organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,1-Di­phenyl-4-(thio­phen-2-yl)but-3-yn-1-ol

CROSSMARK_Color_square_no_text.svg

aEscuela de Química, Universidad de Costa Rica, 2060 San José, Costa Rica, and bCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 2060 San José, Costa Rica
*Correspondence e-mail: jorge.cabezas@ucr.ac.cr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 20 October 2018; accepted 14 November 2018; online 22 November 2018)

The asymmetric unit of the title homopropargyl alcohol, C20H16OS, contains two independent mol­ecules comprising a hy­droxy group, a 3-(2-thio­phen­yl)propargylic moiety and two aromatic rings linked to a central carbon atom. The two unique molecules are linked into a dimer by an O—H⋯O hydrogen bond. In one mol­ecule, the thio­phene ring is disordered over two orientations rotated by 180° with a refined occupancy ratio of 0.575 (4):0.425 (4). The crystal structure is stabilized by O—H⋯π and C—H⋯π hydrogen-bond inter­actions. The crystal studied was a two-component non-merohedral twin, the refined ratio of the twin components being 0.575 (4):0.425 (4).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,1,4-Aromatic tris­ubstituted homopropargylic alcohols are difficult to synthesize efficiently. They are very useful inter­mediates in the synthesis of a variety of organic compounds (Kim et al., 2017[Kim, J., Jeong, W. & Rhee, Y. H. (2017). Org. Lett. 19, 242-245.]; Foley & Leighton, 2015[Foley, C. N. & Leighton, J. L. (2015). Org. Lett. 17, 5858-5861.]; Francais et al., 2010[Francais, A., Leyva, A., Etxebarria-Jardi, G. & Ley, S. V. (2010). Org. Lett. 12, 340-343.]; Hosseyni et al., 2016[Hosseyni, S., Wojtas, L., Li, M. & Shi, X. (2016). J. Am. Chem. Soc. 138, 3994-3997.]; Gao et al., 2014[Gao, P., Li, H. X., Hao, X. H., Jin, D. P., Chen, D. Q., Yan, X. B., Wu, X. X., Song, X. R., Liu, X. Y. & Liang, Y. M. (2014). Org. Lett. 16, 6298-6301.]; Trost & Rhee 2003[Trost, B. M. & Rhee, Y. H. (2003). J. Am. Chem. Soc. 125, 7482-7483.]; Yadav & Maiti, 2002[Yadav, J. S. & Maiti, A. (2002). Tetrahedron, 58, 4955-4961.]). In this work, the crystal structure of the homopropargyl alcohol 1,1-diphenyl-4-(2-thio­phen­yl)-3-butyn-1-ol is reported.

The title compound crystallizes with two mol­ecules in the asymmetric unit. Each mol­ecule contains a central carbon atom (C1_1 or C1_2) which is bound to a hy­droxy group, a 3-(2-thio­phen­yl)propargylic fragment and two phenyl substituents, leading to a distorted tetra­hedral geometry as it departs from the ideal value (109.5°) with angles spanning from 105.1 (3) to 114.0 (3)° (Fig. 1[link]). The lengths of the carbon–carbon triple bonds (C3_1—C4_1 and C3_2—C4_2) are 1.193 (5) and 1.189 (5) Å, respectively. The propargylic units (C4_1—C3_1—C2_1 and C4_2—C3_2—C2_2) exhibit angles of 176.4 (4) and 178.5 (4)°, slightly distorted from the expected linear geometry. The two mol­ecules are linked by an O1_2—H1_2⋯O1_1 hydrogen bond (Fig. 1[link], Table 1[link]), forming a dimeric unit. In the crystal (Fig. 2[link]), mol­ecules are linked into a three-dimensional network by O—H⋯π and C—H⋯π inter­actions (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C15_2–C20_2, C15_1–C20_1 and S1_1/C5_1–C8_1 rings, respectively; Cg4 is the centroid of the disordered S1_2/S1′_2/C6_2/C6′_2/C5_2/C7_2/C8_2 thio­phene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1_2—H1_2⋯O1_1 0.85 (4) 2.08 (4) 2.864 (4) 153 (4)
O1_1—H1_1⋯Cg1i 0.86 (5) 2.69 (5) 3.516 (3) 162 (4)
C8_1—H8_1⋯Cg2ii 0.95 2.88 3.489 (5) 123
C8_2—H8_2⋯Cg1iii 0.95 2.92 3.519 (5) 123
C16_2—H16_2⋯Cg3iv 0.95 2.86 3.648 (4) 141
C20_2—H20_2⋯Cg3 0.95 2.99 3.658 (4) 129
C16_1—H16_1⋯Cg4v 0.95 2.92 3.679 (6) 137
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x-1, y, z; (v) x+1, y, z.
[Figure 1]
Figure 1
The title mol­ecules with 50% probability ellipsoids. The inter­molecular O—H⋯O hydrogen bond is shown as a black dotted line.
[Figure 2]
Figure 2
Crystal packing of the title compound viewed approximately down the a axis.

