organic compounds
Polymorph of (E)-N′-(4-chlorobenzylidene)isonicotinohydrazide monohydrate
aX-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu 180 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangothri 574 199, India, and cDepartment of Industrial Chemistry, Mangalore University, Mangalagangothri 574 199, India
*Correspondence e-mail: rkant.ju@gmail.com
The title hydrate, C13H10ClN3O·H2O, is the orthorhombic polymorph of the previously reported monoclinic compound [Fun et al. (2012). Acta Cryst. E68, o2303–o2304). In the title compound, the dihedral angle between the pyridine and benzene rings is 18.0 (2)°. In the crystal, the Schiff base molecules and water molecules are linked via O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds, forming a two-dimensional network parallel to (001). In addition, the Schiff base molecules are linked end-to-end by weak C—H⋯Cl hydrogen along the c-axis direction, forming an overall three-dimensional network. Weak C—H⋯π interactions are also observed.
Keywords: Schiff base; crystal structure; pyridine; dihedral angle; hydrogen bonding..
CCDC reference: 1871634
Structure description
Compounds that contain an azomethine group (–HC=N–), have gained increasing attention because of their broad spectrum of biological activities (da Silva et al., 2011; Kumar et al., 2011). derived from the reactions of with show potential biological properties (El-Tabl et al., 2008; Chen et al., 2008; Álvarez et al., 2008; Ventura & Martins, 2008) and have been reported to be anticancer, antifungal, antimicrobial, antiviral and antimalarial agents (Bhat et al., 2015; Maccari et al., 2005; Mallikarjuna et al., 2009; Bekhit et al., 2015). In recent years, a large number of have been reported (e.g. Peng & Hou, 2008a; Shan et al., 2008). As a part of our studies in this area, we describe herein the synthesis and of the title compound (I).
The molecular structure of (I) is illustrated in Fig. 1. The monoclinic polymorph has already been reported (Fun et al., 2012). The C7=N1 bond length of 1.273 (7) Å indicates a typical C=N double bond. The Schiff base molecule has an E configuration with respect to the hydrazone bridge (C7=N1), as observed in similar compounds (Han et al., 2006, Lu et al., 2008, Peng & Hou 2008b). The dihedral angle between the benzene (A) and pyridine (B) rings is 18.0 (2)°. The bond lengths are in normal ranges.
In the crystal, the water molecules and Schiff base molecules are linked via O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds, forming a two-dimensional network parallel to (001) (Fig. 2). In addition, the Schiff base molecules are linked end-to-end along the c-axis direction by weak C—H⋯Cl hydrogen bonds (Fig. 3) to form an overall three-dimensional network. Weak C—H⋯π interactions are also observed (Table 1).
Synthesis and crystallization
A mixture of isoniazid (0.138 g, 1 mmol), 4-chlorobenzaldehyde (0.140 g, 1 mmol) and catalytic amount of ceric ammonium nitrate (2 mol %) in 5 ml of H2O was sonicated at 60 W for 10 minutes. After completion of the reaction, as indicated by TLC, the reaction mixture was filtered and washed with distilled water. The pure title compound was obtained by recrystallization by a slow evaporation of an aqqueous alcohol solution (m.p. 455–457 K).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1871634
https://doi.org/10.1107/S2414314618016346/lh4041sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618016346/lh4041Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618016346/lh4041Isup3.cml
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C13H10ClN3O·H2O | Dx = 1.404 Mg m−3 |
Mr = 277.71 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 945 reflections |
a = 6.4405 (9) Å | θ = 3.8–27.0° |
b = 7.2660 (14) Å | µ = 0.29 mm−1 |
c = 28.081 (4) Å | T = 293 K |
V = 1314.1 (4) Å3 | Block, colourless |
Z = 4 | 0.4 × 0.2 × 0.2 mm |
F(000) = 576 |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2323 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1471 reflections with I > 2σ(I) |
Detector resolution: 16.1049 pixels mm-1 | Rint = 0.034 |
ω scans | θmax = 26.0°, θmin = 3.6° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | h = −4→7 |
Tmin = 0.421, Tmax = 1.000 | k = −8→6 |
3321 measured reflections | l = −29→34 |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0492P)2 + 0.2991P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.067 | (Δ/σ)max = 0.002 |
wR(F2) = 0.148 | Δρmax = 0.23 e Å−3 |
S = 1.02 | Δρmin = −0.25 e Å−3 |
2323 reflections | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
181 parameters | Extinction coefficient: 0.007 (2) |
0 restraints | Absolute structure: Flack x determined using 359 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Hydrogen site location: mixed | Absolute structure parameter: −0.02 (14) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. H atoms (H1O and H2O) attached to O2 were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and were treated as riding on their corresponding non hydrogen atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N). |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.7005 (3) | 0.7850 (3) | 0.11474 (6) | 0.0706 (7) | |
O1 | 0.8317 (7) | 1.3265 (8) | −0.16937 (15) | 0.0632 (16) | |
O2 | 1.5258 (8) | 1.0974 (9) | −0.12165 (18) | 0.0489 (13) | |
N1 | 1.0024 (8) | 1.1807 (7) | −0.09043 (16) | 0.0386 (13) | |
N2 | 1.1179 (7) | 1.2331 (8) | −0.12955 (15) | 0.0380 (14) | |
H2 | 1.251082 | 1.224610 | −0.129120 | 0.046* | |
N3 | 1.3838 (9) | 1.3963 (9) | −0.29400 (19) | 0.0555 (17) | |
C1 | 1.0203 (10) | 1.2970 (10) | −0.1680 (2) | 0.0406 (16) | |
C2 | 1.1515 (9) | 1.3320 (9) | −0.2110 (2) | 0.0376 (16) | |
C3 | 1.0683 (10) | 1.2994 (11) | −0.2556 (2) | 0.0527 (19) | |
H3 | 0.933810 | 1.254560 | −0.258866 | 0.063* | |
C4 | 1.1891 (12) | 1.3348 (11) | −0.2953 (2) | 0.062 (2) | |
H4 | 1.130033 | 1.314197 | −0.325006 | 0.074* | |
C5 | 1.4597 (10) | 1.4252 (10) | −0.2506 (2) | 0.0480 (18) | |
H5 | 1.593842 | 1.471847 | −0.248316 | 0.058* | |
C6 | 1.3554 (9) | 1.3914 (10) | −0.2087 (2) | 0.0428 (17) | |
H6 | 1.420595 | 1.408204 | −0.179516 | 0.051* | |
C7 | 1.1053 (10) | 1.1320 (9) | −0.0539 (2) | 0.0384 (16) | |
H7 | 1.248760 | 1.146679 | −0.053660 | 0.046* | |
C8 | 1.0029 (9) | 1.0537 (9) | −0.01233 (19) | 0.0335 (15) | |
C9 | 1.1064 (10) | 1.0381 (10) | 0.0308 (2) | 0.0443 (17) | |
H9 | 1.240781 | 1.083767 | 0.033398 | 0.053* | |
C10 | 1.0157 (12) | 0.9569 (10) | 0.0699 (2) | 0.0464 (18) | |
H10 | 1.087477 | 0.947944 | 0.098500 | 0.056* | |
C11 | 0.8155 (11) | 0.8887 (9) | 0.0657 (2) | 0.0439 (17) | |
C12 | 0.7077 (10) | 0.9055 (9) | 0.0242 (2) | 0.0446 (17) | |
H12 | 0.571976 | 0.862446 | 0.022230 | 0.054* | |
C13 | 0.7993 (10) | 0.9861 (9) | −0.0151 (2) | 0.0404 (16) | |
H13 | 0.725653 | 0.995608 | −0.043441 | 0.048* | |
H1O | 1.626 (11) | 1.161 (10) | −0.124 (2) | 0.06 (3)* | |
H2O | 1.531 (15) | 1.017 (12) | −0.144 (3) | 0.10 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0999 (15) | 0.0603 (13) | 0.0515 (10) | −0.0130 (13) | 0.0260 (11) | 0.0058 (10) |
O1 | 0.038 (3) | 0.095 (5) | 0.057 (3) | −0.002 (3) | 0.004 (2) | 0.019 (3) |
O2 | 0.037 (3) | 0.066 (4) | 0.043 (3) | −0.008 (3) | 0.006 (2) | −0.005 (3) |
N1 | 0.036 (3) | 0.045 (4) | 0.035 (3) | 0.001 (3) | 0.008 (2) | 0.002 (3) |
N2 | 0.030 (2) | 0.046 (4) | 0.038 (3) | 0.001 (3) | 0.007 (2) | 0.006 (3) |
N3 | 0.061 (4) | 0.068 (5) | 0.037 (3) | −0.006 (4) | 0.001 (3) | 0.008 (3) |
C1 | 0.034 (3) | 0.045 (4) | 0.043 (4) | −0.009 (4) | 0.006 (3) | 0.006 (3) |
C2 | 0.033 (3) | 0.045 (5) | 0.034 (3) | −0.001 (3) | 0.000 (3) | 0.007 (3) |
C3 | 0.043 (4) | 0.067 (5) | 0.047 (4) | −0.014 (4) | −0.005 (3) | 0.003 (4) |
C4 | 0.063 (5) | 0.083 (7) | 0.039 (4) | −0.009 (5) | −0.011 (4) | 0.003 (4) |
C5 | 0.044 (4) | 0.054 (5) | 0.046 (4) | −0.011 (4) | 0.005 (4) | 0.010 (4) |
C6 | 0.040 (4) | 0.051 (5) | 0.038 (3) | −0.005 (4) | −0.003 (3) | 0.003 (3) |
C7 | 0.036 (3) | 0.038 (4) | 0.042 (3) | −0.001 (3) | 0.008 (3) | −0.004 (3) |
C8 | 0.035 (3) | 0.031 (4) | 0.035 (3) | −0.002 (3) | 0.007 (3) | −0.005 (3) |
C9 | 0.047 (4) | 0.045 (4) | 0.041 (4) | 0.000 (3) | −0.001 (3) | −0.003 (3) |
C10 | 0.063 (4) | 0.042 (4) | 0.034 (4) | 0.001 (4) | 0.006 (4) | −0.003 (3) |
C11 | 0.057 (4) | 0.035 (4) | 0.040 (4) | 0.001 (4) | 0.020 (4) | −0.001 (3) |
C12 | 0.041 (3) | 0.042 (4) | 0.051 (4) | −0.011 (4) | 0.005 (4) | −0.004 (3) |
C13 | 0.046 (4) | 0.036 (4) | 0.039 (3) | −0.004 (4) | 0.000 (3) | 0.003 (3) |
Cl1—C11 | 1.735 (6) | C5—C6 | 1.375 (8) |
O1—C1 | 1.234 (7) | C5—H5 | 0.9300 |
O2—H1O | 0.80 (7) | C6—H6 | 0.9300 |
O2—H2O | 0.86 (8) | C7—C8 | 1.455 (8) |
N1—C7 | 1.273 (7) | C7—H7 | 0.9300 |
N1—N2 | 1.380 (6) | C8—C9 | 1.387 (8) |
N2—C1 | 1.333 (7) | C8—C13 | 1.402 (8) |
N2—H2 | 0.8600 | C9—C10 | 1.375 (8) |
N3—C5 | 1.331 (8) | C9—H9 | 0.9300 |
N3—C4 | 1.332 (8) | C10—C11 | 1.387 (9) |
C1—C2 | 1.494 (8) | C10—H10 | 0.9300 |
C2—C6 | 1.384 (8) | C11—C12 | 1.364 (8) |
C2—C3 | 1.384 (8) | C12—C13 | 1.380 (8) |
C3—C4 | 1.383 (9) | C12—H12 | 0.9300 |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—H4 | 0.9300 | ||
H1O—O2—H2O | 108 (8) | C2—C6—H6 | 120.6 |
C7—N1—N2 | 116.0 (5) | N1—C7—C8 | 121.3 (5) |
C1—N2—N1 | 119.1 (4) | N1—C7—H7 | 119.4 |
C1—N2—H2 | 120.4 | C8—C7—H7 | 119.4 |
N1—N2—H2 | 120.4 | C9—C8—C13 | 117.9 (6) |
C5—N3—C4 | 115.0 (6) | C9—C8—C7 | 120.9 (6) |
O1—C1—N2 | 123.4 (5) | C13—C8—C7 | 121.1 (5) |
O1—C1—C2 | 120.1 (6) | C10—C9—C8 | 121.8 (6) |
N2—C1—C2 | 116.5 (5) | C10—C9—H9 | 119.1 |
C6—C2—C3 | 117.5 (6) | C8—C9—H9 | 119.1 |
C6—C2—C1 | 123.6 (5) | C9—C10—C11 | 118.8 (7) |
C3—C2—C1 | 118.9 (5) | C9—C10—H10 | 120.6 |
C4—C3—C2 | 118.7 (6) | C11—C10—H10 | 120.6 |
C4—C3—H3 | 120.7 | C12—C11—C10 | 120.8 (6) |
C2—C3—H3 | 120.7 | C12—C11—Cl1 | 120.0 (5) |
N3—C4—C3 | 124.8 (6) | C10—C11—Cl1 | 119.1 (5) |
N3—C4—H4 | 117.6 | C11—C12—C13 | 120.3 (6) |
C3—C4—H4 | 117.6 | C11—C12—H12 | 119.9 |
N3—C5—C6 | 125.1 (6) | C13—C12—H12 | 119.9 |
N3—C5—H5 | 117.4 | C12—C13—C8 | 120.3 (6) |
C6—C5—H5 | 117.4 | C12—C13—H13 | 119.8 |
C5—C6—C2 | 118.8 (6) | C8—C13—H13 | 119.8 |
C5—C6—H6 | 120.6 | ||
C7—N1—N2—C1 | −175.7 (6) | C1—C2—C6—C5 | −177.9 (6) |
N1—N2—C1—O1 | 6.1 (11) | N2—N1—C7—C8 | −172.8 (5) |
N1—N2—C1—C2 | −173.5 (6) | N1—C7—C8—C9 | −165.9 (7) |
O1—C1—C2—C6 | 146.9 (7) | N1—C7—C8—C13 | 16.4 (10) |
N2—C1—C2—C6 | −33.4 (10) | C13—C8—C9—C10 | 0.9 (10) |
O1—C1—C2—C3 | −34.8 (11) | C7—C8—C9—C10 | −177.0 (6) |
N2—C1—C2—C3 | 144.9 (7) | C8—C9—C10—C11 | 0.1 (11) |
C6—C2—C3—C4 | −2.6 (11) | C9—C10—C11—C12 | −1.6 (10) |
C1—C2—C3—C4 | 179.0 (7) | C9—C10—C11—Cl1 | 179.7 (5) |
C5—N3—C4—C3 | −0.7 (12) | C10—C11—C12—C13 | 2.0 (10) |
C2—C3—C4—N3 | 1.1 (12) | Cl1—C11—C12—C13 | −179.3 (5) |
C4—N3—C5—C6 | 2.0 (11) | C11—C12—C13—C8 | −0.9 (10) |
N3—C5—C6—C2 | −3.7 (11) | C9—C8—C13—C12 | −0.5 (9) |
C3—C2—C6—C5 | 3.8 (10) | C7—C8—C13—C12 | 177.3 (6) |
Cg1 and Cg2 are the centroids of the pyridine and benzene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O···O1i | 0.80 (7) | 2.19 (7) | 2.907 (7) | 149 (6) |
N2—H2···O2 | 0.86 | 2.01 | 2.814 (7) | 156 |
O2—H2O···N3ii | 0.87 (8) | 2.02 (9) | 2.841 (8) | 158 (8) |
C4—H4···Cl1iii | 0.93 | 2.81 | 3.667 (7) | 153 |
C5—H5···Cg1iv | 0.93 | 2.98 | 3.6350 (7) | 129 |
C12—H12···Cg2v | 0.93 | 2.99 | 3.6489 (7) | 129 |
Symmetry codes: (i) x+1, y, z; (ii) −x+3, y−1/2, −z−1/2; (iii) −x+3/2, −y+2, z−1/2; (iv) −x+2, y−1/2, −z+1/2; (v) x−1/2, −y+3/2, −z. |
Funding information
Rajni Kant acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003 and for funding under grant No. EMR/204/000467. BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. AJ thanks the UGC for a Senior Research Fellowship.
References
Álvarez, C., Álvarez, R., Corchete, P., López, J. L., Pérez-Melero, C., Peláez, R. & Medarde, M. (2008). Bioorg. Med. Chem. 16, 5952–5961. Google Scholar
Bekhit, A. A., Hassan, A. M. M., Abd El Razik, H. A., El-Miligy, M. M. M., El-Agroudy, E. J. & Bekhit, A. E. A. (2015). Eur. J. Med. Chem. 94, 30–44. CrossRef Google Scholar
Bhat, M. A., Iqbal, M., Al-Dhfyan, A. & Shakeel, F. (2015). J. Mol. Liq. 203, 111–119. CrossRef Google Scholar
Chen, J., Liu, F., Song, B.-A., Yang, S., Hu, D.-Y., Jin, H.-H., Chen, Z. & Xue, W. (2008). Chin. J. Org. Chem. 28, 894–898. CAS Google Scholar
El-Tabl, A. S., El-Saied, F. A. & al-Hakimi, A. N. (2008). J. Coord. Chem. 61, 2380–2401. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Loh, W.-S., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2303–o2304. CrossRef IUCr Journals Google Scholar
Han, J.-R., Wang, X.-F., Zhen, X.-L., Tian, X. & Liu, S.-X. (2006). Acta Cryst. E62, o5572–o5573. Web of Science CrossRef IUCr Journals Google Scholar
Kumar, P. P. & Rani, B. L. (2011). Int. J. Chem Tech Res. 3, 155–160. Google Scholar
Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1695. Web of Science CrossRef IUCr Journals Google Scholar
Maccari, R., Ottanà, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513. Web of Science CrossRef PubMed CAS Google Scholar
Mallikarjuna, B. P., Sastry, B. S., Suresh Kumar, G. V., Rajendraprasad, Y., Chandrashekar, S. M. & Sathisha, K. (2009). Eur. J. Med. Chem. 44, 4739–4746. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Peng, S.-J. & Hou, H.-Y. (2008a). Acta Cryst. E64, o1864. CrossRef IUCr Journals Google Scholar
Peng, S.-J. & Hou, H.-Y. (2008b). Acta Cryst. E64, o1996–o1997. CrossRef IUCr Journals Google Scholar
Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, A. (2011). J. Adv. Res. 2, 1–8. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ventura, C. & Martins, F. (2008). J. Med. Chem. 51, 612–624. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.