organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(3-Hy­dr­oxy­prop­yl)-3-phenyl­quinoxalin-2(1H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: asb.sanae@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 12 October 2018; accepted 17 November 2018; online 30 November 2018)

In the title mol­ecule, C17H16N2O2, the quinoxaline portion is slightly folded about the N⋯N axis with an angle of 4.27 (4)°. In the crystal, O—H⋯O and weak C—H⋯O hydrogen bonds link mol­ecules along the b-axis direction. In addition, two sets of weak C—H⋯π(ring) inter­actions form a two-dimensional `step' motif parallel to the bc plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoxalines and their derivatives, especially the quinoxalinones, are of great importance in medicinal chemistry (Ramli & Essassi, 2015[Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res, 27, 109-160.]). As a continuation of our work on the synthesis of quinoxalin-2-one derivatives in order to evaluate their pharmacological activities (Ramli et al., 2010a[Ramli, Y., Benzeid, H., Bouhfid, R., Kandri Rodi, Y., Ferfra, S. & Essassi, E. M. (2010a). Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 11, 67-90.],b, 2011[Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.], 2013[Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320-o1321.]; Caleb et al., 2016[Caleb, A. A., Ramli, Y., Benabdelkamel, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Maroc. Chim. Hétérocycl, 15, 109-123.]; Missioui et al., 2017[Missioui, M., Mague, J. T., El Fal, M., Taoufik, J., Essassi, E. M. & Ramli, Y. (2017). IUCrData, 2, x171763.]) we report herein the synthesis and crystal structure of the title compound.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The di­hydro­quinoxaline fragment shows a slight fold of 4.27 (4)° about the N1⋯N2 axis and the C9–C14 phenyl ring is inclined at 44.89 (3)° to the mean plane of the N1/N2/C1–C6 fragment. In the crystal, O—H⋯O and weak C—H⋯O hydrogen bonds form ribbons two mol­ecules wide extending along the b-axis direction. Each half of the ribbon is reinforced by C3—H3⋯Cg1ii inter­actions (Table 1[link] and Fig. 2[link]). The ribbons are connected into a `step' motif running parallel to the bc plane by C10—H10⋯Cg2iii inter­actions (Table 1[link] and Figs. 2[link]–4[link][link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C9–C14 and C1–C6 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.949 (15) 1.888 (15) 2.8345 (10) 174.4 (14)
C15—H15A⋯O2ii 0.969 (11) 2.582 (12) 3.3425 (13) 135.5 (9)
C3—H3⋯Cg1iii 0.953 (12) 2.734 (12) 3.4708 (12) 134.8 (9)
C10—H10⋯Cg2iv 1.003 (12) 2.916 (13) 3.5859 (12) 124.9 (9)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y-1, z; (iv) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule with the labelling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
Part of the crystal structure viewed along the a-axis direction. The O—H⋯O and C—H⋯O hydrogen bonds are shown, respectively, by red and black dashed lines. C—H⋯π(ring) inter­actions are shown by green dashed lines.
[Figure 3]
Figure 3
Part of the crystal structure viewed along the c-axis direction showing C—H⋯π(ring) inter­actions as green dashed lines. Hydrogen bonds are as depicted as in Fig. 2[link].
[Figure 4]
Figure 4
A view of portions of two chains viewed along the b-axis direction showing their association through C—H⋯π(ring) inter­actions. These and the hydrogen bonds are depicted as in Fig. 2[link].

Synthesis and crystallization

A solution of 1-(3-bromo­prop­yl)-3-phenyl­quinoxalin-2(1H)-one (1 g, 2.9 mmol) methanol/water (20/5 ml) was stirred under reflex for 12 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue was purified by column chromatography on silica gel by using a mixture (hexa­ne/ethyl acetate 9/1). The solid product was purified by recrystallization from ethanol solution to afford colourless crystals in 20% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H16N2O2
Mr 280.32
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 8.1914 (14), 9.5151 (16), 17.781 (3)
β (°) 94.880 (2)
V3) 1380.9 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.36 × 0.30 × 0.24
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.90, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 26403, 3863, 3134
Rint 0.033
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.135, 1.10
No. of reflections 3863
No. of parameters 254
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.48, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-(3-Hydroxypropyl)-3-phenylquinoxalin-2(1H)-one top
Crystal data top
C17H16N2O2F(000) = 592
Mr = 280.32Dx = 1.348 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.1914 (14) ÅCell parameters from 9996 reflections
b = 9.5151 (16) Åθ = 2.3–29.5°
c = 17.781 (3) ŵ = 0.09 mm1
β = 94.880 (2)°T = 120 K
V = 1380.9 (4) Å3Block, colourless
Z = 40.36 × 0.30 × 0.24 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3863 independent reflections
Radiation source: fine-focus sealed tube3134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.3333 pixels mm-1θmax = 29.7°, θmin = 2.3°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.90, Tmax = 0.98l = 2424
26403 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.135All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0966P)2]
where P = (Fo2 + 2Fc2)/3
3863 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27209 (9)0.74659 (7)0.56746 (4)0.02520 (19)
O20.22106 (10)0.33666 (7)0.78036 (4)0.0312 (2)
H2A0.2164 (19)0.3088 (16)0.8314 (8)0.048 (4)*
N10.20531 (9)0.51397 (8)0.56730 (4)0.01714 (18)
N20.23410 (10)0.50846 (8)0.41202 (4)0.01962 (19)
C10.19860 (11)0.38735 (9)0.45045 (5)0.0185 (2)
C20.17979 (12)0.26102 (9)0.40970 (6)0.0222 (2)
H20.1884 (17)0.2662 (13)0.3542 (8)0.032 (3)*
C30.15117 (12)0.13665 (10)0.44606 (6)0.0229 (2)
H30.1392 (14)0.0507 (13)0.4187 (6)0.024 (3)*
C40.13883 (12)0.13696 (10)0.52385 (6)0.0220 (2)
H40.1204 (15)0.0500 (13)0.5494 (7)0.032 (3)*
C50.15550 (11)0.25972 (9)0.56534 (5)0.0203 (2)
H50.1496 (15)0.2574 (11)0.6206 (8)0.027 (3)*
C60.18532 (10)0.38650 (9)0.52882 (5)0.01701 (19)
C70.24818 (11)0.63536 (9)0.53240 (5)0.01806 (19)
C80.25998 (11)0.62434 (9)0.44965 (5)0.01757 (19)
C90.30450 (11)0.75076 (9)0.40701 (5)0.0181 (2)
C100.43131 (12)0.83965 (10)0.43404 (5)0.0200 (2)
H100.4888 (16)0.8204 (13)0.4851 (7)0.029 (3)*
C110.47873 (12)0.95075 (10)0.39000 (6)0.0232 (2)
H110.5651 (15)1.0131 (11)0.4081 (6)0.022 (3)*
C120.39868 (12)0.97456 (10)0.31921 (5)0.0238 (2)
H120.4319 (17)1.0523 (15)0.2884 (8)0.047 (4)*
C130.27064 (12)0.88795 (10)0.29237 (5)0.0231 (2)
H130.2131 (16)0.9078 (14)0.2422 (8)0.036 (3)*
C140.22437 (12)0.77595 (10)0.33558 (5)0.0214 (2)
H140.1360 (15)0.7173 (12)0.3173 (7)0.023 (3)*
C150.18946 (11)0.51763 (10)0.64903 (5)0.0191 (2)
H15A0.1498 (14)0.6104 (12)0.6607 (6)0.024 (3)*
H15B0.1017 (13)0.4501 (11)0.6590 (6)0.017 (3)*
C160.35032 (12)0.47987 (12)0.69358 (5)0.0256 (2)
H16A0.4287 (15)0.5601 (13)0.6897 (7)0.031 (3)*
H16B0.4001 (16)0.3962 (14)0.6743 (7)0.032 (3)*
C170.32545 (15)0.45535 (12)0.77586 (6)0.0302 (2)
H17A0.2795 (15)0.5397 (13)0.8020 (7)0.033 (3)*
H17B0.4311 (18)0.4404 (14)0.8036 (8)0.042 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0405 (4)0.0198 (3)0.0159 (4)0.0061 (3)0.0058 (3)0.0034 (2)
O20.0500 (5)0.0257 (4)0.0187 (4)0.0036 (3)0.0068 (3)0.0059 (3)
N10.0217 (4)0.0188 (4)0.0110 (4)0.0012 (3)0.0014 (3)0.0001 (3)
N20.0249 (4)0.0194 (4)0.0147 (4)0.0030 (3)0.0021 (3)0.0011 (3)
C10.0221 (4)0.0185 (4)0.0148 (4)0.0021 (3)0.0014 (3)0.0001 (3)
C20.0284 (5)0.0220 (5)0.0165 (4)0.0037 (4)0.0031 (4)0.0030 (3)
C30.0255 (5)0.0196 (4)0.0235 (5)0.0037 (4)0.0020 (4)0.0026 (3)
C40.0225 (4)0.0201 (4)0.0232 (5)0.0040 (3)0.0009 (4)0.0022 (3)
C50.0223 (4)0.0218 (5)0.0166 (4)0.0028 (3)0.0014 (3)0.0020 (3)
C60.0176 (4)0.0185 (4)0.0149 (4)0.0010 (3)0.0006 (3)0.0006 (3)
C70.0218 (4)0.0190 (4)0.0135 (4)0.0009 (3)0.0020 (3)0.0006 (3)
C80.0213 (4)0.0190 (4)0.0125 (4)0.0011 (3)0.0020 (3)0.0007 (3)
C90.0234 (4)0.0174 (4)0.0139 (4)0.0000 (3)0.0044 (3)0.0005 (3)
C100.0232 (4)0.0204 (4)0.0164 (4)0.0001 (3)0.0013 (3)0.0011 (3)
C110.0256 (5)0.0215 (5)0.0226 (5)0.0031 (4)0.0036 (4)0.0016 (4)
C120.0301 (5)0.0216 (4)0.0205 (5)0.0010 (4)0.0071 (4)0.0058 (3)
C130.0290 (5)0.0269 (5)0.0136 (4)0.0036 (4)0.0026 (3)0.0028 (3)
C140.0255 (5)0.0238 (4)0.0150 (4)0.0017 (4)0.0021 (3)0.0004 (3)
C150.0245 (4)0.0222 (4)0.0106 (4)0.0016 (4)0.0024 (3)0.0002 (3)
C160.0249 (5)0.0358 (5)0.0157 (4)0.0029 (4)0.0011 (4)0.0024 (4)
C170.0384 (6)0.0358 (6)0.0156 (5)0.0003 (5)0.0028 (4)0.0019 (4)
Geometric parameters (Å, º) top
O1—C71.2354 (11)C9—C101.3930 (13)
O2—C171.4229 (14)C9—C141.3998 (13)
O2—H2A0.949 (15)C10—C111.3904 (12)
N1—C71.3710 (11)C10—H101.003 (12)
N1—C61.3954 (11)C11—C121.3876 (14)
N1—C151.4704 (11)C11—H110.958 (12)
N2—C81.2977 (11)C12—C131.3862 (14)
N2—C11.3832 (11)C12—H120.973 (15)
C1—C21.4051 (12)C13—C141.3854 (13)
C1—C61.4071 (12)C13—H130.991 (14)
C2—C31.3781 (13)C14—H140.950 (12)
C2—H20.996 (13)C15—C161.5216 (14)
C3—C41.3954 (14)C15—H15A0.969 (11)
C3—H30.953 (12)C15—H15B0.991 (10)
C4—C51.3822 (13)C16—C171.5123 (14)
C4—H40.962 (13)C16—H16A1.003 (13)
C5—C61.4012 (12)C16—H16B0.970 (13)
C5—H50.988 (13)C17—H17A1.016 (12)
C7—C81.4865 (12)C17—H17B0.969 (15)
C8—C91.4838 (12)
C17—O2—H2A110.4 (9)C11—C10—H10121.1 (7)
C7—N1—C6122.30 (7)C9—C10—H10118.7 (7)
C7—N1—C15118.36 (7)C12—C11—C10120.13 (9)
C6—N1—C15119.25 (7)C12—C11—H11118.8 (7)
C8—N2—C1119.03 (8)C10—C11—H11121.0 (7)
N2—C1—C2118.46 (8)C13—C12—C11120.04 (9)
N2—C1—C6122.09 (8)C13—C12—H12119.8 (8)
C2—C1—C6119.43 (8)C11—C12—H12120.2 (8)
C3—C2—C1120.55 (9)C14—C13—C12120.06 (9)
C3—C2—H2122.4 (7)C14—C13—H13120.9 (8)
C1—C2—H2117.0 (7)C12—C13—H13119.0 (8)
C2—C3—C4119.52 (9)C13—C14—C9120.38 (9)
C2—C3—H3120.8 (7)C13—C14—H14120.0 (7)
C4—C3—H3119.7 (7)C9—C14—H14119.6 (7)
C5—C4—C3121.25 (9)N1—C15—C16111.32 (8)
C5—C4—H4119.1 (7)N1—C15—H15A107.0 (7)
C3—C4—H4119.6 (7)C16—C15—H15A113.3 (7)
C4—C5—C6119.56 (9)N1—C15—H15B106.7 (6)
C4—C5—H5120.1 (6)C16—C15—H15B111.3 (6)
C6—C5—H5120.4 (6)H15A—C15—H15B106.9 (9)
N1—C6—C5122.61 (8)C17—C16—C15110.98 (8)
N1—C6—C1117.70 (7)C17—C16—H16A108.8 (7)
C5—C6—C1119.68 (8)C15—C16—H16A108.4 (7)
O1—C7—N1121.94 (8)C17—C16—H16B108.1 (7)
O1—C7—C8122.62 (8)C15—C16—H16B112.4 (8)
N1—C7—C8115.43 (7)H16A—C16—H16B108.1 (10)
N2—C8—C9117.51 (8)O2—C17—C16107.93 (9)
N2—C8—C7123.28 (8)O2—C17—H17A110.7 (7)
C9—C8—C7119.21 (7)C16—C17—H17A114.0 (7)
C10—C9—C14119.17 (8)O2—C17—H17B111.7 (8)
C10—C9—C8121.63 (8)C16—C17—H17B109.1 (8)
C14—C9—C8119.06 (8)H17A—C17—H17B103.5 (11)
C11—C10—C9120.21 (9)
C8—N2—C1—C2176.53 (9)C1—N2—C8—C72.06 (14)
C8—N2—C1—C61.73 (13)O1—C7—C8—N2179.52 (9)
N2—C1—C2—C3177.28 (9)N1—C7—C8—N20.87 (13)
C6—C1—C2—C31.03 (14)O1—C7—C8—C90.91 (13)
C1—C2—C3—C40.79 (15)N1—C7—C8—C9179.56 (8)
C2—C3—C4—C50.28 (15)N2—C8—C9—C10135.20 (9)
C3—C4—C5—C60.01 (15)C7—C8—C9—C1044.40 (12)
C7—N1—C6—C5174.33 (8)N2—C8—C9—C1440.45 (12)
C15—N1—C6—C52.04 (13)C7—C8—C9—C14139.95 (9)
C7—N1—C6—C14.68 (13)C14—C9—C10—C110.85 (13)
C15—N1—C6—C1178.95 (7)C8—C9—C10—C11174.79 (8)
C4—C5—C6—N1179.24 (8)C9—C10—C11—C120.72 (14)
C4—C5—C6—C10.25 (13)C10—C11—C12—C130.31 (14)
N2—C1—C6—N11.55 (13)C11—C12—C13—C141.19 (14)
C2—C1—C6—N1179.79 (8)C12—C13—C14—C91.04 (14)
N2—C1—C6—C5177.49 (9)C10—C9—C14—C130.03 (14)
C2—C1—C6—C50.75 (13)C8—C9—C14—C13175.78 (8)
C6—N1—C7—O1177.04 (8)C7—N1—C15—C1691.26 (10)
C15—N1—C7—O10.64 (13)C6—N1—C15—C1685.24 (10)
C6—N1—C7—C84.31 (12)N1—C15—C16—C17168.64 (8)
C15—N1—C7—C8179.30 (8)C15—C16—C17—O263.85 (11)
C1—N2—C8—C9177.52 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C14 and C1–C6 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.949 (15)1.888 (15)2.8345 (10)174.4 (14)
C15—H15A···O2ii0.969 (11)2.582 (12)3.3425 (13)135.5 (9)
C3—H3···Cg1iii0.953 (12)2.734 (12)3.4708 (12)134.8 (9)
C10—H10···Cg2iv1.003 (12)2.916 (13)3.5859 (12)124.9 (9)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationCaleb, A. A., Ramli, Y., Benabdelkamel, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Maroc. Chim. Hétérocycl, 15, 109–123.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMissioui, M., Mague, J. T., El Fal, M., Taoufik, J., Essassi, E. M. & Ramli, Y. (2017). IUCrData, 2, x171763.  Google Scholar
First citationRamli, Y., Benzeid, H., Bouhfid, R., Kandri Rodi, Y., Ferfra, S. & Essassi, E. M. (2010a). Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 11, 67–90.  CAS Google Scholar
First citationRamli, Y. & Essassi, E. M. (2015). Adv. Chem. Res, 27, 109–160.  Google Scholar
First citationRamli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321.  CrossRef IUCr Journals Google Scholar
First citationRamli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds