organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: asb.sanae@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 September 2018; accepted 23 October 2018; online 16 November 2018)

The asymmetric unit of the title compound, C6H7N5O, consists of two mol­ecules with almost identical conformations. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds occur for both mol­ecules; further N—H⋯N and N—H⋯O hydrogen bonds connect the dimers into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a continuation of our studies of triazolo­pyrimidine derivatives (Lahmidi et al., 2016[Lahmidi, S., Sebbar, N. K., Harmaoui, A., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161946.]; El Hafi et al., 2017[El Hafi, M., Lahmidi, S., Boulhaoua, M., Essaghouani, A., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171243.]), we now report the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The asymmetric unit with labelling scheme and 50% probability ellipsoids. The N—H⋯N hydrogen bond is shown by a dashed line.

The asymmetric unit consists of two independent mol­ecules with almost identical conformations; as expected, the mol­ecules are almost planar with r.m.s. deviations for the N1 and N6 mol­ecules of 0.011 and 0.0052 Å, respectively. The dihedral angle between the mean planes of the independent mol­ecules in the asymmetric unit, which are linked by an N1—H1⋯N7 hydrogen bond, is 78.27 (3)°. In the extended structure, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(8) loops for both mol­ecules (Table 1[link]). Further N—H⋯N and N—H⋯O hydrogen bonds connect the dimers into a three-dimensional network (Table 1[link] and Figs. 2[link] and 3).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N7 0.85 (2) 2.00 (2) 2.8520 (18) 176 (2)
N5—H5A⋯N2i 0.93 (2) 2.20 (2) 3.1240 (18) 173.3 (17)
N5—H5B⋯O2ii 0.881 (18) 2.097 (19) 2.9733 (18) 172.7 (16)
N6—H6⋯N3iii 0.944 (19) 1.94 (2) 2.8724 (17) 168.6 (17)
N10—H10A⋯O1iv 0.863 (18) 2.069 (18) 2.8935 (17) 159.5 (16)
N10—H10B⋯N8v 0.845 (18) 2.220 (19) 3.0330 (19) 161.2 (16)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) -x, -y, -z.
[Figure 2]
Figure 2
Packing showing the hydrogen-bonding network with the N—H⋯O and N—H⋯N hydrogen bonds shown, respectively, as purple and blue dashed lines.

Synthesis and crystallization

A mixture of 3,5-di­amino-1,2,4-triazole (0.5 g, 5 mmol) and ethyl aceto­acetate (0.64 ml, 5 mmol) and 15 ml of acetic acid was refluxed for 6 h. The solution was cooled and evaporated to dryness under reduced pressure and ethanol (7 ml) was added. After four days, colourless columnar crystals were recovered in 75% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H7N5O
Mr 165.17
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 6.5921 (14), 8.3935 (18), 13.185 (3)
α, β, γ (°) 92.023 (3), 98.309 (3), 99.741 (3)
V3) 710.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.39 × 0.16 × 0.09
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.96, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 6817, 3503, 2743
Rint 0.023
(sin θ/λ)max−1) 0.689
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.138, 1.13
No. of reflections 3503
No. of parameters 251
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.26
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae, et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae, et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-Amino-5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one top
Crystal data top
C6H7N5OZ = 4
Mr = 165.17F(000) = 344
Triclinic, P1Dx = 1.545 Mg m3
a = 6.5921 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3935 (18) ÅCell parameters from 3414 reflections
c = 13.185 (3) Åθ = 2.5–29.0°
α = 92.023 (3)°µ = 0.12 mm1
β = 98.309 (3)°T = 100 K
γ = 99.741 (3)°Column, colourless
V = 710.1 (3) Å30.39 × 0.16 × 0.09 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3503 independent reflections
Radiation source: fine-focus sealed tube2743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.3333 pixels mm-1θmax = 29.3°, θmin = 1.6°
ω scansh = 98
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.96, Tmax = 0.99l = 1818
6817 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0848P)2]
where P = (Fo2 + 2Fc2)/3
3503 reflections(Δ/σ)max = 0.002
251 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydrogens attached to C1 and C7 did not refine well as independent atoms and so were included as riding contributions in idealized positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71873 (17)0.15324 (13)0.67848 (8)0.0266 (3)
N10.45726 (19)0.26128 (14)0.39710 (9)0.0185 (3)
H10.396 (4)0.275 (2)0.3374 (17)0.047 (6)*
N20.22945 (19)0.38112 (14)0.49382 (9)0.0185 (3)
N30.38526 (19)0.32482 (14)0.65319 (9)0.0185 (3)
H30.833 (3)0.097 (2)0.5008 (14)0.038 (5)*
N40.48312 (19)0.26943 (14)0.57606 (9)0.0172 (3)
N50.0991 (2)0.46038 (16)0.64373 (10)0.0222 (3)
H5A0.000 (3)0.501 (2)0.5988 (15)0.037 (5)*
H5B0.090 (3)0.444 (2)0.7087 (15)0.027 (5)*
C10.6963 (3)0.1426 (2)0.30516 (12)0.0264 (4)
H1A0.7814690.2386090.2830040.040*
H1B0.5744600.1057850.2526600.040*
H1C0.7790820.0561980.3149460.040*
C20.6262 (2)0.18420 (17)0.40412 (11)0.0201 (3)
C30.7210 (2)0.14891 (18)0.49694 (12)0.0210 (3)
C40.6514 (2)0.18617 (17)0.59172 (11)0.0200 (3)
C50.2336 (2)0.38926 (17)0.59923 (10)0.0180 (3)
C60.3869 (2)0.30546 (17)0.48365 (10)0.0170 (3)
O20.09921 (16)0.38683 (13)0.13731 (7)0.0218 (3)
N60.37698 (19)0.56222 (14)0.14978 (9)0.0173 (3)
H60.438 (3)0.602 (2)0.2170 (15)0.035 (5)*
N70.24807 (18)0.29027 (14)0.19538 (9)0.0172 (3)
N80.09267 (18)0.19333 (14)0.03227 (9)0.0166 (3)
N90.18460 (18)0.35493 (14)0.03384 (8)0.0153 (3)
N100.0637 (2)0.01587 (16)0.16497 (10)0.0197 (3)
H10A0.123 (3)0.015 (2)0.2218 (14)0.023 (4)*
H10B0.013 (3)0.060 (2)0.1197 (14)0.022 (4)*
C70.4936 (3)0.83306 (18)0.09981 (12)0.0231 (3)
H7A0.5304920.8854950.0381290.035*
H7B0.6205130.8316010.1484710.035*
H7C0.4020300.8933960.1317650.035*
C80.3836 (2)0.66345 (17)0.07097 (11)0.0173 (3)
C90.2924 (2)0.61062 (18)0.02650 (11)0.0180 (3)
H90.301 (3)0.6893 (19)0.0810 (13)0.019 (4)*
C100.1855 (2)0.44763 (18)0.05244 (11)0.0175 (3)
C110.1343 (2)0.16154 (17)0.13023 (10)0.0161 (3)
C120.2755 (2)0.40717 (17)0.13117 (10)0.0155 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0288 (6)0.0339 (6)0.0171 (5)0.0087 (5)0.0021 (4)0.0072 (5)
N10.0235 (7)0.0199 (6)0.0107 (6)0.0020 (5)0.0003 (5)0.0009 (5)
N20.0223 (6)0.0202 (6)0.0115 (6)0.0019 (5)0.0001 (5)0.0015 (5)
N30.0234 (6)0.0201 (6)0.0116 (6)0.0033 (5)0.0013 (5)0.0012 (5)
N40.0217 (6)0.0174 (6)0.0116 (6)0.0024 (5)0.0011 (5)0.0012 (4)
N50.0278 (7)0.0288 (7)0.0113 (6)0.0090 (6)0.0023 (5)0.0031 (5)
C10.0305 (9)0.0275 (8)0.0208 (8)0.0034 (7)0.0054 (6)0.0010 (6)
C20.0211 (7)0.0179 (7)0.0196 (7)0.0017 (6)0.0034 (6)0.0006 (5)
C30.0209 (7)0.0214 (7)0.0200 (7)0.0039 (6)0.0009 (6)0.0004 (6)
C40.0221 (7)0.0182 (7)0.0175 (7)0.0003 (6)0.0007 (6)0.0020 (5)
C50.0234 (7)0.0157 (7)0.0125 (7)0.0006 (6)0.0003 (5)0.0009 (5)
C60.0207 (7)0.0159 (7)0.0116 (6)0.0019 (5)0.0010 (5)0.0004 (5)
O20.0242 (5)0.0295 (6)0.0108 (5)0.0044 (4)0.0005 (4)0.0005 (4)
N60.0194 (6)0.0203 (6)0.0113 (6)0.0036 (5)0.0001 (5)0.0006 (5)
N70.0197 (6)0.0193 (6)0.0117 (6)0.0032 (5)0.0002 (5)0.0005 (4)
N80.0180 (6)0.0182 (6)0.0130 (6)0.0029 (5)0.0004 (5)0.0018 (4)
N90.0168 (6)0.0190 (6)0.0098 (6)0.0037 (5)0.0008 (4)0.0003 (4)
N100.0268 (7)0.0184 (6)0.0122 (6)0.0019 (5)0.0008 (5)0.0023 (5)
C70.0312 (8)0.0185 (7)0.0195 (7)0.0033 (6)0.0052 (6)0.0001 (6)
C80.0183 (7)0.0197 (7)0.0158 (7)0.0069 (5)0.0044 (5)0.0025 (5)
C90.0208 (7)0.0216 (7)0.0135 (7)0.0075 (6)0.0034 (5)0.0033 (5)
C100.0166 (7)0.0257 (8)0.0121 (6)0.0082 (6)0.0029 (5)0.0029 (5)
C110.0157 (6)0.0205 (7)0.0126 (6)0.0051 (5)0.0017 (5)0.0007 (5)
C120.0157 (6)0.0205 (7)0.0105 (6)0.0054 (5)0.0003 (5)0.0001 (5)
Geometric parameters (Å, º) top
O1—C41.2244 (17)O2—C101.2301 (17)
N1—C61.3549 (18)N6—C121.3553 (18)
N1—C21.373 (2)N6—C81.3662 (18)
N1—H10.85 (2)N6—H60.944 (19)
N2—C61.3252 (19)N7—C121.3247 (18)
N2—C51.3850 (18)N7—C111.3934 (18)
N3—C51.3425 (18)N8—C111.3272 (17)
N3—N41.3871 (16)N8—N91.3869 (16)
N4—C61.3586 (18)N9—C121.3592 (17)
N4—C41.4028 (19)N9—C101.4009 (18)
N5—C51.339 (2)N10—C111.3528 (19)
N5—H5A0.93 (2)N10—H10A0.863 (18)
N5—H5B0.881 (18)N10—H10B0.845 (18)
C1—C21.495 (2)C7—C81.493 (2)
C1—H1A0.9800C7—H7A0.9800
C1—H1B0.9800C7—H7B0.9800
C1—H1C0.9800C7—H7C0.9800
C2—C31.358 (2)C8—C91.362 (2)
C3—C41.434 (2)C9—C101.434 (2)
C3—H30.92 (2)C9—H90.994 (16)
C6—N1—C2119.78 (12)C12—N6—C8119.56 (12)
C6—N1—H1122.1 (14)C12—N6—H6120.7 (11)
C2—N1—H1118.0 (14)C8—N6—H6119.7 (11)
C6—N2—C5102.16 (12)C12—N7—C11101.97 (11)
C5—N3—N4101.88 (11)C11—N8—N9101.91 (11)
C6—N4—N3109.13 (11)C12—N9—N8109.40 (11)
C6—N4—C4125.85 (12)C12—N9—C10125.84 (13)
N3—N4—C4125.00 (11)N8—N9—C10124.76 (11)
C5—N5—H5A115.3 (12)C11—N10—H10A121.1 (11)
C5—N5—H5B118.1 (12)C11—N10—H10B116.2 (12)
H5A—N5—H5B124.6 (16)H10A—N10—H10B114.5 (16)
C2—C1—H1A109.5C8—C7—H7A109.5
C2—C1—H1B109.5C8—C7—H7B109.5
H1A—C1—H1B109.5H7A—C7—H7B109.5
C2—C1—H1C109.5C8—C7—H7C109.5
H1A—C1—H1C109.5H7A—C7—H7C109.5
H1B—C1—H1C109.5H7B—C7—H7C109.5
C3—C2—N1120.58 (14)C9—C8—N6121.13 (13)
C3—C2—C1123.06 (14)C9—C8—C7123.36 (13)
N1—C2—C1116.36 (13)N6—C8—C7115.51 (12)
C2—C3—C4123.05 (14)C8—C9—C10122.51 (13)
C2—C3—H3119.9 (12)C8—C9—H9118.0 (9)
C4—C3—H3117.0 (12)C10—C9—H9119.5 (9)
O1—C4—N4120.04 (14)O2—C10—N9120.15 (14)
O1—C4—C3128.36 (15)O2—C10—C9128.04 (14)
N4—C4—C3111.60 (12)N9—C10—C9111.81 (12)
N5—C5—N3122.72 (13)N8—C11—N10122.11 (13)
N5—C5—N2122.06 (13)N8—C11—N7115.47 (12)
N3—C5—N2115.20 (13)N10—C11—N7122.36 (13)
N2—C6—N1129.32 (13)N7—C12—N6129.63 (12)
N2—C6—N4111.63 (12)N7—C12—N9111.24 (12)
N1—C6—N4119.05 (13)N6—C12—N9119.13 (12)
C5—N3—N4—C60.68 (14)C11—N8—N9—C120.65 (14)
C5—N3—N4—C4177.92 (13)C11—N8—N9—C10179.64 (12)
C6—N1—C2—C31.3 (2)C12—N6—C8—C90.9 (2)
C6—N1—C2—C1178.81 (13)C12—N6—C8—C7178.26 (12)
N1—C2—C3—C41.0 (2)N6—C8—C9—C100.2 (2)
C1—C2—C3—C4178.83 (13)C7—C8—C9—C10179.29 (13)
C6—N4—C4—O1176.24 (13)C12—N9—C10—O2179.35 (13)
N3—N4—C4—O12.1 (2)N8—N9—C10—O20.5 (2)
C6—N4—C4—C33.1 (2)C12—N9—C10—C91.25 (19)
N3—N4—C4—C3178.51 (12)N8—N9—C10—C9179.92 (11)
C2—C3—C4—O1176.27 (15)C8—C9—C10—O2179.49 (14)
C2—C3—C4—N43.0 (2)C8—C9—C10—N91.17 (19)
N4—N3—C5—N5179.14 (13)N9—N8—C11—N10176.94 (12)
N4—N3—C5—N20.87 (15)N9—N8—C11—N70.47 (15)
C6—N2—C5—N5178.99 (13)C12—N7—C11—N80.11 (16)
C6—N2—C5—N30.71 (16)C12—N7—C11—N10177.30 (13)
C5—N2—C6—N1179.09 (14)C11—N7—C12—N6179.56 (13)
C5—N2—C6—N40.21 (15)C11—N7—C12—N90.33 (15)
C2—N1—C6—N2179.42 (13)C8—N6—C12—N7179.24 (14)
C2—N1—C6—N41.3 (2)C8—N6—C12—N90.89 (19)
N3—N4—C6—N20.30 (16)N8—N9—C12—N70.64 (15)
C4—N4—C6—N2178.28 (12)C10—N9—C12—N7179.62 (12)
N3—N4—C6—N1179.69 (11)N8—N9—C12—N6179.26 (11)
C4—N4—C6—N11.1 (2)C10—N9—C12—N60.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N70.85 (2)2.00 (2)2.8520 (18)176 (2)
N5—H5A···N2i0.93 (2)2.20 (2)3.1240 (18)173.3 (17)
N5—H5B···O2ii0.881 (18)2.097 (19)2.9733 (18)172.7 (16)
N6—H6···N3iii0.944 (19)1.94 (2)2.8724 (17)168.6 (17)
N10—H10A···O1iv0.863 (18)2.069 (18)2.8935 (17)159.5 (16)
N10—H10B···N8v0.845 (18)2.220 (19)3.0330 (19)161.2 (16)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x, y, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Hafi, M., Lahmidi, S., Boulhaoua, M., Essaghouani, A., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171243.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLahmidi, S., Sebbar, N. K., Harmaoui, A., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161946.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds