organic compounds
Homopropargyl alcohol 5,5-diphenylpent-2-yne-1,5-diol
aEscuela de Química, Universidad de Costa Rica, 2060, San José, Costa Rica, and bCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa, Rica, 2060 San José, Costa Rica
*Correspondence e-mail: jorge.cabezas@ucr.ac.cr
In the title compound, C17H16O2, the central carbon atom has a distorted tetrahedral geometry [spread of angles = 105.71 (8)–112.75 (9)°] for its bonds to a homopropargylic but-2-yn-1-ol moiety, a hydroxy group and two phenyl substituents. In the crystal, O—H⋯O hydrogen-bonding interactions link the molecules into [001] chains and C—H⋯π(ring) contacts consolidate the packing.
Keywords: crystal structure; homopropargyl alcohols; 1,3-dilithiopropyne; propargylation; alkynes.
CCDC reference: 1858284
Structure description
Poly-functional homopropargylic et al., 2017; Foley & Leighton, 2015; Francais et al., 2010; Hosseyni et al., 2016). Their preparation usually involves multi-step synthesis (Midland et al., 1984). The of 5,5-diphenyl-2-pentyn-1,5-diol is reported herein.
are very useful intermediates in the synthesis of a variety of organic compounds (KimThe ). The central carbon atom has angles that deviate from the ideal value (109.4°), mainly because of the bulky phenyl groups attached to it. The dihedral angle between the rings is 80.79 (6)°. The bond length of the carbon-[carbon triple bond (C15≡C16) is 1.190 (2) Å, with the C14—C15—C16 angle being 174.11 (12)°.
of the title compound features a distorted tetrahedral geometry for the central carbon atom (C7) for which the bonding sphere is made of a homopropargylic 2-butyn-1-ol fragment, a hydroxy group and two phenyl groups (Fig. 1In the crystal, O—H⋯O hydrogen-bonding interactions are observed between molecules whose acceptor atoms are in a different R(8) graph-set motif (Table 1 and Fig. 2) as a component of [001] chains. The packing is consolidated by C—H⋯π interactions (Table 1 and Fig. 2).
forming a ring with anSynthesis and crystallization
This highly substituted homopropargyl alcohol was synthesized, in a one-pot reaction, by the sequential treatment of propargyl bromide, with n-BuLi and TMEDA at −78°C, followed by reaction with benzophenone. The reaction intermediate thus obtained, was treated with paraformaldehyde overnight (Fig. 3), according to the literature procedure (Cabezas et al., 2001). The volatile by-product obtained (2-butyn-1-ol) was removed by Kugelrohr distillation and the residue was purified by (ether:hexane) and the product obtained was recrystallized from a mixed ethyl ether:hexanes (1:1) solvent mixture to give colourless block-like crystals.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1858284
https://doi.org/10.1107/S2414314618016188/hb4268sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618016188/hb4268Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618016188/hb4268Isup3.cml
Data collection: APEX3 (Bruker, 2015); cell
APEX3 (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).C17H16O2 | F(000) = 536 |
Mr = 252.30 | Dx = 1.259 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9772 (3) Å | Cell parameters from 117 reflections |
b = 22.8528 (8) Å | θ = 3.6–23.1° |
c = 7.3075 (3) Å | µ = 0.08 mm−1 |
β = 92.791 (1)° | T = 100 K |
V = 1330.59 (9) Å3 | Block, colourless |
Z = 4 | 0.50 × 0.34 × 0.25 mm |
Bruker D8 Venture diffractometer | 3060 independent reflections |
Radiation source: Incoatec Microsource | 2668 reflections with I > 2σ(I) |
Mirrors monochromator | Rint = 0.050 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.5°, θmin = 2.6° |
ω scans | h = −8→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −29→29 |
Tmin = 0.727, Tmax = 0.746 | l = −9→9 |
65030 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.053P)2 + 0.6384P] where P = (Fo2 + 2Fc2)/3 |
3060 reflections | (Δ/σ)max = 0.001 |
176 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.27538 (10) | 0.54181 (3) | 0.43375 (11) | 0.01258 (19) | |
H1 | 0.345 (2) | 0.5263 (5) | 0.3615 (17) | 0.019* | |
O2 | 0.46943 (11) | 0.51425 (4) | −0.26458 (12) | 0.0171 (2) | |
H2' | 0.4133 (13) | 0.5299 (7) | −0.355 (2) | 0.026* | |
C1 | 0.34385 (14) | 0.63310 (5) | 0.28443 (15) | 0.0115 (2) | |
C2 | 0.33084 (15) | 0.66221 (5) | 0.11643 (17) | 0.0159 (2) | |
H2 | 0.2316 | 0.6583 | 0.0402 | 0.019* | |
C3 | 0.46201 (17) | 0.69690 (6) | 0.05955 (18) | 0.0206 (3) | |
H3 | 0.4515 | 0.7166 | −0.0549 | 0.025* | |
C4 | 0.60738 (17) | 0.70284 (5) | 0.16880 (18) | 0.0202 (3) | |
H4 | 0.6968 | 0.7264 | 0.1294 | 0.024* | |
C5 | 0.62206 (15) | 0.67418 (5) | 0.33639 (18) | 0.0178 (3) | |
H5 | 0.722 | 0.678 | 0.4116 | 0.021* | |
C6 | 0.49087 (15) | 0.63986 (5) | 0.39436 (16) | 0.0149 (2) | |
H6 | 0.5013 | 0.6208 | 0.5099 | 0.018* | |
C7 | 0.20382 (14) | 0.59370 (5) | 0.35016 (15) | 0.0104 (2) | |
C8 | 0.10203 (14) | 0.62267 (5) | 0.49755 (15) | 0.0117 (2) | |
C9 | −0.01385 (15) | 0.58905 (5) | 0.58940 (17) | 0.0159 (2) | |
H9 | −0.0277 | 0.5488 | 0.5593 | 0.019* | |
C10 | −0.10905 (16) | 0.61360 (6) | 0.72402 (17) | 0.0196 (3) | |
H10 | −0.1869 | 0.5902 | 0.7857 | 0.024* | |
C11 | −0.09031 (16) | 0.67244 (6) | 0.76825 (17) | 0.0201 (3) | |
H11 | −0.1553 | 0.6893 | 0.8601 | 0.024* | |
C12 | 0.02357 (16) | 0.70637 (6) | 0.67798 (17) | 0.0192 (3) | |
H12 | 0.0364 | 0.7466 | 0.7079 | 0.023* | |
C13 | 0.11950 (15) | 0.68163 (5) | 0.54327 (16) | 0.0150 (2) | |
H13 | 0.1974 | 0.7052 | 0.4822 | 0.018* | |
C14 | 0.08274 (14) | 0.57347 (5) | 0.19017 (15) | 0.0127 (2) | |
H14A | −0.0068 | 0.5488 | 0.2391 | 0.015* | |
H14B | 0.0291 | 0.6081 | 0.1309 | 0.015* | |
C15 | 0.17153 (14) | 0.54009 (5) | 0.05346 (16) | 0.0127 (2) | |
C16 | 0.25424 (14) | 0.51196 (5) | −0.04534 (16) | 0.0138 (2) | |
C17 | 0.36115 (15) | 0.47781 (5) | −0.16380 (16) | 0.0153 (2) | |
H17A | 0.43 | 0.4502 | −0.0875 | 0.018* | |
H17B | 0.2892 | 0.4545 | −0.2507 | 0.018* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0132 (4) | 0.0123 (4) | 0.0125 (4) | 0.0038 (3) | 0.0025 (3) | 0.0022 (3) |
O2 | 0.0142 (4) | 0.0248 (5) | 0.0124 (4) | 0.0041 (3) | 0.0021 (3) | 0.0033 (3) |
C1 | 0.0112 (5) | 0.0105 (5) | 0.0130 (5) | 0.0007 (4) | 0.0032 (4) | −0.0014 (4) |
C2 | 0.0163 (6) | 0.0165 (5) | 0.0149 (6) | −0.0008 (4) | 0.0010 (4) | 0.0016 (4) |
C3 | 0.0261 (7) | 0.0181 (6) | 0.0183 (6) | −0.0035 (5) | 0.0070 (5) | 0.0029 (5) |
C4 | 0.0191 (6) | 0.0173 (6) | 0.0252 (7) | −0.0058 (5) | 0.0109 (5) | −0.0044 (5) |
C5 | 0.0122 (5) | 0.0179 (6) | 0.0234 (6) | −0.0019 (4) | 0.0021 (5) | −0.0071 (5) |
C6 | 0.0147 (5) | 0.0148 (5) | 0.0152 (6) | 0.0004 (4) | 0.0006 (4) | −0.0018 (4) |
C7 | 0.0101 (5) | 0.0108 (5) | 0.0102 (5) | 0.0009 (4) | 0.0008 (4) | 0.0013 (4) |
C8 | 0.0107 (5) | 0.0150 (5) | 0.0095 (5) | 0.0031 (4) | −0.0004 (4) | 0.0004 (4) |
C9 | 0.0174 (6) | 0.0148 (5) | 0.0160 (6) | 0.0029 (4) | 0.0043 (4) | 0.0030 (4) |
C10 | 0.0201 (6) | 0.0240 (6) | 0.0154 (6) | 0.0057 (5) | 0.0067 (5) | 0.0054 (5) |
C11 | 0.0211 (6) | 0.0272 (6) | 0.0122 (5) | 0.0094 (5) | 0.0034 (5) | −0.0015 (5) |
C12 | 0.0212 (6) | 0.0183 (6) | 0.0180 (6) | 0.0042 (5) | −0.0004 (5) | −0.0057 (5) |
C13 | 0.0139 (5) | 0.0160 (5) | 0.0151 (6) | 0.0010 (4) | 0.0005 (4) | −0.0014 (4) |
C14 | 0.0103 (5) | 0.0156 (5) | 0.0122 (5) | −0.0006 (4) | 0.0009 (4) | −0.0013 (4) |
C15 | 0.0108 (5) | 0.0153 (5) | 0.0118 (5) | −0.0017 (4) | −0.0016 (4) | 0.0000 (4) |
C16 | 0.0116 (5) | 0.0170 (5) | 0.0126 (5) | −0.0015 (4) | −0.0015 (4) | −0.0002 (4) |
C17 | 0.0134 (5) | 0.0173 (5) | 0.0151 (6) | 0.0006 (4) | 0.0009 (4) | −0.0029 (4) |
O1—C7 | 1.4391 (13) | C8—C13 | 1.3936 (16) |
O1—H1 | 0.860 (17) | C8—C9 | 1.3985 (16) |
O2—C17 | 1.4296 (14) | C9—C10 | 1.3900 (16) |
O2—H2' | 0.857 (18) | C9—H9 | 0.95 |
C1—C2 | 1.3957 (16) | C10—C11 | 1.3892 (19) |
C1—C6 | 1.3974 (16) | C10—H10 | 0.95 |
C1—C7 | 1.5302 (15) | C11—C12 | 1.3856 (19) |
C2—C3 | 1.3923 (17) | C11—H11 | 0.95 |
C2—H2 | 0.95 | C12—C13 | 1.3956 (16) |
C3—C4 | 1.3822 (19) | C12—H12 | 0.95 |
C3—H3 | 0.95 | C13—H13 | 0.95 |
C4—C5 | 1.3888 (19) | C14—C15 | 1.4665 (15) |
C4—H4 | 0.95 | C14—H14A | 0.99 |
C5—C6 | 1.3903 (16) | C14—H14B | 0.99 |
C5—H5 | 0.95 | C15—C16 | 1.1900 (17) |
C6—H6 | 0.95 | C16—C17 | 1.4690 (16) |
C7—C8 | 1.5307 (15) | C17—H17A | 0.99 |
C7—C14 | 1.5503 (15) | C17—H17B | 0.99 |
C7—O1—H1 | 109.5 | C10—C9—C8 | 120.97 (11) |
C17—O2—H2' | 109.5 | C10—C9—H9 | 119.5 |
C2—C1—C6 | 118.51 (11) | C8—C9—H9 | 119.5 |
C2—C1—C7 | 122.17 (10) | C11—C10—C9 | 119.94 (12) |
C6—C1—C7 | 119.32 (10) | C11—C10—H10 | 120.0 |
C3—C2—C1 | 120.61 (12) | C9—C10—H10 | 120.0 |
C3—C2—H2 | 119.7 | C12—C11—C10 | 119.77 (11) |
C1—C2—H2 | 119.7 | C12—C11—H11 | 120.1 |
C4—C3—C2 | 120.34 (12) | C10—C11—H11 | 120.1 |
C4—C3—H3 | 119.8 | C11—C12—C13 | 120.25 (11) |
C2—C3—H3 | 119.8 | C11—C12—H12 | 119.9 |
C3—C4—C5 | 119.69 (11) | C13—C12—H12 | 119.9 |
C3—C4—H4 | 120.2 | C8—C13—C12 | 120.59 (11) |
C5—C4—H4 | 120.2 | C8—C13—H13 | 119.7 |
C4—C5—C6 | 120.15 (12) | C12—C13—H13 | 119.7 |
C4—C5—H5 | 119.9 | C15—C14—C7 | 111.41 (9) |
C6—C5—H5 | 119.9 | C15—C14—H14A | 109.3 |
C5—C6—C1 | 120.69 (11) | C7—C14—H14A | 109.3 |
C5—C6—H6 | 119.7 | C15—C14—H14B | 109.3 |
C1—C6—H6 | 119.7 | C7—C14—H14B | 109.3 |
O1—C7—C1 | 109.72 (9) | H14A—C14—H14B | 108.0 |
O1—C7—C8 | 105.71 (8) | C16—C15—C14 | 174.11 (12) |
C1—C7—C8 | 112.75 (9) | C15—C16—C17 | 178.17 (13) |
O1—C7—C14 | 107.11 (9) | O2—C17—C16 | 112.13 (10) |
C1—C7—C14 | 112.10 (9) | O2—C17—H17A | 109.2 |
C8—C7—C14 | 109.10 (9) | C16—C17—H17A | 109.2 |
C13—C8—C9 | 118.48 (11) | O2—C17—H17B | 109.2 |
C13—C8—C7 | 122.46 (10) | C16—C17—H17B | 109.2 |
C9—C8—C7 | 119.06 (10) | H17A—C17—H17B | 107.9 |
C6—C1—C2—C3 | 0.37 (17) | C14—C7—C8—C13 | −115.62 (12) |
C7—C1—C2—C3 | −178.85 (11) | O1—C7—C8—C9 | −50.95 (13) |
C1—C2—C3—C4 | 0.18 (19) | C1—C7—C8—C9 | −170.83 (10) |
C2—C3—C4—C5 | −0.24 (19) | C14—C7—C8—C9 | 63.93 (13) |
C3—C4—C5—C6 | −0.26 (18) | C13—C8—C9—C10 | −0.35 (18) |
C4—C5—C6—C1 | 0.83 (18) | C7—C8—C9—C10 | −179.92 (11) |
C2—C1—C6—C5 | −0.88 (17) | C8—C9—C10—C11 | 0.34 (19) |
C7—C1—C6—C5 | 178.37 (10) | C9—C10—C11—C12 | −0.10 (19) |
C2—C1—C7—O1 | 138.56 (11) | C10—C11—C12—C13 | −0.11 (19) |
C6—C1—C7—O1 | −40.66 (13) | C9—C8—C13—C12 | 0.13 (17) |
C2—C1—C7—C8 | −103.91 (12) | C7—C8—C13—C12 | 179.69 (10) |
C6—C1—C7—C8 | 76.87 (13) | C11—C12—C13—C8 | 0.09 (18) |
C2—C1—C7—C14 | 19.69 (14) | O1—C7—C14—C15 | −60.24 (11) |
C6—C1—C7—C14 | −159.53 (10) | C1—C7—C14—C15 | 60.16 (12) |
O1—C7—C8—C13 | 129.49 (11) | C8—C7—C14—C15 | −174.22 (9) |
C1—C7—C8—C13 | 9.62 (15) |
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.86 | 1.91 | 2.7493 (12) | 164 |
O2—H2′···O1ii | 0.86 | 1.87 | 2.7056 (12) | 164 |
C5—H5···Cg2iii | 0.95 | 2.80 | 3.7122 (13) | 160 |
C17—H17A···Cg1i | 0.99 | 3.00 | 3.6172 (13) | 122 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y, z−1; (iii) x+1, y, z. |
Funding information
We thank the Sistema de Estudios de Posgrado (SEP), Universidad de Costa Rica (UCR) for a stipend to CAU, and the Vicerrectoría de Investigación (UCR) for financial support.
References
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cabezas, J. A., Pereira, A. & Amey, A. (2001). Tetrahedron Lett. 42, 6819–6822. CrossRef Google Scholar
Foley, C. N. & Leighton, J. L. (2015). Org. Lett. 17, 5858–5861. CrossRef Google Scholar
Francais, A., Leyva, A., Etxebarria-Jardi, G. & Ley, S. V. (2010). Org. Lett. 12, 340–343. CrossRef Google Scholar
Hosseyni, S., Wojtas, L., Li, M. & Shi, X. (2016). J. Am. Chem. Soc. 138, 3994–3997. CrossRef Google Scholar
Kim, J., Jeong, W. & Rhee, Y. H. (2017). Org. Lett. 19, 242–245. CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Midland, M. M., Tramontano, A., Kazubski, A., Graham, R. S., Tsai, D. J. S. & Cardin, D. B. (1984). Tetrahedron, 40, 1371–1380. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.