyen, P. H. & Steyn, P. S. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1835-1839.]).

In mol­ecule B, S(5) and S(6) ring motifs arise from intra­molecular C10B—H10B⋯O18B and C2B—H2B⋯O17B hydrogen bonds (Table 1[link]), and generate a pseudo tricyclic ring system (Fig. 1[link]). The planar benzoic acid (r.m.s deviation = 0.028 Å) group is almost perpendicular to the least-squares plane of the 2-carb­oxy­methyl substituent (r.m.s deviation = 0.004), making a dihedral angle of 79.14 (7)°. The bond lengths and angles of this mol­ecule are also generally in good agreement with those observed in related structures (Tai et al., 2014[Tai, X. S. & Liu, L. L. (2014). J. Chem. Pharm. Res. 6, 905-909.]; Bolte, 2009[Bolte, M. (2009). Private Communication (refcode HOPHAL11, deposition No. 757871). CCDC, Cambridge, England.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C3A/C4A/C10A–C13A benzene ring (mol­ecule A) and Cg4 is the centroid of the C3B/C4B/C10B–C13B benzene ring (mol­ecule B).

D—H⋯A D—H H⋯A DA D—H⋯A
C10B—H10B⋯O18B 0.93 2.33 2.6745 (16) 102
C2B—H21B⋯O17B 0.97 2.39 2.7870 (16) 104
C7A—H73A⋯O9Ai 0.96 2.60 3.4469 (17) 148
O8A—H8A⋯O9Aii 0.82 2.02 2.8311 (12) 172
O15B—H15B⋯O17Biii 0.82 1.88 2.6950 (13) 171
O18B—H18B⋯O16Biv 0.82 1.80 2.6115 (15) 168
C2B—H22BCg2iii 0.97 2.92 3.8725 (15) 169
C5A—H51ACg2v 0.97 2.74 3.6346 (15) 153
C11A—H11ACg4vi 0.93 2.78 3.6075 (17) 149
C14B—O17BCg4vii 1.26 (1) 3.44 (1) 3.5714 (13) 86 (1)
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x-1, -y, -z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z; (vi) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (vii) -x, -y+1, -z+1.

In the co-crystal structure, O8A—H8A⋯O9A hydrogen bonds (Table 1[link]) link mol­ecules of type A into centrosymmetric R22(12) dimers lying nearly parallel to the bc plane. These are connected by C7A—H73A⋯O9A hydrogen bonds along the c-axis direction and by inversion-related C5A—H51Aπ(ring) contacts to the benzene ring of another A mol­ecule (Fig. 2[link]). B mol­ecules form unusual inversion-related C14B=O17BCg4 contacts and classical centrosymmetric head-to-head carb­oxy­lic acid–carboxyl hydrogen-bonding inter­actions (O15B—H15B⋯O17B and O18B—H18B⋯O16B) each generating R22(8) ring motifs. These contacts link the B mol­ecules into an extensive X-shaped array along the c-axis direction, Fig. 3[link]. The two sets of co-crystallized mol­ecules are further inter­connected by weak C11A—H11ACg4 and C2B—H22BCg2 hydrogen bonds (Table 1[link]) to give a three-dimensional network (Fig. 4[link]) (Cg2 and Cg4 are the centroids of the C3A/C4A/C10A–C13A and C3B/C4B/C10B–C13B benzene rings, respectively).

[Figure 2]
Figure 2
Sheets of type A mol­ecules viewed along the the a-axis direction. The green dots are the centroids of the C3A/C4A/C10A–C13A benzene rings. In these packing diagrams, the dashed lines represent hydrogen bonds and H atoms not involved in hydrogen-bonding inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
Part of the crystal packing of the B mol­ecules in the co-crystal viewed along the the a axis direction. The blue dots are the centroids of the C3B/C4B/C10B–C13B benzene rings
[Figure 4]
Figure 4
Overall crystal packing of the title compound, showing the supra­molecular aggregation resulting from the three-dimensional hydrogen-bonded network.

Synthesis and crystallization

300 ml of dried diethyl ether, 0.125 mol of acetic anhydride and 4 ml of dried pyridine were placed in a 500 ml flask fitted with water condenser. The mixture was stirred and 0.12 mol of homophthalic anhydride was added in small portions of 0.03 mol over 30 min. After this addition, the mixture was stirred at room temperature for 3 h. The precipitate was filtered, washed with petroleum ether to remove the pyridine and recrystallized from chloro­form–pentane (1/1; v/v) solution. Colourless crystals of the title compound were obtained in a good yield (98%; m.p. 435–436 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Two outlier reflections ([\overline{3}]08, [\overline{3}]17) were omitted from the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula C10H10O3·C9H8O4
Mr 358.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 12.1143 (4), 9.8134 (1), 14.2602 (2)
β (°) 95.116 (1)
V3) 1688.53 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.50 × 0.30 × 0.30
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 16894, 4368, 3717
Rint 0.025
(sin θ/λ)max−1) 0.683
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.116, 1.05
No. of reflections 4368
No. of parameters 238
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.34
Computer programs: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology , Vol. 276, Macromolecular Crystallography , Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

3-Hydroxy-3-methylisochroman-1-one–2-(carboxymethyl)benzoic acid (1/1) top
Crystal data top
C10H10O3·C9H8O4Dx = 1.410 Mg m3
Mr = 358.33Melting point = 435–436 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1143 (4) ÅCell parameters from 16894 reflections
b = 9.8134 (1) Åθ = 3.0–29.1°
c = 14.2602 (2) ŵ = 0.11 mm1
β = 95.116 (1)°T = 298 K
V = 1688.53 (6) Å3Prism, colourless
Z = 40.50 × 0.30 × 0.30 mm
F(000) = 752
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.025
Radiation source: fine-focus sealed tubeθmax = 29.1°, θmin = 3.0°
φ & ω scansh = 1616
16894 measured reflectionsk = 1212
4368 independent reflectionsl = 1919
3717 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.4813P]
where P = (Fo2 + 2Fc2)/3
4368 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.54160 (7)0.16519 (9)0.02214 (6)0.0373 (2)
O9A0.50696 (9)0.15285 (9)0.13071 (6)0.0454 (2)
O8A0.40645 (7)0.11526 (9)0.12192 (7)0.0408 (2)
H8A0.42480.03480.12390.061*
O15B0.00113 (8)0.38147 (10)0.16774 (7)0.0471 (2)
H15B0.01070.42990.21460.071*
O17B0.01082 (9)0.04983 (10)0.18244 (6)0.0468 (2)
C3A0.40072 (9)0.31387 (11)0.05345 (8)0.0325 (2)
O18B0.17355 (9)0.03915 (12)0.13005 (8)0.0614 (3)
H18B0.16380.08010.18030.092*
C4B0.09752 (9)0.12336 (11)0.03329 (8)0.0306 (2)
C2B0.09587 (10)0.23078 (13)0.06993 (9)0.0373 (3)
H21B0.12500.14200.08900.045*
H22B0.14850.27270.03140.045*
C5A0.46413 (11)0.34373 (12)0.11663 (9)0.0377 (3)
H51A0.52970.40100.12160.045*
H52A0.42490.35920.17210.045*
C14B0.09202 (10)0.04148 (12)0.12152 (8)0.0329 (2)
C6A0.49905 (10)0.19569 (12)0.11399 (8)0.0338 (2)
C1B0.08979 (10)0.31608 (12)0.15668 (8)0.0354 (2)
C10B0.19361 (10)0.10970 (12)0.02765 (9)0.0366 (3)
H10B0.25040.05310.01130.044*
O16B0.17422 (9)0.32251 (14)0.21356 (8)0.0657 (4)
C4A0.39103 (9)0.38359 (11)0.03078 (8)0.0331 (2)
C13B0.02670 (12)0.27947 (14)0.07543 (9)0.0424 (3)
H13B0.02890.33740.09240.051*
C11A0.25009 (12)0.52470 (14)0.04999 (12)0.0498 (3)
H11A0.19960.59600.04880.060*
C12B0.12191 (13)0.26454 (15)0.13581 (9)0.0473 (3)
H12B0.12950.31210.19240.057*
C11B0.20523 (11)0.17956 (14)0.11222 (9)0.0431 (3)
H11B0.26910.16910.15290.052*
C3B0.01182 (10)0.21028 (11)0.00992 (8)0.0324 (2)
C13A0.33505 (11)0.34890 (13)0.13500 (9)0.0406 (3)
H13A0.34200.30180.19080.049*
C2A0.48439 (10)0.20496 (11)0.05745 (8)0.0331 (2)
C10A0.31536 (11)0.49014 (13)0.03101 (10)0.0433 (3)
H10A0.30860.53870.08620.052*
C7A0.59486 (12)0.16094 (16)0.18498 (10)0.0483 (3)
H71A0.61470.06700.17810.072*
H72A0.65720.21760.17450.072*
H73A0.57360.17610.24740.072*
C12A0.25926 (12)0.45421 (15)0.13264 (11)0.0481 (3)
H12A0.21460.47740.18670.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0383 (4)0.0387 (5)0.0353 (4)0.0089 (3)0.0059 (3)0.0026 (3)
O9A0.0633 (6)0.0381 (5)0.0361 (5)0.0094 (4)0.0125 (4)0.0028 (4)
O8A0.0427 (5)0.0321 (4)0.0487 (5)0.0000 (3)0.0093 (4)0.0005 (4)
O15B0.0446 (5)0.0467 (5)0.0482 (5)0.0124 (4)0.0047 (4)0.0156 (4)
O17B0.0585 (6)0.0419 (5)0.0378 (5)0.0058 (4)0.0084 (4)0.0062 (4)
C3A0.0325 (5)0.0267 (5)0.0382 (6)0.0018 (4)0.0040 (4)0.0014 (4)
O18B0.0465 (6)0.0747 (8)0.0623 (7)0.0108 (5)0.0012 (5)0.0329 (6)
C4B0.0345 (5)0.0276 (5)0.0299 (5)0.0056 (4)0.0048 (4)0.0013 (4)
C2B0.0355 (6)0.0381 (6)0.0386 (6)0.0000 (5)0.0056 (5)0.0062 (5)
C5A0.0446 (7)0.0314 (6)0.0371 (6)0.0010 (5)0.0027 (5)0.0072 (4)
C14B0.0344 (6)0.0313 (5)0.0331 (5)0.0034 (4)0.0045 (4)0.0004 (4)
C6A0.0368 (6)0.0331 (6)0.0317 (5)0.0019 (4)0.0037 (4)0.0037 (4)
C1B0.0378 (6)0.0327 (6)0.0353 (6)0.0026 (5)0.0007 (5)0.0007 (4)
C10B0.0355 (6)0.0358 (6)0.0385 (6)0.0031 (5)0.0029 (5)0.0003 (5)
O16B0.0518 (6)0.0896 (9)0.0521 (6)0.0245 (6)0.0164 (5)0.0269 (6)
C4A0.0336 (5)0.0253 (5)0.0408 (6)0.0015 (4)0.0062 (5)0.0026 (4)
C13B0.0488 (7)0.0403 (6)0.0392 (6)0.0017 (5)0.0103 (5)0.0053 (5)
C11A0.0415 (7)0.0377 (7)0.0701 (9)0.0095 (5)0.0044 (6)0.0046 (6)
C12B0.0569 (8)0.0506 (8)0.0345 (6)0.0068 (6)0.0041 (6)0.0104 (5)
C11B0.0436 (7)0.0483 (7)0.0363 (6)0.0074 (5)0.0032 (5)0.0013 (5)
C3B0.0367 (6)0.0289 (5)0.0322 (5)0.0029 (4)0.0066 (4)0.0040 (4)
C13A0.0413 (6)0.0386 (6)0.0413 (6)0.0026 (5)0.0009 (5)0.0012 (5)
C2A0.0380 (6)0.0271 (5)0.0348 (6)0.0011 (4)0.0065 (4)0.0013 (4)
C10A0.0448 (7)0.0315 (6)0.0546 (8)0.0052 (5)0.0090 (6)0.0051 (5)
C7A0.0503 (8)0.0512 (8)0.0412 (7)0.0084 (6)0.0071 (6)0.0048 (6)
C12A0.0401 (7)0.0462 (7)0.0561 (8)0.0026 (6)0.0054 (6)0.0076 (6)
Geometric parameters (Å, º) top
O1A—C2A1.3343 (14)C5A—H52A0.9700
O1A—C6A1.4803 (14)C6A—C7A1.5095 (17)
O9A—C2A1.2160 (14)C1B—O16B1.2491 (16)
O8A—C6A1.3845 (15)C10B—C11B1.3834 (18)
O8A—H8A0.8200C10B—H10B0.9300
O15B—C1B1.2729 (15)C4A—C10A1.3907 (16)
O15B—H15B0.8200C13B—C12B1.384 (2)
O17B—C14B1.2556 (14)C13B—C3B1.3914 (17)
C3A—C13A1.3922 (17)C13B—H13B0.9300
C3A—C4A1.3964 (16)C11A—C12A1.379 (2)
C3A—C2A1.4776 (16)C11A—C10A1.383 (2)
O18B—C14B1.2798 (15)C11A—H11A0.9300
O18B—H18B0.8200C12B—C11B1.374 (2)
C4B—C10B1.3956 (16)C12B—H12B0.9300
C4B—C3B1.4064 (16)C11B—H11B0.9300
C4B—C14B1.4894 (15)C13A—C12A1.3848 (19)
C2B—C1B1.5009 (16)C13A—H13A0.9300
C2B—C3B1.5085 (17)C10A—H10A0.9300
C2B—H21B0.9700C7A—H71A0.9600
C2B—H22B0.9700C7A—H72A0.9600
C5A—C4A1.4975 (17)C7A—H73A0.9600
C5A—C6A1.5145 (16)C12A—H12A0.9300
C5A—H51A0.9700
C2A—O1A—C6A119.87 (9)C10A—C4A—C3A118.45 (12)
C6A—O8A—H8A109.5C10A—C4A—C5A122.43 (11)
C1B—O15B—H15B109.5C3A—C4A—C5A119.10 (10)
C13A—C3A—C4A120.79 (11)C12B—C13B—C3B121.88 (12)
C13A—C3A—C2A119.29 (11)C12B—C13B—H13B119.1
C4A—C3A—C2A119.88 (10)C3B—C13B—H13B119.1
C14B—O18B—H18B109.5C12A—C11A—C10A120.47 (12)
C10B—C4B—C3B120.20 (10)C12A—C11A—H11A119.8
C10B—C4B—C14B116.50 (10)C10A—C11A—H11A119.8
C3B—C4B—C14B123.30 (10)C11B—C12B—C13B120.11 (12)
C1B—C2B—C3B116.00 (10)C11B—C12B—H12B119.9
C1B—C2B—H21B108.3C13B—C12B—H12B119.9
C3B—C2B—H21B108.3C12B—C11B—C10B119.62 (12)
C1B—C2B—H22B108.3C12B—C11B—H11B120.2
C3B—C2B—H22B108.3C10B—C11B—H11B120.2
H21B—C2B—H22B107.4C13B—C3B—C4B117.54 (11)
C4A—C5A—C6A112.11 (9)C13B—C3B—C2B117.98 (11)
C4A—C5A—H51A109.2C4B—C3B—C2B124.46 (10)
C6A—C5A—H51A109.2C12A—C13A—C3A119.65 (12)
C4A—C5A—H52A109.2C12A—C13A—H13A120.2
C6A—C5A—H52A109.2C3A—C13A—H13A120.2
H51A—C5A—H52A107.9O9A—C2A—O1A117.92 (11)
O17B—C14B—O18B122.56 (11)O9A—C2A—C3A123.02 (11)
O17B—C14B—C4B121.50 (11)O1A—C2A—C3A119.00 (10)
O18B—C14B—C4B115.92 (10)C11A—C10A—C4A120.69 (13)
O8A—C6A—O1A107.79 (9)C11A—C10A—H10A119.7
O8A—C6A—C7A113.37 (11)C4A—C10A—H10A119.7
O1A—C6A—C7A103.89 (10)C6A—C7A—H71A109.5
O8A—C6A—C5A108.34 (10)C6A—C7A—H72A109.5
O1A—C6A—C5A109.63 (10)H71A—C7A—H72A109.5
C7A—C6A—C5A113.57 (10)C6A—C7A—H73A109.5
O16B—C1B—O15B123.04 (11)H71A—C7A—H73A109.5
O16B—C1B—C2B117.76 (11)H72A—C7A—H73A109.5
O15B—C1B—C2B119.16 (11)C11A—C12A—C13A119.94 (13)
C11B—C10B—C4B120.64 (12)C11A—C12A—H12A120.0
C11B—C10B—H10B119.7C13A—C12A—H12A120.0
C4B—C10B—H10B119.7
C10B—C4B—C14B—O17B177.63 (11)C4B—C10B—C11B—C12B0.8 (2)
C3B—C4B—C14B—O17B2.75 (17)C12B—C13B—C3B—C4B0.09 (18)
C10B—C4B—C14B—O18B3.79 (16)C12B—C13B—C3B—C2B178.65 (12)
C3B—C4B—C14B—O18B175.83 (11)C10B—C4B—C3B—C13B0.59 (16)
C2A—O1A—C6A—O8A70.24 (13)C14B—C4B—C3B—C13B179.02 (11)
C2A—O1A—C6A—C7A169.20 (10)C10B—C4B—C3B—C2B179.05 (11)
C2A—O1A—C6A—C5A47.50 (14)C14B—C4B—C3B—C2B0.56 (17)
C4A—C5A—C6A—O8A68.15 (13)C1B—C2B—C3B—C13B106.92 (13)
C4A—C5A—C6A—O1A49.23 (13)C1B—C2B—C3B—C4B74.62 (15)
C4A—C5A—C6A—C7A164.94 (11)C4A—C3A—C13A—C12A0.07 (19)
C3B—C2B—C1B—O16B172.01 (13)C2A—C3A—C13A—C12A177.65 (12)
C3B—C2B—C1B—O15B10.13 (17)C6A—O1A—C2A—O9A163.52 (11)
C3B—C4B—C10B—C11B0.98 (17)C6A—O1A—C2A—C3A19.25 (15)
C14B—C4B—C10B—C11B178.66 (11)C13A—C3A—C2A—O9A7.62 (18)
C13A—C3A—C4A—C10A0.92 (17)C4A—C3A—C2A—O9A170.12 (11)
C2A—C3A—C4A—C10A176.79 (11)C13A—C3A—C2A—O1A175.30 (11)
C13A—C3A—C4A—C5A179.32 (11)C4A—C3A—C2A—O1A6.97 (16)
C2A—C3A—C4A—C5A1.62 (16)C12A—C11A—C10A—C4A0.2 (2)
C6A—C5A—C4A—C10A154.37 (11)C3A—C4A—C10A—C11A1.00 (19)
C6A—C5A—C4A—C3A27.29 (15)C5A—C4A—C10A—C11A179.35 (12)
C3B—C13B—C12B—C11B0.0 (2)C10A—C11A—C12A—C13A0.6 (2)
C13B—C12B—C11B—C10B0.3 (2)C3A—C13A—C12A—C11A0.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C3A/C4A/C10A–C13A benzene ring (molecule A) and Cg4 is the centroid of the C3B/C4B/C10B–C13B benzene ring (molecule B).
D—H···AD—HH···AD···AD—H···A
C10B—H10B···O18B0.932.332.6745 (16)102
C2B—H21B···O17B0.972.392.7870 (16)104
C7A—H73A···O9Ai0.962.603.4469 (17)148
O8A—H8A···O9Aii0.822.022.8311 (12)172
O15B—H15B···O17Biii0.821.882.6950 (13)171
O18B—H18B···O16Biv0.821.802.6115 (15)168
C2B—H22B···Cg2iii0.972.923.8725 (15)169
C5A—H51A···Cg2v0.972.743.6346 (15)153
C11A—H11A···Cg4vi0.932.783.6075 (17)149
C14B—O17B···Cg4vii1.26 (1)3.44 (1)3.5714 (13)86 (1)
Symmetry codes: (i) x, y1/2, z1/2; (ii) x1, y, z; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x+1, y+1, z; (vi) x, y+1/2, z3/2; (vii) x, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Spectropôle Service (Aix-Marseille University, France) for use of the diffractometer.

References

First citationAbou, A., Djandé, A., Saba, A., Chiavassa, T. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3.  CrossRef IUCr Journals Google Scholar
First citationAbou, A., Djandé, A., Sessouma, B., Saba, A. & Kakou-Yao, R. (2011). Acta Cryst. E67, o3349.  CrossRef IUCr Journals Google Scholar
First citationAbou, A., Goulizan Bi, S. D., Kaboré, L., Djandé, A., Saba, A. & Kakou-Yao, R. (2009). Z. Naturforsch. Teil B, 64, 328–330.  CrossRef Google Scholar
First citationBianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufman, T. S. (2004). J. Agric. Food Chem. 52, 1923–1927.  CrossRef Google Scholar
First citationBolte, M. (2009). Private Communication (refcode HOPHAL11, deposition No. 757871). CCDC, Cambridge, England.  Google Scholar
First citationBredenkamp, M. W., Dillen, J. L. M., van Rooyen, P. H. & Steyn, P. S. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1835–1839.  CrossRef Google Scholar
First citationBrockway, A. J., González-López, M., Fettinger, J. C. & Shaw, J. T. (2011). J. Org. Chem. 76, 3515–3518.  CrossRef Google Scholar
First citationBuntin, K., Rachid, S., Scharfe, M., Blöcker, H., Weissman, K. J. & Müller, R. (2008). Angew. Chem. Int. Ed. 47, 4595–4599.  Web of Science CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology , Vol. 276, Macromolecular Crystallography , Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X. S. & Liu, L. L. (2014). J. Chem. Pharm. Res. 6, 905–909.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds