organic compounds
1-(3-Hydroxypropyl)-3-phenylquinoxalin-2(1H)-one
aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: asb.sanae@gmail.com
In the title molecule, C17H16N2O2, the quinoxaline portion is slightly folded about the N⋯N axis with an angle of 4.27 (4)°. In the crystal, O—H⋯O and weak C—H⋯O hydrogen bonds link molecules along the b-axis direction. In addition, two sets of weak C—H⋯π(ring) interactions form a two-dimensional `step' motif parallel to the bc plane.
Keywords: crystal structure; dihydroquinoxaline; hydrogen bond; C—H⋯π(ring).
CCDC reference: 1879633
Structure description
Quinoxalines and their derivatives, especially the quinoxalinones, are of great importance in medicinal chemistry (Ramli & Essassi, 2015). As a continuation of our work on the synthesis of quinoxalin-2-one derivatives in order to evaluate their pharmacological activities (Ramli et al., 2010a,b, 2011, 2013; Caleb et al., 2016; Missioui et al., 2017) we report herein the synthesis and of the title compound.
The molecular structure of the title compound is shown in Fig. 1. The dihydroquinoxaline fragment shows a slight fold of 4.27 (4)° about the N1⋯N2 axis and the C9–C14 phenyl ring is inclined at 44.89 (3)° to the mean plane of the N1/N2/C1–C6 fragment. In the crystal, O—H⋯O and weak C—H⋯O hydrogen bonds form ribbons two molecules wide extending along the b-axis direction. Each half of the ribbon is reinforced by C3—H3⋯Cg1ii interactions (Table 1 and Fig. 2). The ribbons are connected into a `step' motif running parallel to the bc plane by C10—H10⋯Cg2iii interactions (Table 1 and Figs. 2–4).
Synthesis and crystallization
A solution of 1-(3-bromopropyl)-3-phenylquinoxalin-2(1H)-one (1 g, 2.9 mmol) methanol/water (20/5 ml) was stirred under reflex for 12 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue was purified by on silica gel by using a mixture (hexane/ethyl acetate 9/1). The solid product was purified by recrystallization from ethanol solution to afford colourless crystals in 20% yield.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1879633
https://doi.org/10.1107/S2414314618016334/lh4040sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618016334/lh4040Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618016334/lh4040Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314618016334/lh4040Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H16N2O2 | F(000) = 592 |
Mr = 280.32 | Dx = 1.348 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1914 (14) Å | Cell parameters from 9996 reflections |
b = 9.5151 (16) Å | θ = 2.3–29.5° |
c = 17.781 (3) Å | µ = 0.09 mm−1 |
β = 94.880 (2)° | T = 120 K |
V = 1380.9 (4) Å3 | Block, colourless |
Z = 4 | 0.36 × 0.30 × 0.24 mm |
Bruker SMART APEX CCD diffractometer | 3863 independent reflections |
Radiation source: fine-focus sealed tube | 3134 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.7°, θmin = 2.3° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −13→13 |
Tmin = 0.90, Tmax = 0.98 | l = −24→24 |
26403 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.135 | All H-atom parameters refined |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0966P)2] where P = (Fo2 + 2Fc2)/3 |
3863 reflections | (Δ/σ)max = 0.001 |
254 parameters | Δρmax = 0.48 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.27209 (9) | 0.74659 (7) | 0.56746 (4) | 0.02520 (19) | |
O2 | 0.22106 (10) | 0.33666 (7) | 0.78036 (4) | 0.0312 (2) | |
H2A | 0.2164 (19) | 0.3088 (16) | 0.8314 (8) | 0.048 (4)* | |
N1 | 0.20531 (9) | 0.51397 (8) | 0.56730 (4) | 0.01714 (18) | |
N2 | 0.23410 (10) | 0.50846 (8) | 0.41202 (4) | 0.01962 (19) | |
C1 | 0.19860 (11) | 0.38735 (9) | 0.45045 (5) | 0.0185 (2) | |
C2 | 0.17979 (12) | 0.26102 (9) | 0.40970 (6) | 0.0222 (2) | |
H2 | 0.1884 (17) | 0.2662 (13) | 0.3542 (8) | 0.032 (3)* | |
C3 | 0.15117 (12) | 0.13665 (10) | 0.44606 (6) | 0.0229 (2) | |
H3 | 0.1392 (14) | 0.0507 (13) | 0.4187 (6) | 0.024 (3)* | |
C4 | 0.13883 (12) | 0.13696 (10) | 0.52385 (6) | 0.0220 (2) | |
H4 | 0.1204 (15) | 0.0500 (13) | 0.5494 (7) | 0.032 (3)* | |
C5 | 0.15550 (11) | 0.25972 (9) | 0.56534 (5) | 0.0203 (2) | |
H5 | 0.1496 (15) | 0.2574 (11) | 0.6206 (8) | 0.027 (3)* | |
C6 | 0.18532 (10) | 0.38650 (9) | 0.52882 (5) | 0.01701 (19) | |
C7 | 0.24818 (11) | 0.63536 (9) | 0.53240 (5) | 0.01806 (19) | |
C8 | 0.25998 (11) | 0.62434 (9) | 0.44965 (5) | 0.01757 (19) | |
C9 | 0.30450 (11) | 0.75076 (9) | 0.40701 (5) | 0.0181 (2) | |
C10 | 0.43131 (12) | 0.83965 (10) | 0.43404 (5) | 0.0200 (2) | |
H10 | 0.4888 (16) | 0.8204 (13) | 0.4851 (7) | 0.029 (3)* | |
C11 | 0.47873 (12) | 0.95075 (10) | 0.39000 (6) | 0.0232 (2) | |
H11 | 0.5651 (15) | 1.0131 (11) | 0.4081 (6) | 0.022 (3)* | |
C12 | 0.39868 (12) | 0.97456 (10) | 0.31921 (5) | 0.0238 (2) | |
H12 | 0.4319 (17) | 1.0523 (15) | 0.2884 (8) | 0.047 (4)* | |
C13 | 0.27064 (12) | 0.88795 (10) | 0.29237 (5) | 0.0231 (2) | |
H13 | 0.2131 (16) | 0.9078 (14) | 0.2422 (8) | 0.036 (3)* | |
C14 | 0.22437 (12) | 0.77595 (10) | 0.33558 (5) | 0.0214 (2) | |
H14 | 0.1360 (15) | 0.7173 (12) | 0.3173 (7) | 0.023 (3)* | |
C15 | 0.18946 (11) | 0.51763 (10) | 0.64903 (5) | 0.0191 (2) | |
H15A | 0.1498 (14) | 0.6104 (12) | 0.6607 (6) | 0.024 (3)* | |
H15B | 0.1017 (13) | 0.4501 (11) | 0.6590 (6) | 0.017 (3)* | |
C16 | 0.35032 (12) | 0.47987 (12) | 0.69358 (5) | 0.0256 (2) | |
H16A | 0.4287 (15) | 0.5601 (13) | 0.6897 (7) | 0.031 (3)* | |
H16B | 0.4001 (16) | 0.3962 (14) | 0.6743 (7) | 0.032 (3)* | |
C17 | 0.32545 (15) | 0.45535 (12) | 0.77586 (6) | 0.0302 (2) | |
H17A | 0.2795 (15) | 0.5397 (13) | 0.8020 (7) | 0.033 (3)* | |
H17B | 0.4311 (18) | 0.4404 (14) | 0.8036 (8) | 0.042 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0405 (4) | 0.0198 (3) | 0.0159 (4) | −0.0061 (3) | 0.0058 (3) | −0.0034 (2) |
O2 | 0.0500 (5) | 0.0257 (4) | 0.0187 (4) | 0.0036 (3) | 0.0068 (3) | 0.0059 (3) |
N1 | 0.0217 (4) | 0.0188 (4) | 0.0110 (4) | −0.0012 (3) | 0.0014 (3) | 0.0001 (3) |
N2 | 0.0249 (4) | 0.0194 (4) | 0.0147 (4) | −0.0030 (3) | 0.0021 (3) | −0.0011 (3) |
C1 | 0.0221 (4) | 0.0185 (4) | 0.0148 (4) | −0.0021 (3) | 0.0014 (3) | 0.0001 (3) |
C2 | 0.0284 (5) | 0.0220 (5) | 0.0165 (4) | −0.0037 (4) | 0.0031 (4) | −0.0030 (3) |
C3 | 0.0255 (5) | 0.0196 (4) | 0.0235 (5) | −0.0037 (4) | 0.0020 (4) | −0.0026 (3) |
C4 | 0.0225 (4) | 0.0201 (4) | 0.0232 (5) | −0.0040 (3) | 0.0009 (4) | 0.0022 (3) |
C5 | 0.0223 (4) | 0.0218 (5) | 0.0166 (4) | −0.0028 (3) | 0.0014 (3) | 0.0020 (3) |
C6 | 0.0176 (4) | 0.0185 (4) | 0.0149 (4) | −0.0010 (3) | 0.0006 (3) | −0.0006 (3) |
C7 | 0.0218 (4) | 0.0190 (4) | 0.0135 (4) | −0.0009 (3) | 0.0020 (3) | −0.0006 (3) |
C8 | 0.0213 (4) | 0.0190 (4) | 0.0125 (4) | −0.0011 (3) | 0.0020 (3) | 0.0007 (3) |
C9 | 0.0234 (4) | 0.0174 (4) | 0.0139 (4) | 0.0000 (3) | 0.0044 (3) | 0.0005 (3) |
C10 | 0.0232 (4) | 0.0204 (4) | 0.0164 (4) | 0.0001 (3) | 0.0013 (3) | 0.0011 (3) |
C11 | 0.0256 (5) | 0.0215 (5) | 0.0226 (5) | −0.0031 (4) | 0.0036 (4) | 0.0016 (4) |
C12 | 0.0301 (5) | 0.0216 (4) | 0.0205 (5) | 0.0010 (4) | 0.0071 (4) | 0.0058 (3) |
C13 | 0.0290 (5) | 0.0269 (5) | 0.0136 (4) | 0.0036 (4) | 0.0026 (3) | 0.0028 (3) |
C14 | 0.0255 (5) | 0.0238 (4) | 0.0150 (4) | −0.0017 (4) | 0.0021 (3) | −0.0004 (3) |
C15 | 0.0245 (4) | 0.0222 (4) | 0.0106 (4) | −0.0016 (4) | 0.0024 (3) | 0.0002 (3) |
C16 | 0.0249 (5) | 0.0358 (5) | 0.0157 (4) | −0.0029 (4) | −0.0011 (4) | 0.0024 (4) |
C17 | 0.0384 (6) | 0.0358 (6) | 0.0156 (5) | −0.0003 (5) | −0.0028 (4) | 0.0019 (4) |
O1—C7 | 1.2354 (11) | C9—C10 | 1.3930 (13) |
O2—C17 | 1.4229 (14) | C9—C14 | 1.3998 (13) |
O2—H2A | 0.949 (15) | C10—C11 | 1.3904 (12) |
N1—C7 | 1.3710 (11) | C10—H10 | 1.003 (12) |
N1—C6 | 1.3954 (11) | C11—C12 | 1.3876 (14) |
N1—C15 | 1.4704 (11) | C11—H11 | 0.958 (12) |
N2—C8 | 1.2977 (11) | C12—C13 | 1.3862 (14) |
N2—C1 | 1.3832 (11) | C12—H12 | 0.973 (15) |
C1—C2 | 1.4051 (12) | C13—C14 | 1.3854 (13) |
C1—C6 | 1.4071 (12) | C13—H13 | 0.991 (14) |
C2—C3 | 1.3781 (13) | C14—H14 | 0.950 (12) |
C2—H2 | 0.996 (13) | C15—C16 | 1.5216 (14) |
C3—C4 | 1.3954 (14) | C15—H15A | 0.969 (11) |
C3—H3 | 0.953 (12) | C15—H15B | 0.991 (10) |
C4—C5 | 1.3822 (13) | C16—C17 | 1.5123 (14) |
C4—H4 | 0.962 (13) | C16—H16A | 1.003 (13) |
C5—C6 | 1.4012 (12) | C16—H16B | 0.970 (13) |
C5—H5 | 0.988 (13) | C17—H17A | 1.016 (12) |
C7—C8 | 1.4865 (12) | C17—H17B | 0.969 (15) |
C8—C9 | 1.4838 (12) | ||
C17—O2—H2A | 110.4 (9) | C11—C10—H10 | 121.1 (7) |
C7—N1—C6 | 122.30 (7) | C9—C10—H10 | 118.7 (7) |
C7—N1—C15 | 118.36 (7) | C12—C11—C10 | 120.13 (9) |
C6—N1—C15 | 119.25 (7) | C12—C11—H11 | 118.8 (7) |
C8—N2—C1 | 119.03 (8) | C10—C11—H11 | 121.0 (7) |
N2—C1—C2 | 118.46 (8) | C13—C12—C11 | 120.04 (9) |
N2—C1—C6 | 122.09 (8) | C13—C12—H12 | 119.8 (8) |
C2—C1—C6 | 119.43 (8) | C11—C12—H12 | 120.2 (8) |
C3—C2—C1 | 120.55 (9) | C14—C13—C12 | 120.06 (9) |
C3—C2—H2 | 122.4 (7) | C14—C13—H13 | 120.9 (8) |
C1—C2—H2 | 117.0 (7) | C12—C13—H13 | 119.0 (8) |
C2—C3—C4 | 119.52 (9) | C13—C14—C9 | 120.38 (9) |
C2—C3—H3 | 120.8 (7) | C13—C14—H14 | 120.0 (7) |
C4—C3—H3 | 119.7 (7) | C9—C14—H14 | 119.6 (7) |
C5—C4—C3 | 121.25 (9) | N1—C15—C16 | 111.32 (8) |
C5—C4—H4 | 119.1 (7) | N1—C15—H15A | 107.0 (7) |
C3—C4—H4 | 119.6 (7) | C16—C15—H15A | 113.3 (7) |
C4—C5—C6 | 119.56 (9) | N1—C15—H15B | 106.7 (6) |
C4—C5—H5 | 120.1 (6) | C16—C15—H15B | 111.3 (6) |
C6—C5—H5 | 120.4 (6) | H15A—C15—H15B | 106.9 (9) |
N1—C6—C5 | 122.61 (8) | C17—C16—C15 | 110.98 (8) |
N1—C6—C1 | 117.70 (7) | C17—C16—H16A | 108.8 (7) |
C5—C6—C1 | 119.68 (8) | C15—C16—H16A | 108.4 (7) |
O1—C7—N1 | 121.94 (8) | C17—C16—H16B | 108.1 (7) |
O1—C7—C8 | 122.62 (8) | C15—C16—H16B | 112.4 (8) |
N1—C7—C8 | 115.43 (7) | H16A—C16—H16B | 108.1 (10) |
N2—C8—C9 | 117.51 (8) | O2—C17—C16 | 107.93 (9) |
N2—C8—C7 | 123.28 (8) | O2—C17—H17A | 110.7 (7) |
C9—C8—C7 | 119.21 (7) | C16—C17—H17A | 114.0 (7) |
C10—C9—C14 | 119.17 (8) | O2—C17—H17B | 111.7 (8) |
C10—C9—C8 | 121.63 (8) | C16—C17—H17B | 109.1 (8) |
C14—C9—C8 | 119.06 (8) | H17A—C17—H17B | 103.5 (11) |
C11—C10—C9 | 120.21 (9) | ||
C8—N2—C1—C2 | −176.53 (9) | C1—N2—C8—C7 | −2.06 (14) |
C8—N2—C1—C6 | 1.73 (13) | O1—C7—C8—N2 | −179.52 (9) |
N2—C1—C2—C3 | 177.28 (9) | N1—C7—C8—N2 | −0.87 (13) |
C6—C1—C2—C3 | −1.03 (14) | O1—C7—C8—C9 | 0.91 (13) |
C1—C2—C3—C4 | 0.79 (15) | N1—C7—C8—C9 | 179.56 (8) |
C2—C3—C4—C5 | −0.28 (15) | N2—C8—C9—C10 | −135.20 (9) |
C3—C4—C5—C6 | 0.01 (15) | C7—C8—C9—C10 | 44.40 (12) |
C7—N1—C6—C5 | 174.33 (8) | N2—C8—C9—C14 | 40.45 (12) |
C15—N1—C6—C5 | −2.04 (13) | C7—C8—C9—C14 | −139.95 (9) |
C7—N1—C6—C1 | −4.68 (13) | C14—C9—C10—C11 | −0.85 (13) |
C15—N1—C6—C1 | 178.95 (7) | C8—C9—C10—C11 | 174.79 (8) |
C4—C5—C6—N1 | −179.24 (8) | C9—C10—C11—C12 | 0.72 (14) |
C4—C5—C6—C1 | −0.25 (13) | C10—C11—C12—C13 | 0.31 (14) |
N2—C1—C6—N1 | 1.55 (13) | C11—C12—C13—C14 | −1.19 (14) |
C2—C1—C6—N1 | 179.79 (8) | C12—C13—C14—C9 | 1.04 (14) |
N2—C1—C6—C5 | −177.49 (9) | C10—C9—C14—C13 | −0.03 (14) |
C2—C1—C6—C5 | 0.75 (13) | C8—C9—C14—C13 | −175.78 (8) |
C6—N1—C7—O1 | −177.04 (8) | C7—N1—C15—C16 | −91.26 (10) |
C15—N1—C7—O1 | −0.64 (13) | C6—N1—C15—C16 | 85.24 (10) |
C6—N1—C7—C8 | 4.31 (12) | N1—C15—C16—C17 | −168.64 (8) |
C15—N1—C7—C8 | −179.30 (8) | C15—C16—C17—O2 | 63.85 (11) |
C1—N2—C8—C9 | 177.52 (8) |
Cg1 and Cg2 are the centroids of the C9–C14 and C1–C6 benzene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1i | 0.949 (15) | 1.888 (15) | 2.8345 (10) | 174.4 (14) |
C15—H15A···O2ii | 0.969 (11) | 2.582 (12) | 3.3425 (13) | 135.5 (9) |
C3—H3···Cg1iii | 0.953 (12) | 2.734 (12) | 3.4708 (12) | 134.8 (9) |
C10—H10···Cg2iv | 1.003 (12) | 2.916 (13) | 3.5859 (12) | 124.9 (9) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1/2, y+1/2, −z+3/2; (iii) x, y−1, z; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS, Madison, Wisconsin, USA. Google Scholar
Caleb, A. A., Ramli, Y., Benabdelkamel, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Maroc. Chim. Hétérocycl, 15, 109–123. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Missioui, M., Mague, J. T., El Fal, M., Taoufik, J., Essassi, E. M. & Ramli, Y. (2017). IUCrData, 2, x171763. Google Scholar
Ramli, Y., Benzeid, H., Bouhfid, R., Kandri Rodi, Y., Ferfra, S. & Essassi, E. M. (2010a). Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 11, 67–90. CAS Google Scholar
Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res, 27, 109–160. Google Scholar
Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321. CrossRef IUCr Journals Google Scholar
Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.