organic compounds
Spiro[cyclopentane-1,11′-hexacyclo[7.6.0.01,6.06,13.08,12.010,14]pentadecane]-7′,15′-dione
aDepartment of Chemistry, Indian Institute of Technology - Bombay, Powai, Mumbai, 400 076, India
*Correspondence e-mail: srk@chem.iitb.ac.in
An unusual rearrangement of spiro cage dione to a trishomocubane derivatives is reported by acid-catalysed rearrangement with the aid of BF3·OEt2 in benzene (solvent) reflux conditions. Here, the molecular structure of cage molecule C19H22O2 (major product) consists of five-membered rings, which adopt an envelope conformation and six-membered rings adopt a chair or boat conformation. The Cremer & Pople puckering parameters of all four six-membered rings are calculated.
Keywords: crystal structure; cage molecule; trishomocubane; Lewis acid.
CCDC reference: 1878138
Structure description
D3-Trishomocubane and its derivatives are of interest for their use as targets for pharmaceutical applications (Liu et al., 2001), in medicinal chemistry (Oliver et al., 1991) as well as in asymmetric catalysis (Levandovsky et al., 2010; Sharapa et al., 2012). Several amino functionalized D3-trishomocubane derivatives show significant biological activity and are NMDA receptor antagonists. In addition, some of them exhibit potent anti-TB activity, act as P2X7 receptor antagonists and exhibit anti-Parkinson's activity (Geldenhuys et al., 2005).
As part of our major program on cage molecules, which involves the design of unusual polycyclic cage frameworks, for example, D3-trishomocubanes by the rearrangement approach (Kotha et al., 2018) and we present herein the synthesis of the title II (Fig. 1), which was prepared (Fig. 2) from cheap and commercially available starting materials such as 1,4-hydroquinone in eight steps via Claisen rearrangement, Diels–Alder reaction and ring-closing metathesis (RCM) followed by acid-promoted rearrangement with (Kotha & Dipak, 2006).
The molecular structure of II is made up of fused five- and six-membered rings that are joined into a compact cage system. All five-membered rings adopt an envelope conformation, whereas the six-membered rings are in chair or boat conformations. The Cremer & Pople puckering parameters of three six-membered rings, namely, C2–C7, C2/C3/C9/C10/C6/C7 and C3–C6/C10/C9 are Q = 1.110 (2) Å, θ = 89.25 (10)° and φ = 15.37 (12)°; Q = 1.112 (2) Å, θ = 89.98 (10)° and φ = 285.71 (12)°; and Q = 1.114 (2) Å, θ = 90.57 (10)° and φ = 44.48 (12)° respectively. These six-membered rings all exhibit a boat conformation. The other six-membered ring C4/C5/C12–C15 is in a chair conformation with puckering parameters Q = 0.530 (3) Å. θ = 7.1 (3)° and φ = 216 (2)°.
Synthesis and crystallization
Compound II can be prepared via Lewis acid-promoted rearrangement (Fig. 2) of the cage [4.4.2]propellane I with the aid of BF3·OEt2 in the presence of benzene as a solvent. Spiro cage dione I (200 mg, 0.70 mmol) was added to a stirred solution of anhydrous BF3·OEt2 (1 mL) in dry benzene (10 mL) at room temperature. Next, the resulting reaction mixture was refluxed for two days. After completion of the reaction (TLC monitoring), the reaction mixture was quenched with a saturated aqueous NaHCO3 solution and extracted with benzene. The combined organic layers were washed with water and brine solution then dried over anhydrous Na2SO4. After removal of the solvent under vacuum, the resulting crude residue was subjected to silica gel by using 5% ethyl acetate in petroleum ether as an to deliver the desired rearranged cage ketone III (57 mg, 23%) containing a phenyl group as a colourless liquid. Continuous elution with 10% ethyl acetate in petroleum ether delivered the rearranged cage dione II (82 mg, 41%) as a colourless crystalline solid. Recrystallization of a column-purified II from a mixture of ethyl acetate and hexane (1:2) solvents gave crystals suitable for X-ray analysis. M.p. 409–411 K. IR (neat, cm−1) 2926, 2857, 1751, 1450, 1294, 1076; 1H NMR (500 MHz, CDCl3 p.p.m.): δ 2.23–2.26 (m, 6H), 1.83 (d, J = 13.5 Hz, 2H), 1.69–1.62 (m, 2H), 1.49–1.42 (m, 10H), 1.15–1.12 (m, 2H); 13C NMR (125 MHz, CDCl3, p.p.m.): δ 213.1, 60.5, 50.6, 48.6, 48.4, 42.8, 32.5, 26.1, 22.2, 21.9; HRMS (ESI, Q-TOF) m/z calculated for C19H22O2 [M + Na] + 305.1512; found: 305.1514.
Melting points were recorded on a Veego VMP–CMP melting point apparatus and are uncorrected. Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker (Avance IIITM500) spectrometer operated at 500 MHz for 1H and 125.7 MHz for 13C nuclei.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1878138
https://doi.org/10.1107/S2414314618015900/bx4013sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618015900/bx4013Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618015900/bx4013Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C19H22O2 | Dx = 1.317 Mg m−3 |
Mr = 282.36 | Melting point = 409–411 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.8650 (8) Å | Cell parameters from 2620 reflections |
b = 14.3936 (9) Å | θ = 2.5–31.0° |
c = 9.8008 (8) Å | µ = 0.08 mm−1 |
β = 111.680 (9)° | T = 150 K |
V = 1424.3 (2) Å3 | Block, colourless |
Z = 4 | 0.14 × 0.11 × 0.09 mm |
F(000) = 608 |
Rigaku Saturn724+ diffractometer | 2470 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 1877 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ω scans | θmax = 25.0°, θmin = 2.7° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −12→8 |
Tmin = 0.740, Tmax = 1.000 | k = −11→17 |
4407 measured reflections | l = −10→11 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.140 | w = 1/[σ2(Fo2) + (0.0668P)2 + 0.4068P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2470 reflections | Δρmax = 0.25 e Å−3 |
190 parameters | Δρmin = −0.28 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were placed in geometrically calculated positions and refined using a riding model with C–H distances of 1.00 Å for all H atoms bound to tertiary C(sp3) atoms and 0.99 Å for H atoms bound to secondary C(sp3) atoms. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(C). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.66123 (15) | 0.57866 (10) | 0.78083 (19) | 0.0336 (4) | |
O2 | 0.67492 (16) | 0.18936 (11) | 0.86490 (19) | 0.0361 (5) | |
C1 | 0.6053 (2) | 0.50462 (15) | 0.7681 (2) | 0.0228 (5) | |
C2 | 0.4704 (2) | 0.48099 (15) | 0.7682 (2) | 0.0236 (5) | |
H2 | 0.420116 | 0.532032 | 0.793568 | 0.028* | |
C3 | 0.4940 (2) | 0.39008 (14) | 0.8618 (3) | 0.0250 (5) | |
H3 | 0.481313 | 0.397490 | 0.957203 | 0.030* | |
C4 | 0.6387 (2) | 0.35801 (14) | 0.8782 (2) | 0.0252 (5) | |
C5 | 0.6500 (2) | 0.40821 (14) | 0.7433 (2) | 0.0217 (5) | |
C6 | 0.5219 (2) | 0.36927 (14) | 0.6173 (2) | 0.0218 (5) | |
H6 | 0.531107 | 0.361861 | 0.520102 | 0.026* | |
C7 | 0.4066 (2) | 0.43687 (14) | 0.6154 (2) | 0.0224 (5) | |
H7 | 0.375903 | 0.481631 | 0.531443 | 0.027* | |
C8 | 0.2984 (2) | 0.37374 (15) | 0.6313 (3) | 0.0254 (5) | |
C9 | 0.3986 (2) | 0.31667 (15) | 0.7546 (2) | 0.0269 (6) | |
H9 | 0.359305 | 0.269925 | 0.802299 | 0.032* | |
C10 | 0.4915 (2) | 0.27694 (14) | 0.6830 (3) | 0.0251 (5) | |
H10 | 0.457245 | 0.223742 | 0.613611 | 0.030* | |
C11 | 0.6139 (2) | 0.25960 (15) | 0.8169 (2) | 0.0259 (5) | |
C12 | 0.7534 (2) | 0.37557 (16) | 1.0209 (3) | 0.0313 (6) | |
H12A | 0.747001 | 0.333189 | 1.097601 | 0.038* | |
H12B | 0.749162 | 0.440225 | 1.053410 | 0.038* | |
C13 | 0.8851 (2) | 0.35997 (18) | 1.0017 (3) | 0.0364 (6) | |
H13A | 0.958731 | 0.376379 | 1.094051 | 0.044* | |
H13B | 0.893859 | 0.293352 | 0.981774 | 0.044* | |
C14 | 0.8961 (2) | 0.41781 (17) | 0.8765 (3) | 0.0335 (6) | |
H14A | 0.982037 | 0.404682 | 0.866980 | 0.040* | |
H14B | 0.894383 | 0.484567 | 0.900056 | 0.040* | |
C15 | 0.7839 (2) | 0.39734 (16) | 0.7303 (3) | 0.0273 (5) | |
H15A | 0.790035 | 0.440386 | 0.654310 | 0.033* | |
H15B | 0.793140 | 0.333131 | 0.699164 | 0.033* | |
C16 | 0.2179 (2) | 0.31748 (16) | 0.4922 (3) | 0.0308 (6) | |
H16A | 0.255017 | 0.326049 | 0.414784 | 0.037* | |
H16B | 0.219347 | 0.250448 | 0.515439 | 0.037* | |
C17 | 0.0770 (2) | 0.35547 (18) | 0.4420 (3) | 0.0346 (6) | |
H17A | 0.066801 | 0.411673 | 0.380529 | 0.041* | |
H17B | 0.011547 | 0.308245 | 0.385971 | 0.041* | |
C18 | 0.0616 (2) | 0.37849 (18) | 0.5865 (3) | 0.0366 (6) | |
H18A | 0.048415 | 0.321521 | 0.636087 | 0.044* | |
H18B | −0.013808 | 0.421180 | 0.571085 | 0.044* | |
C19 | 0.1933 (2) | 0.42530 (17) | 0.6750 (3) | 0.0320 (6) | |
H19A | 0.213210 | 0.419146 | 0.781667 | 0.038* | |
H19B | 0.190743 | 0.492109 | 0.650138 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0352 (10) | 0.0194 (9) | 0.0443 (11) | −0.0054 (7) | 0.0125 (8) | −0.0020 (7) |
O2 | 0.0463 (10) | 0.0204 (9) | 0.0435 (11) | 0.0061 (8) | 0.0188 (8) | 0.0057 (8) |
C1 | 0.0275 (12) | 0.0199 (12) | 0.0184 (12) | 0.0011 (9) | 0.0057 (9) | 0.0006 (9) |
C2 | 0.0281 (12) | 0.0189 (11) | 0.0262 (12) | 0.0020 (9) | 0.0127 (10) | −0.0013 (9) |
C3 | 0.0349 (13) | 0.0208 (11) | 0.0242 (12) | −0.0009 (9) | 0.0168 (10) | −0.0018 (9) |
C4 | 0.0339 (13) | 0.0193 (11) | 0.0246 (13) | 0.0014 (9) | 0.0132 (10) | 0.0019 (9) |
C5 | 0.0245 (12) | 0.0215 (11) | 0.0194 (12) | 0.0000 (9) | 0.0083 (9) | 0.0006 (9) |
C6 | 0.0246 (11) | 0.0214 (11) | 0.0209 (12) | −0.0015 (9) | 0.0102 (10) | −0.0010 (9) |
C7 | 0.0223 (11) | 0.0219 (11) | 0.0242 (12) | −0.0001 (9) | 0.0100 (9) | 0.0006 (9) |
C8 | 0.0256 (12) | 0.0253 (12) | 0.0294 (13) | −0.0034 (9) | 0.0150 (10) | −0.0055 (10) |
C9 | 0.0336 (13) | 0.0234 (12) | 0.0309 (14) | −0.0071 (10) | 0.0203 (11) | −0.0031 (10) |
C10 | 0.0304 (12) | 0.0187 (11) | 0.0297 (13) | −0.0029 (9) | 0.0154 (10) | −0.0031 (9) |
C11 | 0.0358 (13) | 0.0186 (12) | 0.0283 (13) | −0.0004 (10) | 0.0177 (11) | 0.0033 (10) |
C12 | 0.0409 (14) | 0.0274 (12) | 0.0225 (13) | 0.0024 (10) | 0.0082 (11) | 0.0015 (10) |
C13 | 0.0333 (13) | 0.0368 (14) | 0.0301 (15) | 0.0059 (11) | 0.0012 (11) | 0.0015 (11) |
C14 | 0.0246 (13) | 0.0370 (14) | 0.0339 (14) | 0.0003 (10) | 0.0051 (11) | −0.0046 (11) |
C15 | 0.0262 (12) | 0.0287 (12) | 0.0278 (13) | 0.0004 (10) | 0.0108 (10) | 0.0001 (10) |
C16 | 0.0291 (13) | 0.0308 (13) | 0.0360 (14) | −0.0068 (10) | 0.0161 (11) | −0.0080 (11) |
C17 | 0.0302 (13) | 0.0396 (14) | 0.0362 (15) | −0.0073 (11) | 0.0150 (11) | −0.0056 (11) |
C18 | 0.0279 (13) | 0.0429 (15) | 0.0438 (16) | −0.0055 (11) | 0.0190 (12) | −0.0070 (12) |
C19 | 0.0297 (13) | 0.0350 (13) | 0.0364 (15) | −0.0006 (10) | 0.0181 (11) | −0.0052 (11) |
O1—C1 | 1.210 (3) | C12—H12A | 0.9900 |
O2—C11 | 1.205 (3) | C12—H12B | 0.9900 |
C1—C2 | 1.505 (3) | C12—C13 | 1.528 (3) |
C1—C5 | 1.519 (3) | C13—H13A | 0.9900 |
C2—H2 | 1.0000 | C13—H13B | 0.9900 |
C2—C3 | 1.564 (3) | C14—C13 | 1.523 (3) |
C2—C7 | 1.536 (3) | C14—H14A | 0.9900 |
C3—H3 | 1.0000 | C14—H14B | 0.9900 |
C3—C4 | 1.589 (3) | C15—C5 | 1.514 (3) |
C3—C9 | 1.578 (3) | C15—C14 | 1.528 (3) |
C4—C12 | 1.512 (3) | C15—H15A | 0.9900 |
C5—C4 | 1.550 (3) | C15—H15B | 0.9900 |
C5—C6 | 1.583 (3) | C16—H16A | 0.9900 |
C6—H6 | 1.0000 | C16—H16B | 0.9900 |
C6—C7 | 1.580 (3) | C16—C17 | 1.527 (3) |
C6—C10 | 1.564 (3) | C17—H17A | 0.9900 |
C7—H7 | 1.0000 | C17—H17B | 0.9900 |
C7—C8 | 1.538 (3) | C18—C17 | 1.523 (3) |
C8—C9 | 1.532 (3) | C18—H18A | 0.9900 |
C8—C16 | 1.548 (3) | C18—H18B | 0.9900 |
C9—H9 | 1.0000 | C19—C8 | 1.550 (3) |
C10—C9 | 1.538 (3) | C19—C18 | 1.528 (3) |
C10—H10 | 1.0000 | C19—H19A | 0.9900 |
C11—C4 | 1.523 (3) | C19—H19B | 0.9900 |
C11—C10 | 1.505 (3) | ||
O1—C1—C2 | 130.6 (2) | C11—C10—C6 | 104.29 (17) |
O1—C1—C5 | 130.0 (2) | C11—C10—C9 | 100.46 (18) |
C2—C1—C5 | 99.37 (17) | C11—C10—H10 | 116.9 |
C1—C2—H2 | 117.1 | O2—C11—C4 | 129.4 (2) |
C1—C2—C3 | 103.90 (17) | O2—C11—C10 | 131.4 (2) |
C1—C2—C7 | 100.46 (17) | C10—C11—C4 | 99.23 (17) |
C3—C2—H2 | 117.1 | C4—C12—H12A | 109.5 |
C7—C2—H2 | 117.1 | C4—C12—H12B | 109.5 |
C7—C2—C3 | 98.24 (16) | C4—C12—C13 | 110.5 (2) |
C2—C3—H3 | 114.2 | H12A—C12—H12B | 108.1 |
C2—C3—C4 | 104.15 (16) | C13—C12—H12A | 109.5 |
C2—C3—C9 | 104.15 (18) | C13—C12—H12B | 109.5 |
C4—C3—H3 | 114.2 | C12—C13—H13A | 109.2 |
C9—C3—H3 | 114.2 | C12—C13—H13B | 109.2 |
C9—C3—C4 | 104.79 (17) | H13A—C13—H13B | 107.9 |
C5—C4—C3 | 99.51 (16) | C14—C13—C12 | 112.02 (19) |
C11—C4—C3 | 101.89 (17) | C14—C13—H13A | 109.2 |
C11—C4—C5 | 98.93 (17) | C14—C13—H13B | 109.2 |
C12—C4—C3 | 119.41 (19) | C13—C14—H14A | 109.2 |
C12—C4—C5 | 114.43 (18) | C13—C14—H14B | 109.2 |
C12—C4—C11 | 119.06 (18) | C13—C14—C15 | 112.13 (19) |
C1—C5—C4 | 99.11 (17) | H14A—C14—H14B | 107.9 |
C1—C5—C6 | 101.95 (16) | C15—C14—H14A | 109.2 |
C4—C5—C6 | 100.16 (16) | C15—C14—H14B | 109.2 |
C15—C5—C1 | 118.81 (18) | C5—C15—C14 | 111.09 (19) |
C15—C5—C4 | 113.84 (18) | C5—C15—H15A | 109.4 |
C15—C5—C6 | 119.54 (18) | C5—C15—H15B | 109.4 |
C5—C6—H6 | 114.3 | C14—C15—H15A | 109.4 |
C7—C6—C5 | 104.84 (16) | C14—C15—H15B | 109.4 |
C7—C6—H6 | 114.3 | H15A—C15—H15B | 108.0 |
C10—C6—C5 | 103.79 (17) | C8—C16—H16A | 110.6 |
C10—C6—H6 | 114.3 | C8—C16—H16B | 110.6 |
C10—C6—C7 | 103.97 (16) | H16A—C16—H16B | 108.7 |
C2—C7—C6 | 99.94 (16) | C17—C16—C8 | 105.67 (18) |
C2—C7—H7 | 115.4 | C17—C16—H16A | 110.6 |
C2—C7—C8 | 103.39 (17) | C17—C16—H16B | 110.6 |
C6—C7—H7 | 115.4 | C16—C17—H17A | 111.2 |
C8—C7—C6 | 105.47 (16) | C16—C17—H17B | 111.2 |
C8—C7—H7 | 115.4 | H17A—C17—H17B | 109.1 |
C7—C8—C16 | 115.11 (18) | C18—C17—C16 | 102.7 (2) |
C7—C8—C19 | 114.46 (18) | C18—C17—H17A | 111.2 |
C9—C8—C7 | 92.90 (17) | C18—C17—H17B | 111.2 |
C9—C8—C16 | 114.81 (19) | C17—C18—H18A | 111.2 |
C9—C8—C19 | 114.79 (19) | C17—C18—H18B | 111.2 |
C16—C8—C19 | 105.03 (18) | C17—C18—C19 | 102.85 (19) |
C3—C9—H9 | 115.4 | H18A—C18—H18B | 109.1 |
C8—C9—C3 | 105.47 (18) | C19—C18—H18A | 111.2 |
C8—C9—H9 | 115.4 | C19—C18—H18B | 111.2 |
C8—C9—C10 | 103.50 (18) | C8—C19—H19A | 110.7 |
C10—C9—C3 | 99.90 (17) | C8—C19—H19B | 110.7 |
C10—C9—H9 | 115.4 | C18—C19—C8 | 105.26 (19) |
C6—C10—H10 | 116.9 | C18—C19—H19A | 110.7 |
C9—C10—C6 | 98.38 (16) | C18—C19—H19B | 110.7 |
C9—C10—H10 | 116.9 | H19A—C19—H19B | 108.8 |
Funding information
We thank the Defence Research and Development Organization (DRDO, No. ARDB/01/1041849/M/1), New Delhi, for financial assistance. SK thanks the Department of Science and Technology (DST, No. SR/S2/JCB-33/2010) for the award of a J. C. Bose fellowship and Praj industries for the Pramod Chaudhari Chair Professorship (Green Chemistry). RG thanks Indian Institute of Technology (IIT) - Bombay, Mumbai for financial support as an Institute Research Associate (RA) and SRC thanks the University Grants Commission (UGC), New Delhi, for the award of a research fellowship.
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Geldenhuys, W. J., Malan, S. F., Bloomquist, J. R., Marchand, A. P. & Van der Schyf, C. J. (2005). Med. Res. Rev. 25, 21–48. CrossRef PubMed CAS Google Scholar
Kotha, S., Cheekatla, S. R. & Gunta, R. (2018). IUCrData, 3, x180090. Google Scholar
Kotha, S. & Dipak, M. K. (2006). Chem. Eur. J. 12, 4446–4450. Web of Science CrossRef PubMed CAS Google Scholar
Levandovsky, I. A., Sharapa, D. I., Cherenkova, O. A., Gaidai, A. V. & Shubina, T. E. (2010). Russ. Chem. Rev. 79, 1005–1026. CrossRef Google Scholar
Liu, X., Nuwayhid, S., Christie, M. J., Kassiou, M. & Werling, L. L. (2001). Eur. J. Pharmacol. 422, 39–45. Web of Science CrossRef PubMed CAS Google Scholar
Oliver, D. W., Dekker, T. G., Snyckers, F. O. & Fourie, T. G. (1991). J. Med. Chem. 34, 851–854. CrossRef Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sharapa, D. I., Levandovskiy, I. A. & Shubina, T. E. (2012). Curr. Org. Chem. 16, 2632–2660. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.