Synthesis and crystallization

The title compound was prepared in a one-pot reaction according to the previously reported procedure (Umaña & Cabezas, 2017[Umaña, C. A. & Cabezas, J. A. (2017). J. Org. Chem. 82, 9505-9514.]). The product was purified by column chromato­graphy and recrystallized from an ethyl ether:hexa­nes (1:1 v/v) solvent mixture to give colourless block-shaped crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the last cycles of refinement an outlier ([\overline{4}]47) was omitted and enhanced rigid-bond restraints (RIGU instruction in SHELXL) were applied. The crystal used for the X-ray diffraction experiment was a two-component non-merohedral twin, the refined ratio of the twin components being 0.575 (4):0.425 (4). One thio­phene ring is rotationally disordered by approximately 180° over two positions with a refined occupancy ratio 0.575 (4):0425 (4).

Table 2
Experimental details

Crystal data
Chemical formula C20H16OS
Mr 304.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.4240 (4), 16.0262 (7), 20.8913 (10)
β (°) 99.042 (1)
V3) 3116.0 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.35 × 0.25 × 0.15
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.665, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 6312, 6312, 3628
Rint 0.020
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.137, 1.04
No. of reflections 6312
No. of parameters 423
No. of restraints 363
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.36
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, WI, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: APEX3 (Bruker, 2017) and PLATON (Spek, 2009).

1,1-Diphenyl-4-(thiophen-2-yl)but-3-yn-1-ol top
Crystal data top
C20H16OSF(000) = 1280
Mr = 304.39Dx = 1.298 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4240 (4) ÅCell parameters from 9969 reflections
b = 16.0262 (7) Åθ = 2.5–24.9°
c = 20.8913 (10) ŵ = 0.21 mm1
β = 99.042 (1)°T = 100 K
V = 3116.0 (2) Å3Block, colorless
Z = 80.35 × 0.25 × 0.15 mm
Data collection top
Bruker D8 VENTURE
diffractometer
6312 independent reflections
Radiation source: sealed tube, Siemens KFFMO2K-903628 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.020
Detector resolution: 10.4167 pixels mm-1θmax = 25.4°, θmin = 2.5°
ω and φ scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 019
Tmin = 0.665, Tmax = 0.746l = 025
6312 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: mixed
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0291P)2 + 3.993P]
where P = (Fo2 + 2Fc2)/3
6312 reflections(Δ/σ)max < 0.001
423 parametersΔρmax = 0.36 e Å3
363 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component non-merohedral twin. Twin ratio: 0.1944 (18), Disorder is present in the sulfur position of the second molecule. This sulfur is also present at the site of C6, and C6 is present at S1. The SOF for the primary positions of S1 and C6 is 0.575 (4),

The hydroxy H atoms were located in a difference Fourier map and refined isotropically with Uiso(H) = 1.5 Ueq(O). All other H atoms were placed geometrically and refined using a riding atom approximation, with C–H = 0.95–0.99 Å and with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1_10.89408 (11)0.25822 (7)0.55877 (5)0.0256 (3)
O1_10.5644 (3)0.40979 (17)0.34584 (12)0.0193 (6)
H1_10.569 (4)0.463 (3)0.3412 (18)0.029*
C1_10.6758 (4)0.3760 (2)0.31374 (17)0.0149 (8)
C2_10.8186 (4)0.4171 (2)0.34297 (16)0.0196 (9)
H2A_10.8960070.3963520.3201010.024*
H2AB_10.8110960.4782330.336390.024*
C3_10.8565 (4)0.3994 (2)0.41259 (18)0.0199 (9)
C4_10.8800 (4)0.3829 (2)0.46898 (18)0.0177 (9)
C5_10.9078 (4)0.3615 (2)0.53574 (17)0.0161 (8)
C6_10.9475 (4)0.4114 (2)0.58869 (17)0.0175 (9)
H6_10.961690.4699440.5862970.021*
C7_10.9651 (4)0.3658 (2)0.64742 (18)0.0210 (9)
H7_10.9913890.3907810.6888110.025*
C8_10.9406 (4)0.2829 (3)0.63877 (18)0.0229 (9)
H8_10.9483740.2433510.6730370.027*
C9_10.6712 (4)0.2825 (2)0.32478 (16)0.0160 (8)
C10_10.7942 (4)0.2332 (2)0.33579 (17)0.0222 (9)
H10_10.8860560.2582880.3376020.027*
C11_10.7836 (5)0.1480 (3)0.34412 (18)0.0279 (10)
H11_10.8683510.1150140.3519310.034*
C12_10.6509 (5)0.1103 (3)0.34117 (18)0.0301 (10)
H12_10.6437410.0516720.3463390.036*
C13_10.5290 (5)0.1592 (3)0.33062 (18)0.0281 (10)
H13_10.4373250.1338610.3289960.034*
C14_10.5385 (4)0.2441 (2)0.32240 (17)0.0212 (9)
H14_10.4533050.2766860.315030.025*
C15_10.6432 (4)0.3940 (2)0.24053 (16)0.0153 (8)
C16_10.7410 (4)0.3718 (2)0.20010 (17)0.0185 (9)
H16_10.8294140.3463880.218130.022*
C17_10.7116 (4)0.3860 (2)0.13419 (17)0.0216 (9)
H17_10.77920.3701210.1071610.026*
C18_10.5834 (4)0.4235 (2)0.10747 (18)0.0214 (9)
H18_10.5639120.434780.0622990.026*
C19_10.4846 (4)0.4444 (2)0.14678 (17)0.0206 (9)
H19_10.3959390.4692080.1284690.025*
C20_10.5136 (4)0.4295 (2)0.21297 (17)0.0178 (9)
H20_10.4442270.4436050.2395920.021*
S1_20.1569 (7)0.2927 (3)0.2463 (2)0.0216 (9)0.575 (4)
S1'_20.1245 (12)0.4662 (5)0.2240 (4)0.0219 (14)0.425 (4)
O1_20.5308 (3)0.37527 (17)0.47711 (12)0.0218 (7)
H1_20.519 (4)0.373 (2)0.436 (2)0.033*
C1_20.4005 (4)0.3526 (2)0.49912 (16)0.0169 (8)
C2_20.2812 (4)0.4146 (2)0.47095 (16)0.0198 (9)
H2A_20.1948540.4042790.4913820.024*
H2AB_20.3143410.4721850.4820320.024*
C3_20.2420 (4)0.4077 (2)0.40064 (18)0.0192 (9)
C4_20.2097 (4)0.4002 (2)0.34357 (18)0.0199 (9)
C5_20.1691 (4)0.3879 (3)0.27521 (17)0.0200 (9)
C6_20.133 (3)0.4500 (14)0.2293 (12)0.023 (4)0.575 (4)
H6_20.1313940.508240.2377890.028*0.575 (4)
C6'_20.162 (4)0.3085 (17)0.2360 (13)0.027 (5)0.425 (4)
H6'_20.1890150.2548260.2530660.032*0.425 (4)
C7_20.0954 (4)0.4089 (3)0.16213 (19)0.0252 (10)
H7_20.0668070.4372840.1222650.03*
C8_20.1100 (4)0.3262 (3)0.16962 (18)0.0242 (10)
H8_20.0947880.2888210.1338920.029*
C9_20.3636 (4)0.2613 (2)0.48320 (16)0.0166 (8)
C10_20.2235 (4)0.2333 (2)0.46501 (17)0.0217 (9)
H10_20.1463250.272160.4598490.026*
C11_20.1956 (5)0.1489 (3)0.45433 (18)0.0285 (10)
H11_20.0997190.1305360.4409260.034*
C12_20.3065 (5)0.0914 (3)0.46307 (18)0.0284 (10)
H12_20.286910.0335780.4570950.034*
C13_20.4461 (5)0.1192 (3)0.48061 (18)0.0268 (10)
H13_20.5229660.0802090.4857780.032*
C14_20.4746 (4)0.2031 (2)0.49067 (17)0.0219 (9)
H14_20.5710030.2213110.5028220.026*
C15_20.4281 (4)0.3632 (2)0.57297 (16)0.0151 (8)
C16_20.3218 (4)0.3432 (2)0.60937 (17)0.0186 (9)
H16_20.2315950.3233010.5881480.022*
C17_20.3449 (4)0.3519 (2)0.67595 (17)0.0189 (9)
H17_20.2710620.3378540.7002210.023*
C18_20.4758 (4)0.3811 (2)0.70726 (17)0.0199 (9)
H18_20.4918570.3876740.7530180.024*
C19_20.5828 (4)0.4005 (2)0.67169 (17)0.0185 (9)
H19_20.6730680.4202440.6930280.022*
C20_20.5590 (4)0.3914 (2)0.60476 (17)0.0166 (8)
H20_20.6333450.4047360.5805960.02*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1_10.0310 (6)0.0225 (6)0.0220 (5)0.0020 (5)0.0003 (4)0.0024 (5)
O1_10.0234 (15)0.0185 (15)0.0175 (14)0.0029 (13)0.0080 (11)0.0002 (12)
C1_10.0135 (19)0.018 (2)0.0140 (18)0.0011 (16)0.0045 (15)0.0005 (16)
C2_10.022 (2)0.021 (2)0.016 (2)0.0040 (18)0.0014 (16)0.0030 (16)
C3_10.017 (2)0.021 (2)0.021 (2)0.0035 (18)0.0023 (16)0.0008 (17)
C4_10.012 (2)0.022 (2)0.0185 (19)0.0017 (17)0.0012 (16)0.0031 (16)
C5_10.012 (2)0.017 (2)0.0192 (19)0.0001 (17)0.0027 (16)0.0004 (15)
C6_10.013 (2)0.021 (2)0.017 (2)0.0002 (17)0.0005 (16)0.0007 (16)
C7_10.014 (2)0.030 (2)0.019 (2)0.0028 (18)0.0025 (16)0.0004 (17)
C8_10.020 (2)0.031 (2)0.018 (2)0.0059 (19)0.0054 (17)0.0096 (17)
C9_10.023 (2)0.018 (2)0.0081 (19)0.0033 (16)0.0045 (16)0.0003 (15)
C10_10.026 (2)0.024 (2)0.018 (2)0.0050 (18)0.0085 (17)0.0014 (17)
C11_10.039 (3)0.026 (2)0.019 (2)0.015 (2)0.0068 (19)0.0023 (18)
C12_10.057 (3)0.016 (2)0.019 (2)0.001 (2)0.009 (2)0.0002 (17)
C13_10.040 (3)0.024 (2)0.021 (2)0.010 (2)0.006 (2)0.0034 (18)
C14_10.027 (2)0.020 (2)0.017 (2)0.0009 (18)0.0034 (17)0.0002 (17)
C15_10.023 (2)0.012 (2)0.0101 (18)0.0034 (16)0.0011 (15)0.0004 (15)
C16_10.015 (2)0.024 (2)0.0160 (19)0.0024 (17)0.0014 (15)0.0036 (17)
C17_10.023 (2)0.026 (2)0.017 (2)0.0051 (18)0.0077 (17)0.0025 (17)
C18_10.027 (2)0.023 (2)0.014 (2)0.0082 (19)0.0016 (17)0.0008 (17)
C19_10.021 (2)0.019 (2)0.020 (2)0.0028 (18)0.0015 (16)0.0022 (17)
C20_10.020 (2)0.017 (2)0.0166 (19)0.0005 (17)0.0027 (16)0.0002 (16)
S1_20.0247 (18)0.0207 (19)0.0177 (16)0.0029 (14)0.0013 (12)0.0034 (11)
S1'_20.024 (3)0.023 (3)0.016 (2)0.0003 (19)0.0058 (17)0.0051 (15)
O1_20.0211 (15)0.0330 (17)0.0128 (13)0.0020 (13)0.0068 (12)0.0039 (13)
C1_20.017 (2)0.023 (2)0.0107 (18)0.0007 (17)0.0027 (15)0.0012 (16)
C2_20.022 (2)0.022 (2)0.0146 (19)0.0030 (18)0.0002 (17)0.0030 (16)
C3_20.014 (2)0.024 (2)0.019 (2)0.0025 (18)0.0030 (16)0.0025 (17)
C4_20.010 (2)0.029 (2)0.022 (2)0.0003 (17)0.0027 (16)0.0042 (17)
C5_20.014 (2)0.029 (2)0.0165 (19)0.0015 (18)0.0024 (16)0.0023 (17)
C6_20.028 (10)0.023 (7)0.020 (6)0.004 (6)0.008 (6)0.003 (4)
C6'_20.026 (10)0.024 (7)0.029 (6)0.007 (7)0.003 (7)0.003 (5)
C7_20.019 (2)0.033 (3)0.023 (2)0.000 (2)0.0023 (17)0.0048 (18)
C8_20.017 (2)0.038 (3)0.017 (2)0.000 (2)0.0010 (17)0.0071 (18)
C9_20.023 (2)0.021 (2)0.0053 (18)0.0002 (17)0.0001 (15)0.0001 (15)
C10_20.023 (2)0.026 (2)0.015 (2)0.0020 (18)0.0014 (17)0.0008 (17)
C11_20.032 (2)0.034 (3)0.018 (2)0.005 (2)0.0007 (18)0.0039 (19)
C12_20.046 (3)0.019 (2)0.020 (2)0.004 (2)0.004 (2)0.0049 (18)
C13_20.036 (2)0.024 (2)0.019 (2)0.004 (2)0.0011 (19)0.0017 (18)
C14_20.026 (2)0.024 (2)0.014 (2)0.0026 (18)0.0010 (17)0.0001 (17)
C15_20.018 (2)0.014 (2)0.0136 (18)0.0049 (16)0.0034 (15)0.0002 (15)
C16_20.016 (2)0.024 (2)0.0152 (19)0.0015 (18)0.0016 (15)0.0012 (17)
C17_20.022 (2)0.022 (2)0.015 (2)0.0012 (18)0.0070 (16)0.0007 (16)
C18_20.028 (2)0.019 (2)0.0126 (19)0.0027 (18)0.0017 (16)0.0017 (16)
C19_20.018 (2)0.017 (2)0.019 (2)0.0014 (17)0.0025 (16)0.0032 (16)
C20_20.015 (2)0.016 (2)0.020 (2)0.0015 (17)0.0042 (16)0.0035 (16)
Geometric parameters (Å, º) top
S1_1—C8_11.706 (4)S1'_2—C5_21.660 (7)
S1_1—C5_11.734 (4)O1_2—C1_21.424 (4)
O1_1—C1_11.437 (4)O1_2—H1_20.85 (4)
O1_1—H1_10.85 (4)C1_2—C9_21.528 (5)
C1_1—C9_11.518 (5)C1_2—C15_21.533 (5)
C1_1—C2_11.536 (5)C1_2—C2_21.547 (5)
C1_1—C15_11.539 (5)C2_2—C3_21.461 (5)
C2_1—C3_11.470 (5)C2_2—H2A_20.99
C2_1—H2A_10.99C2_2—H2AB_20.99
C2_1—H2AB_10.99C3_2—C4_21.189 (5)
C3_1—C4_11.193 (5)C4_2—C5_21.433 (5)
C4_1—C5_11.420 (5)C5_2—C6_21.388 (18)
C5_1—C6_11.369 (5)C5_2—C6'_21.51 (3)
C6_1—C7_11.415 (5)C6_2—C7_21.54 (3)
C6_1—H6_10.95C6_2—H6_20.95
C7_1—C8_11.356 (5)C6'_2—C8_21.43 (3)
C7_1—H7_10.95C6'_2—H6'_20.95
C8_1—H8_10.95C7_2—C8_21.339 (5)
C9_1—C14_11.389 (5)C7_2—H7_20.95
C9_1—C10_11.392 (5)C8_2—H8_20.95
C10_1—C11_11.383 (5)C9_2—C10_21.390 (5)
C10_1—H10_10.95C9_2—C14_21.391 (5)
C11_1—C12_11.381 (6)C10_2—C11_21.389 (5)
C11_1—H11_10.95C10_2—H10_20.95
C12_1—C13_11.379 (6)C11_2—C12_21.383 (6)
C12_1—H12_10.95C11_2—H11_20.95
C13_1—C14_11.376 (5)C12_2—C13_21.382 (6)
C13_1—H13_10.95C12_2—H12_20.95
C14_1—H14_10.95C13_2—C14_21.381 (5)
C15_1—C20_11.387 (5)C13_2—H13_20.95
C15_1—C16_11.391 (5)C14_2—H14_20.95
C16_1—C17_11.380 (5)C15_2—C20_21.382 (5)
C16_1—H16_10.95C15_2—C16_21.387 (5)
C17_1—C18_11.386 (5)C16_2—C17_21.381 (5)
C17_1—H17_10.95C16_2—H16_20.95
C18_1—C19_11.376 (5)C17_2—C18_21.384 (5)
C18_1—H18_10.95C17_2—H17_20.95
C19_1—C20_11.387 (5)C18_2—C19_21.379 (5)
C19_1—H19_10.95C18_2—H18_20.95
C20_1—H20_10.95C19_2—C20_21.388 (5)
S1_2—C5_21.640 (7)C19_2—H19_20.95
S1_2—C8_21.681 (6)C20_2—H20_20.95
S1'_2—C7_21.574 (11)
C8_1—S1_1—C5_191.83 (19)C9_2—C1_2—C15_2108.8 (3)
C1_1—O1_1—H1_1106 (3)O1_2—C1_2—C2_2109.0 (3)
O1_1—C1_1—C9_1105.1 (3)C9_2—C1_2—C2_2113.9 (3)
O1_1—C1_1—C2_1108.2 (3)C15_2—C1_2—C2_2108.0 (3)
C9_1—C1_1—C2_1114.0 (3)C3_2—C2_2—C1_2112.8 (3)
O1_1—C1_1—C15_1110.3 (3)C3_2—C2_2—H2A_2109.0
C9_1—C1_1—C15_1109.3 (3)C1_2—C2_2—H2A_2109.0
C2_1—C1_1—C15_1109.9 (3)C3_2—C2_2—H2AB_2109.0
C3_1—C2_1—C1_1111.8 (3)C1_2—C2_2—H2AB_2109.0
C3_1—C2_1—H2A_1109.3H2A_2—C2_2—H2AB_2107.8
C1_1—C2_1—H2A_1109.3C4_2—C3_2—C2_2178.5 (4)
C3_1—C2_1—H2AB_1109.3C3_2—C4_2—C5_2177.8 (4)
C1_1—C2_1—H2AB_1109.3C6_2—C5_2—C4_2126.1 (12)
H2A_1—C2_1—H2AB_1107.9C4_2—C5_2—C6'_2129.6 (10)
C4_1—C3_1—C2_1176.4 (4)C6_2—C5_2—S1_2114.7 (11)
C3_1—C4_1—C5_1178.7 (4)C4_2—C5_2—S1_2119.2 (3)
C6_1—C5_1—C4_1129.6 (4)C4_2—C5_2—S1'_2122.7 (4)
C6_1—C5_1—S1_1110.9 (3)C6'_2—C5_2—S1'_2107.6 (10)
C4_1—C5_1—S1_1119.6 (3)C5_2—C6_2—C7_2108.6 (16)
C5_1—C6_1—C7_1112.2 (4)C5_2—C6_2—H6_2125.7
C5_1—C6_1—H6_1123.9C7_2—C6_2—H6_2125.7
C7_1—C6_1—H6_1123.9C8_2—C6'_2—C5_2109.8 (16)
C8_1—C7_1—C6_1113.4 (4)C8_2—C6'_2—H6'_2125.1
C8_1—C7_1—H7_1123.3C5_2—C6'_2—H6'_2125.1
C6_1—C7_1—H7_1123.3C8_2—C7_2—C6_2108.2 (8)
C7_1—C8_1—S1_1111.7 (3)C8_2—C7_2—S1'_2118.7 (4)
C7_1—C8_1—H8_1124.2C8_2—C7_2—H7_2125.9
S1_1—C8_1—H8_1124.2C6_2—C7_2—H7_2125.9
C14_1—C9_1—C10_1118.4 (4)C7_2—C8_2—C6'_2108.9 (12)
C14_1—C9_1—C1_1118.7 (3)C7_2—C8_2—S1_2115.7 (4)
C10_1—C9_1—C1_1122.9 (3)C7_2—C8_2—H8_2122.1
C11_1—C10_1—C9_1120.5 (4)S1_2—C8_2—H8_2122.1
C11_1—C10_1—H10_1119.8C10_2—C9_2—C14_2118.7 (4)
C9_1—C10_1—H10_1119.8C10_2—C9_2—C1_2122.8 (3)
C12_1—C11_1—C10_1120.6 (4)C14_2—C9_2—C1_2118.4 (3)
C12_1—C11_1—H11_1119.7C11_2—C10_2—C9_2120.3 (4)
C10_1—C11_1—H11_1119.7C11_2—C10_2—H10_2119.8
C13_1—C12_1—C11_1119.0 (4)C9_2—C10_2—H10_2119.8
C13_1—C12_1—H12_1120.5C12_2—C11_2—C10_2120.5 (4)
C11_1—C12_1—H12_1120.5C12_2—C11_2—H11_2119.7
C14_1—C13_1—C12_1120.8 (4)C10_2—C11_2—H11_2119.7
C14_1—C13_1—H13_1119.6C13_2—C12_2—C11_2119.2 (4)
C12_1—C13_1—H13_1119.6C13_2—C12_2—H12_2120.4
C13_1—C14_1—C9_1120.7 (4)C11_2—C12_2—H12_2120.4
C13_1—C14_1—H14_1119.7C14_2—C13_2—C12_2120.5 (4)
C9_1—C14_1—H14_1119.7C14_2—C13_2—H13_2119.7
C20_1—C15_1—C16_1118.5 (3)C12_2—C13_2—H13_2119.7
C20_1—C15_1—C1_1121.0 (3)C13_2—C14_2—C9_2120.7 (4)
C16_1—C15_1—C1_1120.5 (3)C13_2—C14_2—H14_2119.7
C17_1—C16_1—C15_1121.0 (3)C9_2—C14_2—H14_2119.7
C17_1—C16_1—H16_1119.5C20_2—C15_2—C16_2118.6 (3)
C15_1—C16_1—H16_1119.5C20_2—C15_2—C1_2121.1 (3)
C16_1—C17_1—C18_1120.0 (4)C16_2—C15_2—C1_2120.2 (3)
C16_1—C17_1—H17_1120.0C17_2—C16_2—C15_2121.1 (4)
C18_1—C17_1—H17_1120.0C17_2—C16_2—H16_2119.5
C19_1—C18_1—C17_1119.6 (3)C15_2—C16_2—H16_2119.5
C19_1—C18_1—H18_1120.2C16_2—C17_2—C18_2119.9 (4)
C17_1—C18_1—H18_1120.2C16_2—C17_2—H17_2120.1
C18_1—C19_1—C20_1120.5 (4)C18_2—C17_2—H17_2120.1
C18_1—C19_1—H19_1119.8C19_2—C18_2—C17_2119.7 (3)
C20_1—C19_1—H19_1119.8C19_2—C18_2—H18_2120.2
C19_1—C20_1—C15_1120.4 (4)C17_2—C18_2—H18_2120.2
C19_1—C20_1—H20_1119.8C18_2—C19_2—C20_2120.2 (4)
C15_1—C20_1—H20_1119.8C18_2—C19_2—H19_2119.9
C5_2—S1_2—C8_292.7 (3)C20_2—C19_2—H19_2119.9
C7_2—S1'_2—C5_294.7 (5)C15_2—C20_2—C19_2120.6 (3)
C1_2—O1_2—H1_2109 (3)C15_2—C20_2—H20_2119.7
O1_2—C1_2—C9_2110.6 (3)C19_2—C20_2—H20_2119.7
O1_2—C1_2—C15_2106.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C15_2–C20_2, C15_1–C20_1 and S1_1/C5_1–C8_1 rings, respectively; Cg4 is the centroid of the disordered S1_2/S1'_2/C6_2/C6'_2/C5_2/C7_2/C8_2 thiophene ring.
D—H···AD—HH···AD···AD—H···A
O1_2—H1_2···O1_10.85 (4)2.08 (4)2.864 (4)153 (4)
O1_1—H1_1···Cg1i0.86 (5)2.69 (5)3.516 (3)162 (4)
C8_1—H8_1···Cg2ii0.952.883.489 (5)123
C8_2—H8_2···Cg1iii0.952.923.519 (5)123
C16_2—H16_2···Cg3iv0.952.863.648 (4)141
C20_2—H20_2···Cg30.952.993.658 (4)129
C16_1—H16_1···Cg4v0.952.923.679 (6)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1, y, z; (v) x+1, y, z.
 

Acknowledgements

Dr Bruce Noll (Bruker, Madison, USA) is greatly acknowledged for his assistance in solving the disorder in the crystal structure.

Funding information

We thank the Sistema de Estudios de Posgrado (SEP), Universidad de Costa Rica (UCR) for a stipend to CAU, and the Vicerrectoría de Investigación (UCR) for financial support.

References

First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, WI, USA.  Google Scholar
First citationFoley, C. N. & Leighton, J. L. (2015). Org. Lett. 17, 5858–5861.  CrossRef Google Scholar
First citationFrancais, A., Leyva, A., Etxebarria-Jardi, G. & Ley, S. V. (2010). Org. Lett. 12, 340–343.  CrossRef Google Scholar
First citationGao, P., Li, H. X., Hao, X. H., Jin, D. P., Chen, D. Q., Yan, X. B., Wu, X. X., Song, X. R., Liu, X. Y. & Liang, Y. M. (2014). Org. Lett. 16, 6298–6301.  CrossRef Google Scholar
First citationHosseyni, S., Wojtas, L., Li, M. & Shi, X. (2016). J. Am. Chem. Soc. 138, 3994–3997.  CrossRef Google Scholar
First citationKim, J., Jeong, W. & Rhee, Y. H. (2017). Org. Lett. 19, 242–245.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrost, B. M. & Rhee, Y. H. (2003). J. Am. Chem. Soc. 125, 7482–7483.  CrossRef Google Scholar
First citationUmaña, C. A. & Cabezas, J. A. (2017). J. Org. Chem. 82, 9505–9514.  Google Scholar
First citationYadav, J. S. & Maiti, A. (2002). Tetrahedron, 58, 4955–4961.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds