organic compounds
Methyl 3-(4-hydroxyphenyl)propionate
aEgyptian Petroleum Research Institute, Nasr City, PO 11727, Cairo, Egypt, bDepartment of Chemistry, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu, 215123, People's Republic of China, cDepartment of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK, dDepartment of Pharmacology, School of Biomedical Sciences, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, UK, and eDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan
*Correspondence e-mail: magdalini.matziari@xjtlu.edu.cn
The title compound, C10H12O3, crystallizes in the orthorhombic P212121 The structure contains a phenolic group with the OH being coplanar with the phenyl ring. The structure exhibits significant hydrogen bonding between the O—H group of one molecule and the CO group of an adjacent one. These O—H⋯O=C interactions form chains of molecules parallel to the b axis. No π–π or C—H⋯π intermolecular interactions are observed.
CCDC reference: 1880603
Structure description
The application of nitrogen-based fertilizers has been a remarkable strategy applied to meet the growing world food and fibre demands over the past 80 years (Galloway et al., 2008). However, these fertilizers increase anthropogenic nitrous oxide production, causing serious effects on the environment in water, the air and soil. One of the important environmentally friendly techniques applied in agriculture to control the rate of the climate-relevant N2O gas emission is the use of inhibitors (Ruser & Schulz, 2015). Among the various inhibitors, methyl 3-(2 or 4-hydroxyphenyl)propionates (MHPPs) are the most important formed in sorghum (Sorghum bicolor; Zakir et al., 2008; Nardi et al., 2013). Additionally, they exhibit an interesting motif in the enzymatic coupling of to proteins, also acting as modulators of the root system architecture (RSA; Martinez et al., 2017; ter Haar et al., 2011). There are various reports on the synthesis of methyl 3-(2-hydroxyphenyl)propionate (Yuthavong et al., 2012; Rosales et al., 2011; Meier et al., 2006), but its has not previously been been reported. As part of our ongoing studies on the synthesis and properties of phenolic compounds (Abdou, 2013a,b, 2017a,b,c, 2018; Abdou et al., 2012a,b,c, 2013, 2015, 2015a,b, 2016; Abdou et al., 2015a,b; Abdou, El-Saeed, Abozeid et al., 2015; Metwally et al., 2012a,b, 2013), we report herein the of methyl 3-(2-hydroxyphenyl)propionate.
The molecular structure of the title compound is depicted in Fig. 1. The phenyl ring is planar with the hydroxyl group being coplanar with a C2—C1—O1—H1H torsion angle of −8 (2)°. The bond distances and angles within the phenolic ring, the propionate group and the co-planarity of OH group with the phenyl ring are consistent with related structures such as methyl 3-(3,5-di-tertbutyl-4-hydroxyphenyl)propionate (Li et al., 2014), 2-(4-acetylanilino)-2-oxoethyl 3-(4-hydroxyphenyl)propionate (Ashraf et al., 2016) and methyl 3-[3-tert-butyl-5-(6-chloro-1-oxybenzotriazol-2-yl)-4-hydroxyphenyl]propionate (Wen et al., 2006).
The ), in which the O1—H1 groups acts as the donor while the carbonyl group of an adjacent molecule (–x + 1, y + , –z + ) being the acceptor. These hydrogen bonds shown as dashed lines in Fig. 2) connect the molecules into chains running parallel to the b axis (Fig. 3). π–π stacking and C—H⋯π interactions are not present in the crystal structure.
exhibits significant hydrogen-bonding interactions (Table 1Synthesis and crystallization
A mixture of dihydrocoumarin (1 ml, 7.89 mmol), a catalytic amount of conc. H2SO4, and 30 ml of dry MeOH were heated under reflux for 5 h. The methanol was removed in vacuo and the residue was neutralized with saturated NaHCO3 solution then diluted with water and extracted with Et2O. The combined organic extracts were dried over MgSO4, filtered and concentrated. The crude compound was crystallized by slow evaporation of a diethyl ether–hexane mixture (2:1 v/v) to give colourless single crystals (1.22 g, 86%). M.p. 41–42°C; IR (KBr, cm−1) 3420, 3055, 1735, 1447. 1H NMR (400 MHz, CDCl3) δ 2.76 (t, J = 6.6 Hz, 3H), 2.95 (t, J = 6.6 Hz, 2H), 3.72 (s, 3H), 6.89 (d, J = 7.4 Hz, 2H), 7.12–7.16 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 24.86, 34.87, 52.24, 116.82, 120.81, 127.07, 128.23, 130.52, 154.26, 175.96. HRMS (ESI/QTOF) m/z: [M]+ calculated for C10H12O3 180.0786, found 180.0774.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1880603
https://doi.org/10.1107/S2414314618016620/rz4027sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618016620/rz4027Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618016620/rz4027Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C10H12O3 | Dx = 1.345 Mg m−3 |
Mr = 180.20 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 2736 reflections |
a = 5.4774 (6) Å | θ = 3.3–27.6° |
b = 11.1557 (12) Å | µ = 0.10 mm−1 |
c = 14.5610 (17) Å | T = 180 K |
V = 889.74 (17) Å3 | Block, colourless |
Z = 4 | 0.35 × 0.15 × 0.10 mm |
F(000) = 384 |
Bruker D8 Venture diffractometer with PHOTON 100 CMOS detecter | 1390 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.056 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 26.0°, θmin = 3.3° |
Tmin = 0.614, Tmax = 0.746 | h = −6→6 |
9443 measured reflections | k = −13→13 |
1756 independent reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0427P)2 + 0.1279P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.091 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.19 e Å−3 |
1756 reflections | Δρmin = −0.15 e Å−3 |
122 parameters | Absolute structure: Flack x determined using 467 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: −0.5 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All hydrogen atoms on carbon atoms were calculated with C–H = 0.95, 0.98 and 0.99 Å for CH (aromatic), CH2 and CH3, respectively, and refined as riding atoms with Uiso(H) = 1.2 Ueq(C) for CH (aromatic) and CH2, and 1.5 Ueq(C) for CH3. The H atoms of the –OH group was located in a differenceFourier map and refined without any constraint. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5468 (3) | 0.18977 (17) | 0.77139 (13) | 0.0302 (5) | |
H1H | 0.642 (6) | 0.235 (3) | 0.740 (2) | 0.051 (11)* | |
O2 | 0.1249 (3) | −0.19195 (17) | 0.84546 (13) | 0.0304 (5) | |
O3 | −0.2348 (3) | −0.18421 (16) | 0.91771 (11) | 0.0267 (5) | |
C1 | 0.3762 (5) | 0.2573 (2) | 0.81696 (17) | 0.0220 (6) | |
C2 | 0.3865 (5) | 0.3815 (2) | 0.8200 (2) | 0.0270 (7) | |
H2A | 0.515418 | 0.422762 | 0.789969 | 0.032* | |
C3 | 0.2091 (5) | 0.4451 (2) | 0.86675 (19) | 0.0293 (7) | |
H3A | 0.215294 | 0.530216 | 0.868476 | 0.035* | |
C4 | 0.0235 (6) | 0.3849 (2) | 0.9108 (2) | 0.0293 (7) | |
H4A | −0.097370 | 0.428212 | 0.943778 | 0.035* | |
C5 | 0.0136 (5) | 0.2607 (2) | 0.90690 (18) | 0.0248 (6) | |
H5A | −0.115233 | 0.219904 | 0.937426 | 0.030* | |
C6 | 0.1866 (4) | 0.1949 (2) | 0.85970 (16) | 0.0203 (6) | |
C7 | 0.1802 (5) | 0.0596 (2) | 0.85041 (19) | 0.0251 (6) | |
H7A | 0.191282 | 0.038987 | 0.784403 | 0.030* | |
H7B | 0.326584 | 0.026163 | 0.881019 | 0.030* | |
C8 | −0.0424 (5) | −0.0006 (2) | 0.88985 (19) | 0.0226 (6) | |
H8A | −0.055581 | 0.020109 | 0.955777 | 0.027* | |
H8B | −0.189442 | 0.030922 | 0.858512 | 0.027* | |
C9 | −0.0375 (5) | −0.1341 (2) | 0.88018 (19) | 0.0209 (6) | |
C10 | −0.2421 (5) | −0.3137 (2) | 0.91727 (19) | 0.0304 (7) | |
H10A | −0.393610 | −0.341096 | 0.946253 | 0.046* | |
H10B | −0.235700 | −0.342708 | 0.853791 | 0.046* | |
H10C | −0.101883 | −0.345081 | 0.951474 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0222 (10) | 0.0322 (11) | 0.0363 (12) | −0.0049 (10) | 0.0094 (9) | 0.0037 (10) |
O2 | 0.0278 (11) | 0.0272 (10) | 0.0362 (11) | 0.0043 (9) | 0.0102 (8) | −0.0033 (10) |
O3 | 0.0245 (10) | 0.0204 (9) | 0.0353 (11) | −0.0020 (9) | 0.0084 (8) | −0.0006 (9) |
C1 | 0.0193 (16) | 0.0266 (15) | 0.0201 (14) | −0.0011 (12) | −0.0020 (12) | 0.0008 (12) |
C2 | 0.0226 (17) | 0.0289 (16) | 0.0296 (18) | −0.0085 (12) | −0.0028 (14) | 0.0050 (12) |
C3 | 0.0329 (16) | 0.0195 (14) | 0.0355 (17) | −0.0050 (13) | −0.0071 (14) | 0.0006 (13) |
C4 | 0.0290 (18) | 0.0259 (16) | 0.0329 (18) | 0.0021 (13) | −0.0005 (15) | −0.0045 (12) |
C5 | 0.0203 (16) | 0.0265 (15) | 0.0276 (16) | −0.0018 (12) | 0.0029 (13) | 0.0009 (12) |
C6 | 0.0190 (13) | 0.0213 (13) | 0.0206 (14) | −0.0018 (12) | −0.0030 (11) | 0.0018 (12) |
C7 | 0.0226 (14) | 0.0248 (15) | 0.0278 (15) | 0.0000 (12) | 0.0048 (13) | 0.0015 (13) |
C8 | 0.0204 (14) | 0.0223 (13) | 0.0251 (14) | 0.0015 (11) | 0.0034 (12) | 0.0013 (12) |
C9 | 0.0200 (14) | 0.0239 (14) | 0.0188 (14) | 0.0001 (12) | 0.0016 (12) | 0.0019 (11) |
C10 | 0.0365 (16) | 0.0195 (14) | 0.0353 (16) | −0.0042 (14) | 0.0031 (13) | 0.0001 (13) |
O1—C1 | 1.372 (3) | C5—C6 | 1.381 (4) |
O1—H1H | 0.86 (3) | C5—H5A | 0.9500 |
O2—C9 | 1.210 (3) | C6—C7 | 1.516 (4) |
O3—C9 | 1.334 (3) | C7—C8 | 1.506 (3) |
O3—C10 | 1.445 (3) | C7—H7A | 0.9900 |
C1—C2 | 1.387 (3) | C7—H7B | 0.9900 |
C1—C6 | 1.397 (4) | C8—C9 | 1.496 (3) |
C2—C3 | 1.382 (4) | C8—H8A | 0.9900 |
C2—H2A | 0.9500 | C8—H8B | 0.9900 |
C3—C4 | 1.377 (4) | C10—H10A | 0.9800 |
C3—H3A | 0.9500 | C10—H10B | 0.9800 |
C4—C5 | 1.388 (4) | C10—H10C | 0.9800 |
C4—H4A | 0.9500 | ||
C1—O1—H1H | 111 (2) | C8—C7—H7A | 108.4 |
C9—O3—C10 | 116.1 (2) | C6—C7—H7A | 108.4 |
O1—C1—C2 | 122.4 (3) | C8—C7—H7B | 108.4 |
O1—C1—C6 | 116.6 (2) | C6—C7—H7B | 108.4 |
C2—C1—C6 | 120.9 (3) | H7A—C7—H7B | 107.5 |
C3—C2—C1 | 120.0 (3) | C9—C8—C7 | 113.2 (2) |
C3—C2—H2A | 120.0 | C9—C8—H8A | 108.9 |
C1—C2—H2A | 120.0 | C7—C8—H8A | 108.9 |
C4—C3—C2 | 119.8 (3) | C9—C8—H8B | 108.9 |
C4—C3—H3A | 120.1 | C7—C8—H8B | 108.9 |
C2—C3—H3A | 120.1 | H8A—C8—H8B | 107.8 |
C3—C4—C5 | 119.8 (3) | O2—C9—O3 | 122.9 (2) |
C3—C4—H4A | 120.1 | O2—C9—C8 | 125.7 (2) |
C5—C4—H4A | 120.1 | O3—C9—C8 | 111.4 (2) |
C6—C5—C4 | 121.6 (3) | O3—C10—H10A | 109.5 |
C6—C5—H5A | 119.2 | O3—C10—H10B | 109.5 |
C4—C5—H5A | 119.2 | H10A—C10—H10B | 109.5 |
C5—C6—C1 | 117.8 (2) | O3—C10—H10C | 109.5 |
C5—C6—C7 | 123.9 (2) | H10A—C10—H10C | 109.5 |
C1—C6—C7 | 118.3 (2) | H10B—C10—H10C | 109.5 |
C8—C7—C6 | 115.4 (2) | ||
O1—C1—C2—C3 | 179.8 (2) | O1—C1—C6—C7 | −1.6 (3) |
C6—C1—C2—C3 | 0.8 (4) | C2—C1—C6—C7 | 177.5 (2) |
C1—C2—C3—C4 | 0.5 (4) | C5—C6—C7—C8 | 5.0 (4) |
C2—C3—C4—C5 | −0.9 (4) | C1—C6—C7—C8 | −174.0 (2) |
C3—C4—C5—C6 | 0.1 (5) | C6—C7—C8—C9 | −179.1 (2) |
C4—C5—C6—C1 | 1.2 (4) | C10—O3—C9—O2 | 1.8 (4) |
C4—C5—C6—C7 | −177.9 (3) | C10—O3—C9—C8 | −176.4 (2) |
O1—C1—C6—C5 | 179.3 (2) | C7—C8—C9—O2 | 0.5 (4) |
C2—C1—C6—C5 | −1.6 (4) | C7—C8—C9—O3 | 178.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1H···O2i | 0.86 (3) | 1.96 (4) | 2.805 (3) | 169 (3) |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
References
Abdou, M. M. (2013a). New Azo Disperse Dyes Derived from 3-(Hydroxyphenyl)-2-Pyrazolin-5-One, 1st, pp. 21–50. Köln: Lambert Academic Publishing AG & Co. KG. Google Scholar
Abdou, M. M. (2013b). Azo Disperse Dyes with 2-Pyrazolin-5-Ones for Dyeing Polyester Fabrics, 1st, pp. 30–60. Köln: Lambert Academic Publishing AG & Co. KG. Google Scholar
Abdou, M. M. (2018). Arab. J. Chem. 11, 1061–1071. CrossRef Google Scholar
Abdou, M. M. (2017a). Arab. J. Chem. 10, S3324–S3337. CrossRef Google Scholar
Abdou, M. M. (2017b). Arab. J. Chem. 10, S3664–S3675. CrossRef Google Scholar
Abdou, M. M. (2017c). Arab. J. Chem. 10, S3955–S3961. CrossRef Google Scholar
Abdou, M. M., Bondock, S., El-Desouky, E. I. & Metwally, M. A. (2012b). Int. J. Modern Org. Chem. 1, 19–54. Google Scholar
Abdou, M. M., Bondock, S., El-Desouky, E. I. & Metwally, M. A. (2012c). Int. J. Modern Org. Chem. 1, 165–192. Google Scholar
Abdou, M. M., Bondock, S., El-Desouky, E. I. & Metwally, M. A. (2013). Am. J. Chem. 3, 59–67. Google Scholar
Abdou, M. M., El-Saeed, R. A., Abozeid, M. A., Sadek, M. G., Zaki, E., Barakat, Y., Ibrahim, H., Fathy, M., Shabana, S., Amine, M. & Bondock, S. (2015). Arab. J. Chem. In the press. https: doi: 10.1016/j. arabjc. 2015.11.004. Google Scholar
Abdou, M. M., El-Saeed, R. A. & Bondock, S. (2015a). Arab. J. Chem. In the press. doi: 10.1016/j. arabjc. 2015.06.012. Google Scholar
Abdou, M. M., El-Saeed, R. A. & Bondock, S. (2015b). Arab. J. Chem. In the press. doi: 10.1016/j. arabjc. 2015.06.029. Google Scholar
Abdou, M. M., El-Saeed, R. A., Elattar, K. M., Seferoğlu, Z. & Boukouvalas, J. (2016). Mol. Divers. 20, 989–999. CrossRef Google Scholar
Ashraf, Z., Kim, D., Seo, S.-Y. & Kang, S. K. (2016). Acta Cryst. E72, 933–936. CrossRef IUCr Journals Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P. & Sutton, M. A. (2008). Science, 320, 889–892. CrossRef Google Scholar
Haar, R. ter, Wildschut, J., Sugih, A. K., Möller, W. B., de Waard, P., Boeriu, C. G., Heeres, H. J., Schols, H. A. & Gruppen, H. (2011). Carbohydr. Res. 346, 1005–1012. Google Scholar
Li, X., Wang, Z.-G., Chen, H.-H. & Liu, S.-G. (2014). Acta Cryst. C70, 1050–1053. CrossRef IUCr Journals Google Scholar
Martinez, A. P., Qamar, B., Fuerst, T. R., Muro, S. & Andrianov, A. K. (2017). Biomacromolecules, 18, 2000–2011. CrossRef Google Scholar
Meier, C., Ducho, C., Jessen, H., Vukadinović-Tenter, D. & Balzarini, J. (2006). Eur. J. Org. Chem. pp. 197–206. CrossRef Google Scholar
Metwally, M. A., Bondock, S., I. El-Desouky, E.. & M. Abdou, M. (2012a). Ame. J. Chem. 2, 347–354. Google Scholar
Metwally, M. A., Bondock, S., El-Desouky, E. I. & Abdou, M. M. (2012a). J. Korean Chem. Soc. 56, 82–91. CrossRef Google Scholar
Metwally, M. A., Bondock, S., El-Desouky, S. I. & Abdou, M. M. (2012b). J. Korean Chem. Soc. 56, 348–356. CrossRef Google Scholar
Metwally, M. A., Bondock, S., El-Desouky, E. I. & Abdou, M. M. (2013). Coloration Technol. 129, 418–424. CrossRef Google Scholar
Nardi, P., Akutsu, M., Pariasca-Tanaka, J. & Wissuwa, M. (2013). Plant Soil, 367, 627–637. CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rosales, A., Rodríguez-García, I., López-Sánchez, C., Álvarez-Corral, M. & Muñoz-Dorado, M. (2011). Tetrahedron, 67, 3071–3075. CrossRef Google Scholar
Ruser, R. & Schulz, R. (2015). J. Plant Nutr. Soil Sci. 178, 171–188. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wen, H.-L., Chen, Y.-H., Hu, H.-W., Zhou, X.-Y. & Liu, C.-B. (2006). Acta Cryst. E62, o4702–o4703. Web of Science CrossRef IUCr Journals Google Scholar
Yuthavong, Y., Tarnchompoo, B., Vilaivan, T., Chitnumsub, P., Kamchonwongpaisan, S., Charman, S. A., McLennan, D. N., White, K. L., Vivas, L., Bongard, E., Thongphanchang, C., Taweechai, S., Vanichtanankul, J., Rattanajak, R., Arwon, U., Fantauzzi, P., Yuvaniyama, J., Charman, W. N. & Matthews, D. (2012). Proc. Natl Acad. Sci. USA, 109, 16823–16828. CrossRef Google Scholar
Zakir, H. A., Subbarao, G. V., Pearse, S. J., Gopalakrishnan, S., Ito, O., Ishikawa, T., Kawano, N., Nakahara, K., Yoshihashi, T., Ono, H. & Yoshida, M. (2008). New Phytol. 180, 442–451. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.