organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Polymorph of (E)-N′-(4-chloro­benzyl­­idene)isonicotinohydrazide monohydrate

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu 180 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangothri 574 199, India, and cDepartment of Industrial Chemistry, Mangalore University, Mangalagangothri 574 199, India
*Correspondence e-mail: rkant.ju@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 14 November 2018; accepted 18 November 2018; online 30 November 2018)

The title hydrate, C13H10ClN3O·H2O, is the ortho­rhom­bic polymorph of the previously reported monoclinic compound [Fun et al. (2012[Fun, H.-K., Loh, W.-S., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2303-o2304.]). Acta Cryst. E68, o2303–o2304). In the title compound, the dihedral angle between the pyridine and benzene rings is 18.0 (2)°. In the crystal, the Schiff base mol­ecules and water mol­ecules are linked via O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds, forming a two-dimensional network parallel to (001). In addition, the Schiff base mol­ecules are linked end-to-end by weak C—H⋯Cl hydrogen along the c-axis direction, forming an overall three-dimensional network. Weak C—H⋯π inter­actions are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Compounds that contain an azomethine group (–HC=N–), have gained increasing attention because of their broad spectrum of biological activities (da Silva et al., 2011[Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, A. (2011). J. Adv. Res. 2, 1-8.]; Kumar et al., 2011[Kumar, P. P. & Rani, B. L. (2011). Int. J. Chem Tech Res. 3, 155-160.]). Hydrazones derived from the reactions of aldehydes with hydrazides show potential biological properties (El-Tabl et al., 2008[El-Tabl, A. S., El-Saied, F. A. & al-Hakimi, A. N. (2008). J. Coord. Chem. 61, 2380-2401.]; Chen et al., 2008[Chen, J., Liu, F., Song, B.-A., Yang, S., Hu, D.-Y., Jin, H.-H., Chen, Z. & Xue, W. (2008). Chin. J. Org. Chem. 28, 894-898.]; Álvarez et al., 2008[Álvarez, C., Álvarez, R., Corchete, P., López, J. L., Pérez-Melero, C., Peláez, R. & Medarde, M. (2008). Bioorg. Med. Chem. 16, 5952-5961.]; Ventura & Martins, 2008[Ventura, C. & Martins, F. (2008). J. Med. Chem. 51, 612-624.]) and have been reported to be anti­cancer, anti­fungal, anti­microbial, anti­viral and anti­malarial agents (Bhat et al., 2015[Bhat, M. A., Iqbal, M., Al-Dhfyan, A. & Shakeel, F. (2015). J. Mol. Liq. 203, 111-119.]; Maccari et al., 2005[Maccari, R., Ottanà, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509-2513.]; Mallikarjuna et al., 2009[Mallikarjuna, B. P., Sastry, B. S., Suresh Kumar, G. V., Rajendraprasad, Y., Chandrashekar, S. M. & Sathisha, K. (2009). Eur. J. Med. Chem. 44, 4739-4746.]; Bekhit et al., 2015[Bekhit, A. A., Hassan, A. M. M., Abd El Razik, H. A., El-Miligy, M. M. M., El-Agroudy, E. J. & Bekhit, A. E. A. (2015). Eur. J. Med. Chem. 94, 30-44.]). In recent years, a large number of hydrazones have been reported (e.g. Peng & Hou, 2008a[Peng, S.-J. & Hou, H.-Y. (2008a). Acta Cryst. E64, o1864.]; Shan et al., 2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.]). As a part of our studies in this area, we describe herein the synthesis and crystal structure of the title compound (I).

The mol­ecular structure of (I) is illustrated in Fig. 1[link]. The monoclinic polymorph has already been reported (Fun et al., 2012[Fun, H.-K., Loh, W.-S., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2303-o2304.]). The C7=N1 bond length of 1.273 (7) Å indicates a typical C=N double bond. The Schiff base mol­ecule has an E configuration with respect to the hydrazone bridge (C7=N1), as observed in similar compounds (Han et al., 2006[Han, J.-R., Wang, X.-F., Zhen, X.-L., Tian, X. & Liu, S.-X. (2006). Acta Cryst. E62, o5572-o5573.], Lu et al., 2008[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1695.], Peng & Hou 2008b[Peng, S.-J. & Hou, H.-Y. (2008b). Acta Cryst. E64, o1996-o1997.]). The dihedral angle between the benzene (A) and pyridine (B) rings is 18.0 (2)°. The bond lengths are in normal ranges.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

In the crystal, the water mol­ecules and Schiff base mol­ecules are linked via O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds, forming a two-dimensional network parallel to (001) (Fig. 2[link]). In addition, the Schiff base mol­ecules are linked end-to-end along the c-axis direction by weak C—H⋯Cl hydrogen bonds (Fig. 3[link]) to form an overall three-dimensional network. Weak C—H⋯π inter­actions are also observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the pyridine and benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 2.01 2.814 (7) 156
O2—H1O⋯O1i 0.80 (7) 2.19 (7) 2.907 (7) 149 (6)
O2—H2O⋯N3ii 0.87 (8) 2.02 (9) 2.841 (8) 158 (8)
C4—H4⋯Cl1iii 0.93 2.81 3.667 (7) 153
C5—H5⋯Cg1iv 0.93 2.98 3.6350 (7) 129
C12—H12⋯Cg2v 0.93 2.99 3.6489 (7) 129
Symmetry codes: (i) x+1, y, z; (ii) [-x+3, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].
[Figure 2]
Figure 2
Part of the crystal structure with hydrogen bonds shown as dashed lines.
[Figure 3]
Figure 3
Part of the crystal structure showing weak C—H⋯Cl hydrogen bonds as dashed lines.

Synthesis and crystallization

A mixture of isoniazid (0.138 g, 1 mmol), 4-chloro­benzaldehyde (0.140 g, 1 mmol) and catalytic amount of ceric ammonium nitrate (2 mol %) in 5 ml of H2O was sonicated at 60 W for 10 minutes. After completion of the reaction, as indicated by TLC, the reaction mixture was filtered and washed with distilled water. The pure title compound was obtained by recrystallization by a slow evaporation of an aqqueous alcohol solution (m.p. 455–457 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H10ClN3O·H2O
Mr 277.71
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 6.4405 (9), 7.2660 (14), 28.081 (4)
V3) 1314.1 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.4 × 0.2 × 0.2
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.421, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3321, 2323, 1471
Rint 0.034
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.148, 1.02
No. of reflections 2323
No. of parameters 181
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.25
Absolute structure Flack x determined using 359 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (14)
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

(E)-N'-(4-Chlorobenzylidene)isonicotinohydrazide monohydrate top
Crystal data top
C13H10ClN3O·H2ODx = 1.404 Mg m3
Mr = 277.71Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 945 reflections
a = 6.4405 (9) Åθ = 3.8–27.0°
b = 7.2660 (14) ŵ = 0.29 mm1
c = 28.081 (4) ÅT = 293 K
V = 1314.1 (4) Å3Block, colourless
Z = 40.4 × 0.2 × 0.2 mm
F(000) = 576
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2323 independent reflections
Radiation source: Enhance (Mo) X-ray Source1471 reflections with I > 2σ(I)
Detector resolution: 16.1049 pixels mm-1Rint = 0.034
ω scansθmax = 26.0°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
h = 47
Tmin = 0.421, Tmax = 1.000k = 86
3321 measured reflectionsl = 2934
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0492P)2 + 0.2991P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.067(Δ/σ)max = 0.002
wR(F2) = 0.148Δρmax = 0.23 e Å3
S = 1.02Δρmin = 0.25 e Å3
2323 reflectionsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
181 parametersExtinction coefficient: 0.007 (2)
0 restraintsAbsolute structure: Flack x determined using 359 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: mixedAbsolute structure parameter: 0.02 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms (H1O and H2O) attached to O2 were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and were treated as riding on their corresponding non hydrogen atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.7005 (3)0.7850 (3)0.11474 (6)0.0706 (7)
O10.8317 (7)1.3265 (8)0.16937 (15)0.0632 (16)
O21.5258 (8)1.0974 (9)0.12165 (18)0.0489 (13)
N11.0024 (8)1.1807 (7)0.09043 (16)0.0386 (13)
N21.1179 (7)1.2331 (8)0.12955 (15)0.0380 (14)
H21.2510821.2246100.1291200.046*
N31.3838 (9)1.3963 (9)0.29400 (19)0.0555 (17)
C11.0203 (10)1.2970 (10)0.1680 (2)0.0406 (16)
C21.1515 (9)1.3320 (9)0.2110 (2)0.0376 (16)
C31.0683 (10)1.2994 (11)0.2556 (2)0.0527 (19)
H30.9338101.2545600.2588660.063*
C41.1891 (12)1.3348 (11)0.2953 (2)0.062 (2)
H41.1300331.3141970.3250060.074*
C51.4597 (10)1.4252 (10)0.2506 (2)0.0480 (18)
H51.5938421.4718470.2483160.058*
C61.3554 (9)1.3914 (10)0.2087 (2)0.0428 (17)
H61.4205951.4082040.1795160.051*
C71.1053 (10)1.1320 (9)0.0539 (2)0.0384 (16)
H71.2487601.1466790.0536600.046*
C81.0029 (9)1.0537 (9)0.01233 (19)0.0335 (15)
C91.1064 (10)1.0381 (10)0.0308 (2)0.0443 (17)
H91.2407811.0837670.0333980.053*
C101.0157 (12)0.9569 (10)0.0699 (2)0.0464 (18)
H101.0874770.9479440.0985000.056*
C110.8155 (11)0.8887 (9)0.0657 (2)0.0439 (17)
C120.7077 (10)0.9055 (9)0.0242 (2)0.0446 (17)
H120.5719760.8624460.0222300.054*
C130.7993 (10)0.9861 (9)0.0151 (2)0.0404 (16)
H130.7256530.9956080.0434410.048*
H1O1.626 (11)1.161 (10)0.124 (2)0.06 (3)*
H2O1.531 (15)1.017 (12)0.144 (3)0.10 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0999 (15)0.0603 (13)0.0515 (10)0.0130 (13)0.0260 (11)0.0058 (10)
O10.038 (3)0.095 (5)0.057 (3)0.002 (3)0.004 (2)0.019 (3)
O20.037 (3)0.066 (4)0.043 (3)0.008 (3)0.006 (2)0.005 (3)
N10.036 (3)0.045 (4)0.035 (3)0.001 (3)0.008 (2)0.002 (3)
N20.030 (2)0.046 (4)0.038 (3)0.001 (3)0.007 (2)0.006 (3)
N30.061 (4)0.068 (5)0.037 (3)0.006 (4)0.001 (3)0.008 (3)
C10.034 (3)0.045 (4)0.043 (4)0.009 (4)0.006 (3)0.006 (3)
C20.033 (3)0.045 (5)0.034 (3)0.001 (3)0.000 (3)0.007 (3)
C30.043 (4)0.067 (5)0.047 (4)0.014 (4)0.005 (3)0.003 (4)
C40.063 (5)0.083 (7)0.039 (4)0.009 (5)0.011 (4)0.003 (4)
C50.044 (4)0.054 (5)0.046 (4)0.011 (4)0.005 (4)0.010 (4)
C60.040 (4)0.051 (5)0.038 (3)0.005 (4)0.003 (3)0.003 (3)
C70.036 (3)0.038 (4)0.042 (3)0.001 (3)0.008 (3)0.004 (3)
C80.035 (3)0.031 (4)0.035 (3)0.002 (3)0.007 (3)0.005 (3)
C90.047 (4)0.045 (4)0.041 (4)0.000 (3)0.001 (3)0.003 (3)
C100.063 (4)0.042 (4)0.034 (4)0.001 (4)0.006 (4)0.003 (3)
C110.057 (4)0.035 (4)0.040 (4)0.001 (4)0.020 (4)0.001 (3)
C120.041 (3)0.042 (4)0.051 (4)0.011 (4)0.005 (4)0.004 (3)
C130.046 (4)0.036 (4)0.039 (3)0.004 (4)0.000 (3)0.003 (3)
Geometric parameters (Å, º) top
Cl1—C111.735 (6)C5—C61.375 (8)
O1—C11.234 (7)C5—H50.9300
O2—H1O0.80 (7)C6—H60.9300
O2—H2O0.86 (8)C7—C81.455 (8)
N1—C71.273 (7)C7—H70.9300
N1—N21.380 (6)C8—C91.387 (8)
N2—C11.333 (7)C8—C131.402 (8)
N2—H20.8600C9—C101.375 (8)
N3—C51.331 (8)C9—H90.9300
N3—C41.332 (8)C10—C111.387 (9)
C1—C21.494 (8)C10—H100.9300
C2—C61.384 (8)C11—C121.364 (8)
C2—C31.384 (8)C12—C131.380 (8)
C3—C41.383 (9)C12—H120.9300
C3—H30.9300C13—H130.9300
C4—H40.9300
H1O—O2—H2O108 (8)C2—C6—H6120.6
C7—N1—N2116.0 (5)N1—C7—C8121.3 (5)
C1—N2—N1119.1 (4)N1—C7—H7119.4
C1—N2—H2120.4C8—C7—H7119.4
N1—N2—H2120.4C9—C8—C13117.9 (6)
C5—N3—C4115.0 (6)C9—C8—C7120.9 (6)
O1—C1—N2123.4 (5)C13—C8—C7121.1 (5)
O1—C1—C2120.1 (6)C10—C9—C8121.8 (6)
N2—C1—C2116.5 (5)C10—C9—H9119.1
C6—C2—C3117.5 (6)C8—C9—H9119.1
C6—C2—C1123.6 (5)C9—C10—C11118.8 (7)
C3—C2—C1118.9 (5)C9—C10—H10120.6
C4—C3—C2118.7 (6)C11—C10—H10120.6
C4—C3—H3120.7C12—C11—C10120.8 (6)
C2—C3—H3120.7C12—C11—Cl1120.0 (5)
N3—C4—C3124.8 (6)C10—C11—Cl1119.1 (5)
N3—C4—H4117.6C11—C12—C13120.3 (6)
C3—C4—H4117.6C11—C12—H12119.9
N3—C5—C6125.1 (6)C13—C12—H12119.9
N3—C5—H5117.4C12—C13—C8120.3 (6)
C6—C5—H5117.4C12—C13—H13119.8
C5—C6—C2118.8 (6)C8—C13—H13119.8
C5—C6—H6120.6
C7—N1—N2—C1175.7 (6)C1—C2—C6—C5177.9 (6)
N1—N2—C1—O16.1 (11)N2—N1—C7—C8172.8 (5)
N1—N2—C1—C2173.5 (6)N1—C7—C8—C9165.9 (7)
O1—C1—C2—C6146.9 (7)N1—C7—C8—C1316.4 (10)
N2—C1—C2—C633.4 (10)C13—C8—C9—C100.9 (10)
O1—C1—C2—C334.8 (11)C7—C8—C9—C10177.0 (6)
N2—C1—C2—C3144.9 (7)C8—C9—C10—C110.1 (11)
C6—C2—C3—C42.6 (11)C9—C10—C11—C121.6 (10)
C1—C2—C3—C4179.0 (7)C9—C10—C11—Cl1179.7 (5)
C5—N3—C4—C30.7 (12)C10—C11—C12—C132.0 (10)
C2—C3—C4—N31.1 (12)Cl1—C11—C12—C13179.3 (5)
C4—N3—C5—C62.0 (11)C11—C12—C13—C80.9 (10)
N3—C5—C6—C23.7 (11)C9—C8—C13—C120.5 (9)
C3—C2—C6—C53.8 (10)C7—C8—C13—C12177.3 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the pyridine and benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H1O···O1i0.80 (7)2.19 (7)2.907 (7)149 (6)
N2—H2···O20.862.012.814 (7)156
O2—H2O···N3ii0.87 (8)2.02 (9)2.841 (8)158 (8)
C4—H4···Cl1iii0.932.813.667 (7)153
C5—H5···Cg1iv0.932.983.6350 (7)129
C12—H12···Cg2v0.932.993.6489 (7)129
Symmetry codes: (i) x+1, y, z; (ii) x+3, y1/2, z1/2; (iii) x+3/2, y+2, z1/2; (iv) x+2, y1/2, z+1/2; (v) x1/2, y+3/2, z.
 

Funding information

Rajni Kant acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003 and for funding under grant No. EMR/204/000467. BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. AJ thanks the UGC for a Senior Research Fellowship.

References

First citationÁlvarez, C., Álvarez, R., Corchete, P., López, J. L., Pérez-Melero, C., Peláez, R. & Medarde, M. (2008). Bioorg. Med. Chem. 16, 5952–5961.  Google Scholar
First citationBekhit, A. A., Hassan, A. M. M., Abd El Razik, H. A., El-Miligy, M. M. M., El-Agroudy, E. J. & Bekhit, A. E. A. (2015). Eur. J. Med. Chem. 94, 30–44.  CrossRef Google Scholar
First citationBhat, M. A., Iqbal, M., Al-Dhfyan, A. & Shakeel, F. (2015). J. Mol. Liq. 203, 111–119.  CrossRef Google Scholar
First citationChen, J., Liu, F., Song, B.-A., Yang, S., Hu, D.-Y., Jin, H.-H., Chen, Z. & Xue, W. (2008). Chin. J. Org. Chem. 28, 894–898.  CAS Google Scholar
First citationEl-Tabl, A. S., El-Saied, F. A. & al-Hakimi, A. N. (2008). J. Coord. Chem. 61, 2380–2401.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2303–o2304.  CrossRef IUCr Journals Google Scholar
First citationHan, J.-R., Wang, X.-F., Zhen, X.-L., Tian, X. & Liu, S.-X. (2006). Acta Cryst. E62, o5572–o5573.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKumar, P. P. & Rani, B. L. (2011). Int. J. Chem Tech Res. 3, 155–160.  Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1695.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMaccari, R., Ottanà, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMallikarjuna, B. P., Sastry, B. S., Suresh Kumar, G. V., Rajendraprasad, Y., Chandrashekar, S. M. & Sathisha, K. (2009). Eur. J. Med. Chem. 44, 4739–4746.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeng, S.-J. & Hou, H.-Y. (2008a). Acta Cryst. E64, o1864.  CrossRef IUCr Journals Google Scholar
First citationPeng, S.-J. & Hou, H.-Y. (2008b). Acta Cryst. E64, o1996–o1997.  CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, A. (2011). J. Adv. Res. 2, 1–8.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVentura, C. & Martins, F. (2008). J. Med. Chem. 51, 612–624.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds